八年级数学全等三角形测试题A
- 格式:doc
- 大小:409.50 KB
- 文档页数:8
八年级数学上册《全等三角形的判定》练习题及答案一、选择题1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°2.下列说法正确的是( )A.两个等腰直角三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠CB.AD=AEC.BD=CED.BE=CD5.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°6.如图, OD⊥AB于点D,OE⊥AC于点E, 且OD=OE, 则△AOD与△AOE全等的理由是()A.SASB.ASAC.SSSD.HL7.如图所示,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠28.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等9.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是( )A.0.5 B.1 C.1.5 D.210.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对二、填空题11.如图,已知∠C=∠D=90°,请你添加一个适当的条件:______________,使得△ACB≌△BDA.12.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)13.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.15.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.16.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB= .三、解答题17.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.18.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF.求证:∠E=∠F.19.如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.20.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.参考答案1.答案为:C2.答案为:C3.答案为:B4.答案为:D5.答案为:B.6.答案为:D7.答案为:D8.答案为:A9.答案为:B 10.答案为:D11.答案为:AD=CD;(答案不唯一).12.答案为:AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.13.答案为:AB=DE.14.答案为:3;15.答案为:316.答案为:7.17. (1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD∥BC,∴∠AOD=∠OBC,在△AOD与△OBC中,,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD∥BC,∴∠DOC=∠OCB=35°.18.证明:19.解:(1)∵AC=BD∴AD=BC且AF=BE,∠A=∠B∴△ADF≌△BCE(SAS)∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE∴AD=BC=5cm,且CD=1cm,∴AC=AD+CD=6cm.20.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,∠1=∠D,∠3=∠5,BC=CE,∴△ABC≌△DEC(AAS),∴AC=CD;(2)∵∠ACD=90°,AC=CD,∴∠2=∠D=45°,∵AE=AC,∴∠4=∠6=67.5°,∴∠DEC=180°-∠6=112.5°.。
八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。
2022-2023学年八年级数学上册第12章《全等三角形》测试卷一、选择题(每小题3分,共30分)1.如图,两个三角形为全等三角形,则∠α的度数是()A.72°B.60°C.58°D.50°第1题图第2题图第3题图2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS4.工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB是一个任意角在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HLB.SSSC.SASD.ASA第4题图第5题图第6题图5.如图,已知∠MAN=55°,点B为AN上一点.用尺规按如下过程作图:以点A为圆心,以任意长为半径作弧,交AN于点D,交AM于点E;以点B为圆心,以AD为半径作弧,交AB于点F;以点F为圆心,以DE为半径作弧,交前面的弧于点G;连接BG并延长交AM于点C.则∠BCM的度数为()A.70°B.110°C.125°D.130°6.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②7.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ≥5B.PQ>5C.PQ<5D.PQ≤58.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处第8题图第9题图第10题图9.如图,在Rt△ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6010.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD,则∠A′DB 为.第11题图第12题图第13题图12.已知,如图,∠AOB=60°,CD⊥OA 于D,CE⊥OB 于E,若CD=CE,则∠COD+∠AOB=度.13.如图在等腰Rt△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE⊥AB 于E,若AB=10,则△BDE 的周长等于.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP=.第14题图第15题图15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于E.则下列结论:①CD=ED,②AC+BE=AB,③∠BDE=∠BAC,④AD 平分∠CDE,⑤S △ABD :S △ACD =AB:AC,其中正确的是.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.17.(9分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.18.(9分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.19.(9分)已知如图AD为△ABC上的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:(1)△ADC≌△BDF;(2)BE⊥AC.20.