201x-201x学年九年级数学上册 第二十三章 旋转 23.1 图形的旋转 第2课时 旋转作图教案
- 格式:doc
- 大小:242.00 KB
- 文档页数:4
第二十三章旋转23.1 图形的旋转1. 图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
2. 旋转的基本特征:(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。
3. 几点说明:(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
23.2 中心对称中心对称:把一个图形绕着某一点旋转180°,假如它能够与另一个图形重合,那么这刘遇图形关于这个点对称或中心对称。
中心对称的性质:①关于中心对称的刘遇图形,对应点所连线段都经过对称中心,而且被对称中心所平分。
②关于中心对称的刘遇图形是全等形。
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
对称点的坐标规律:①关于x轴对称:横坐标不变,纵坐标互为相反数,②关于y轴对称:横坐标互为相反数,纵坐标不变,③关于原点对称:横坐标、纵坐标都互为相反数。
23.1 图形的旋转(1)§23.1图形的旋转说课稿叙永县落卜中学韩光平今天我说课的题目是《图形的旋转》,根据新课程理念,对于本节课,我将从背景分析、教学目标、课堂结构、教学媒体、教学过程和教学评价六个方面谈谈本节课的教学设想。
一、背景分析1、学习任务分析《图形的旋转》是人教版九年级上册《第二十三章》第一节的内容,是初中数学的重要内容之一。
一方面,是在学生学习了平移、轴对称、三角形全等等内容,具备了初步的观察、操作等活动经验的基础上学习的,是对图形变换的进一步深入和拓展;另一方面,又为学习中心对称、中心对称图形等内容作铺垫,是全面构建旋转知识体系的基础,是进一步研究图形变换的工具性内容。
所以本节课的内容不仅有着广泛的实际应用价值,而且起着承前启后的作用。
本节课的核心概念是旋转概念和性质,在教学过程中,我启发、引导学生运用观察猜想、动手测量等方法来探究旋转性质,运用转化的思想方法,用分类讨论的思想方法来总结性质,用讲练结合的教学方法来巩固旋转性质。
所以本节课的教学重点就是分析研究旋转现象,抽象概括旋转的概念,探索发现旋转的特征。
2、学生情况分析从学生心理特征来看,初中阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我抓住这些特点,一方面运用直观形象的图片课件,激发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面,我创造机会和条件,让学生发表见解,发挥学生学习的主动性,充分体现新课程所倡导的以学生为本的理念。
从学生的知识水平来看,学生已掌握了平移、轴对称、三角形全等等内容,具备了初步的猜想测量、推理论证等经验,这为旋转性质的探究提供了良好的知识、技能储备。
但是由于学生运用数学思想的意识还比较薄弱,思维的严密性、灵活性都有待于加强,所以发现图形的旋转变换关系并恰当运用旋转研究几何问题是学生学习过程中的难点。
二、教学目标根据新课程标准要求,结合教材的特点以及学生的认知情况,本节课我制定如下教学目标:1、知识技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。
第2课时旋转作图
01 教学目标
1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.
2.掌握根据需要用旋转的知识设计出美丽的图案.
02 预习反馈
自学教材P61,完成下列问题.
1.回顾思考.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.学生独立完成作图题.
如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.
【点拨】要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.
知识探究
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.
1.旋转中心不变,改变旋转角.
2.旋转角不变,改变旋转中心.
我们可以设计成如图美丽的图案.
因此,从以上的画图中,我们可以得到旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以我们可以经过旋转设计出美丽的图案.
03 新课讲授
例1如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.
【解答】图略.
【点拨】绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.
例2(23.1第2课时习题)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
【解答】(1)△A1B1C如图所示.
(2)△A2B2C2如图所示.
(3)如图所示,旋转中心为(-1,0).
【跟踪训练】如图,直角坐标系中点A坐标为(5,3),点B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为(-2,4).
04 巩固训练
1.将左图所示图案绕点O按照顺时针方向旋转90°,得到的图案是(C)
2.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是(B)
A.顺时针旋转90°
B.逆时针旋转90°
C.顺时针旋转45°
D.逆时针旋转45°
3.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD 等于35°.
4.如图,正方形OABC的两边OA,OC分别在x轴,y轴上,点D(4,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(-1,0)或(1,8).
05 课堂小结
1.旋转作图需要找到三要素,分别是什么?
2.利用旋转作图我们可以设计出美丽的图案.
如有侵权请联系告知删除,感谢你们的配合!。