(9分)图为人民公园的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB的长(要求画出草图,写出测量方案和理由).21.(10分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?22.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(11分)(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.第十二章全等三角形单元测试卷参考答案一、选择题1.A2.D3.C 4.B5.B6.C7.A8.D9.B10.D 二、填空题11.10°12.90°13.1014.6或12.15.①②③④⑤.三、解答题16.证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.17.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.18.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.19.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°.又∵BF=AC,FD=CD,∴△ADC≌△BDF(HL).(2)∵△ADC≌△BDF,∴∠EBC=∠DAC.又∵∠DAC+∠ACD=90°,∴∠EBC+∠ACD=90°.∴BE⊥AC.20.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴△PCQ≌△BCA∴AB=PQ.21.解:(1)△BPD≌△CQP,理由如下:∵t=1s,∴BP=CQ=3×1=3(cm),∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS);(2)∵v P ≠v Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q 运动的时间t==(s),∴v Q ===(cm/s),答:当点Q 的运动速度为cm/s,能够使△BPD 与△CQP 全等.22.解(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD 和Rt△ACE 中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.解:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM⊥AB 于M,过点G 作GN⊥EA 交EA 延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM 和△AGN 中,,∴△ACM≌△AGN,∴CM=GN,∵S △ABC =AB•CM,S △AEG =AE•GN,∴S △ABC =S △AEG ,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.。
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
第十一章全等三角形测试题(A )一、选择题(每小题4分,共40分)1、下列说法正确的是()A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为()F A A :2 B :3 C :5 D :2.5(第2题)BE3、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=D C A ∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有() A :1个 B :2个 C :3个 D :4个A E C (第4题) 4、如图:AB=AD ,AE 平分∠BAD ,则图中有()对全等三角形。
B A B C D (第3题)A :2B :3C :4D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=() A :7° B :8° C :9° D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,B ③BD=CD ,④AD ⊥BC 。
其中正确的个数有() A :1个 B :2个 C :3个 D :4个A B(第5题)D E C A F D (第6题)E ECCB(第7题)F D 7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要() A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC 8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,a B AM QN(第8题)C ③△BMP ≌△QNP ,其中正确的是()A :①②③B :①②C :②③D :①b(第9题)c 9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A :1个B :2个C :3个D :4个10、如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6C ㎝,则△DEB的周长是()DA:6㎝ B:4㎝ C:10㎝ D:以上都不对A 二、填空题(每小题4分,共40分)11、如图:AB=AC,BD=CD,若∠B=28°则∠C=;12、如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,(第10题)EABDB(第11题)CO③点P在∠AOB的平分线上。
第十四章全等三角形测试题、选择题(每小题4分,共32 分)1 .下列命题中真命题的个数有()⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,C、1个2.如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和,厶=/ A',若证N ABC B" A'B'C'还要从下列条件中补选一个,错误的选法是(C. BC=B'C'D. AC=A C'4. P是/ AOB平分线上一点,CD丄OP于F,并分别交OA、OB于CD,贝U CD _____________ P点到/ AOB两边距离之和.()A.小于B.大于5.如图,从下列四个条件:①BC= B C,②AC= A 'C,③/ A 'CA=Z B CB,④AB= A B '中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是()A.① B ② C ③ D ①②7 .如图,△ ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ ABC分A .甲和乙 E.乙和丙 C.只有乙 D.只有丙△ ABC全等的图形是(3 .在"ABC 和"A 'B'C'中,AB=A 'B'C.等于D.不能确定(5题)CF = 4,贝V S ABEF 为.三:解答题(共44 分)15、( 5分)已知:如图,AC 、BD 相交于点 O , Z A = Z D , AB=CD.求证:△ AOB ^A DOC ,。
为三个三角形,则 &ABO : S ^BCO : &CAO 等于( B . 1 : 2 : 3 C . 2 : 3 : 4 &如图所示,在 Rt △ ABC 中,AD 是斜边上的高,Z 交AD AC 于点F 、E, EG 丄BC 于 G 下列结论正确的是 A . Z C= / ABC B. BA=BG CC . AE=CE D. AF=FD 二、填空题(每小题4分,共24 分) 9 .如图,Rt △ ABC 中,直角边是 ,斜边是 10.如图,点D,E 分别在线段 AB, AC 上, BE, CD 相交于 /A点 O, AE AD , 要使△ ABE ACD ,需添加一个条件是(只要写一个(10 题) (11题)11.如图,把△ ABC 绕C 点顺时针旋转35。
一、选择题1.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =2.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 3.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 4.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等5.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒6.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 7.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等8.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点 9.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等10.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:411.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是()A .SASB .AASC .SSSD .HL12.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题13.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________15.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.16.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.17.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.18.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).20.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题21.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.22.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.23.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.24.在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点H ,已知3EH EB ==,4AE =,求CH 的长.25.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?26.在数学课本中,有这样一道题:如图1,AB ∥CD ,试用不同的方法证明∠B +∠C =∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B +∠C =∠BEC求证:AB ∥CD证明:如图2,过点E ,作EF ∥AB ,∴∠B =∠∵∠B +∠C =∠BEC ,∠BEF +∠FEC =∠BEC (已知)∴∠B +∠C =∠BEF +∠FEC (等量代换)∴∠ =∠ (等式性质)∴EF ∥∵EF ∥AB∴AB ∥CD (平行于同一条直线的两条直线互相平行)(2)如图3,已知AB ∥CD ,在∠BCD 的平分线上取两个点M 、N ,使得∠BMN =∠BNM ,求证:∠CBM =∠ABN .(3)如图4,已知AB ∥CD ,点E 在BC 的左侧,∠ABE ,∠DCE 的平分线相交于点F .请直接写出∠E 与∠F 之间的等量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.2.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.3.B解析:B【分析】根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,故选:B .【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 4.D解析:D【分析】根据三角形全等的判定方法对A 、D 进行判断;利用三角形高的位置不同可对B 、C 进行判断.【详解】A 、有两边和它们的夹角对应相等的两个三角形全等,所以A 选项错误;B 、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B 选项错误;C 、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C 选错误;D 、有两边和第三边上的中线对应相等的两个三角形全等,所以D 选项正确;故选:D .【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.5.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.6.C解析:C【分析】利用基本作图对三个图形的作法进行判断即可.【详解】解:在图1中,利用基本作图可判断AD 平分∠BAC ;在图2中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线;在图3中,利用作法得AE=AF ,AM=AN ,则可判断△AMF ≌△ANE ,所以∠AMD=∠AND , 再根据ME=AM-AE=AN-AF=FN ,∠MDE=∠NDF 可判断△MDE ≌△NDF ,根据三角形面积公式则可判定D 点到AM 和AN 的距离相等,则可判断AD 平分∠BAC .故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,解决本题的关键是掌握角平分线的作法.7.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.【详解】解:A,三边分别相等的两个三角形全等,故本选项正确;B,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C,两个角和一个边对应相等的两个三角形,可利用ASA或AAS判定全等,故本选项正确;D,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.8.D解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.9.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D 、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B解析:B【分析】过D 作DF AB ⊥于F ,根据角平分线的性质得出DF =DC ,再根据三角形的面积公式求出ABD 和ACD 的面积,最后求出答案即可.【详解】解:过D 点作DF AB ⊥于F ,∵AD 平分CAB ∠,C 90∠=(即AC BC ⊥),∴DF CD =,设DF CD R ==,在Rt ABC 中,C 90∠=,AC 3=,BC 4=, ∴22AB 5AC BC =+=, ∴ABD 115SAB DF 5R R 222=⨯⨯=⨯⨯=,ACD 113S AC CD 3R R 222=⨯⨯=⨯⨯=, ∴ABD ACD 5S :S R 2⎛⎫= ⎪⎝⎭:3R 5:32⎛⎫= ⎪⎝⎭, 故选:B.【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF =CD 是解此题的关键.11.D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.12.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.二、填空题13.∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC ∠C=∠C 所以添加∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.15.5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE 此时AE=BC=5可据此求出E 点的位置②Rt △CBA ≌Rt △DAE 此时AE=AB=12EB 重合【详解】解:①当AE=CB 时∵∠B=∠EA解析:5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE ,此时AE=BC=5,可据此求出E 点的位置.②Rt △CBA ≌Rt △DAE ,此时AE=AB=12,E 、B 重合.【详解】解:①当AE=CB 时,∵∠B=∠EAP=90°,在Rt △ABC 与Rt △DAE 中,AE CB DE AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △DAE (HL ),即AE=BC=5;②当E 运动到与B 点重合时,AE=AB ,在Rt △CBA 与Rt △DAE 中,AE AB DE AC=⎧⎨=⎩, ∴Rt △CBA ≌Rt △DAE (HL ),即AE=AB=12,∴当点E 与点B 重合时,△CBA 才能和△DAE 全等.综上所述,AE=5或12.故答案为:5或12.【点睛】本题考查了三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.16.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判 解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 17.6【分析】过点P 作PH ⊥AMPQ ⊥AN 连接AP 根据角平分线上的点到角两边的距离相等可得PH=PE=PQ 再根据三角形的面积求出BC 然后求出AC+AB 再根据S △ABC=S △ACP+S △ABP-S △BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S△ABC=12×3×9-7.5=6 cm2【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S△ABC的面积的表示.18.AD=BD【分析】要判定△BCD≌△ACD已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS的条件;两边及夹角对相等只能选AD=BD【详解】解:由图可知只能是AD=BD才能组成SAS故答案为解析:AD=BD【分析】要判定△BCD≌△ACD,已知∠1=∠2,CD是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD ,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.19.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.4【分析】由角平分线的性质可知D 到AB 的距离等于DC 可得出答案【详解】解:作DE ⊥AB 于E ∵AD 平分∠CAB 且DC ⊥ACDE ⊥AB ∴DE=DC ∵S △ABD=20cm2AB=10cm ∴•AB•DE=2解析:4【分析】由角平分线的性质可知D 到AB 的距离等于DC ,可得出答案.【详解】解:作DE ⊥AB 于E .∵AD 平分∠CAB ,且DC ⊥AC ,DE ⊥AB ,∴DE=DC ,∵S △ABD =20cm 2,AB=10cm ,∴12•AB•DE=20, ∴DE=4cm ,∴DC=DE=4cm故答案为:4.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题21.见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明△ACF ≌△BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =; //AC BD ,CAF DBE ∴∠=∠在ACF 与BDE 中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键. 22.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.23.(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB . ∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒, ∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关, ∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.24.CH=1【分析】根据AD ⊥BC ,CE ⊥AB ,可得出∠EAH+∠B=90°∠EAH+∠AHE=90°,则∠B=∠AHE ,则可证△AEH ≌△CEB ,从而得出CE=AE ,再根据已知条件得出CH 的长.【详解】解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,AHE B EH BEAEH BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△CEB (ASA ),∴CE=AE=4,∵EH=EB=3,∴CH=CE-EH=4-3=1.【点睛】本题考查了全等三角形的判定和性质,根据同角的余角相等得出∠B=∠AHE ,是解此题的关键.25.(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 26.(1)BEF ,C ,CEF ,CD ;(2)证明见解析;(3)∠E =2∠F【分析】(1)过点E ,作EF ∥AB ,根据内错角性质即可得出∠B =∠BEF ,利用等量代换即可证出∠C =∠CEF ,进而得出EF ∥CD .(2)如图3,过点N 作NG ∥AB ,交BM 于点G ,可以知道NG ∥AB ∥CD ,由平行线的性质得出∠ABN =∠BNG ,∠GNC =∠NCD ,由三角形的外角性质得出∠BMN =∠BCM +∠CBM ,证出∠BCM +∠CBM =∠BNG +∠GNC ,进而得出∠BCM +∠CBM =∠ABN +∠NCD ,由角平分线得出∠BCM =∠NCD ,即可得出结论.(3)如图4,分别过E ,F 作EG ∥AB ,FH ∥AB ,则EG ∥CD ,FH ∥CD ,根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:如图2,过点E,作EF∥AB,∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠CEF(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行);故答案为:BEF,C,CEF,CD;(2)如图3所示,过点N作NG∥AB,交BM于点G,则NG∥AB∥CD,∴∠ABN=∠BNG,∠GNC=∠NCD,∵∠BMN是△BCM的一个外角,∴∠BMN=∠BCM+∠CBM,又∵∠BMN=∠BNM,∠BNM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠ABN+∠NCD,∵CN平分∠BCD,∴∠BCM=∠NCD,∴∠CBM=∠ABN.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠BEG=∠ABE,∠CEG=∠DCE,∴∠BEC=∠BEG+∠CEG=∠ABE+∠DCE,同理可得∠BFC=∠ABF+∠DCF,∵∠ABE,∠DCE的平分线相交于点F,∴∠ABE=2∠ABF,∠DCE=2∠DCF,∴∠BEC=2(∠ABF+∠DCF)=2∠BFC.【点睛】本题考察了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.。
人教版八年级数学上学期试题:第12章全等三角形单元练习A卷一.选择题(每题3分,共36分)1.下列各组图形中,是全等三角形的是()A.两个含70°角的直角三角形B.斜边对应相等的两个等腰直角三角形C.边长分别为3和4的两个等腰三角形D.腰长相等的两个等腰三角形2.某同学不小心把一块三角形的玻璃打碎成了三块,如图所示,现要到玻璃店去配一块完全一样的玻璃,需要带去三块玻璃中的()A.第①块B.第②块C.第③块D.第①②块3.已知△ABC内一点M,如果点M到两边AB、BC的距离相等,那么点M()A.在AC边的高上B.在AC边的中线上C.在∠ABC的平分线上D.在AC边的垂直平分线上4.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个5.如图,△ABC≌△DEF,DF和AC,EF和BC为对应边,若∠A=123°,∠F=39°,则∠DEF等于()A.18°B.20°C.39°D.123°6.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是()A.0.5 B.1 C.1.5 D.27.已知AD是△ABC中BC边上的中线,AB=4,AC=6,则AD的取值范围是()A.2<AD<10 B.1<AD<5 C.4<AD<6 D.4≤AD≤68.如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°﹣∠ABC﹣2x°,则下列角中,大小为x°的角是()A.∠EFC B.∠ABC C.∠FDC D.∠DFC9.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2810.如图,在Rt△ABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交AC、AB 于点M、N,再分别以点M、N为圆心,以一个定长为半径画弧,两弧交于点P,作射线AP 交BC于点D.若AC=4,BC=3,则CD的长为()A.B.C.D.11.如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°12.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()A.20 B.40 C.60 D.100二.填空题(每题4分,共16分)13.如图,△ABC中,已知AB=5,AC=4,AD平分∠BAC交BC于D,DE⊥AC交AC于点E,若DE=2,则△ABC的面积为.14.若△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则△ABC的面积为.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=20°,∠2=25°,则∠3=.16.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DH⊥AC,垂足为H,DE=DG,△ADG 和△DEH的面积分别为49和6,则△ADE的面积为.三.解答题(共48分,共5题)17.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=16,DE=4,求△ADC的面积.18.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.19.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD =∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:△ABF≌△DCE;(2)若∠AOE=80°,求∠OEF的度数.21.如图,已知∠ABC=90°,D是直线AB上一点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF.①求证:AF+AB=BC②判断FD与DC的关系并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.参考答案一.选择题1.解:A、两个含70°角的直角三角形,缺少对应边相等,所以不是全等三角形;B、斜边对应相等的两个等腰直角三角形,符合AAS或ASA,是全等三角形;C、边长分别为3和4的两个等腰三角形有可能是3,3,4或4,4,3,对应关系不明确,不一定全等;D、腰长相等的两个等腰三角形,缺少对应边相等或夹角相等,不是全等三角形.故选:B.2.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选:C.3.解:∵ME⊥AB,MF⊥BC,ME=MF,∴M在∠ABC的角平分线上,故选:C.4.解:如图所示:一共有7个符合题意的点.故选:D.5.解;∵△ABC≌△DEF,∠A=123°,∴∠D=∠A=123°,∵∠F=39°,∴∠DEF=180°﹣123°﹣39°=18°,故选:A.6.证明:∵FC∥AB∴∠FCE=∠DAE,在△CFE和△ADE中,∴△CFE≌△ADE(ASA),∴AD=CF=5,∵AB=3,∴BD=5﹣3=2,故选:D.7.解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=4,AC=6,∴6﹣4<AE<6+4,即2<AE<10,∴1<AD<5.故选:B.8.解:∵BC=DE,AC=DC,AB=EC,∴△ABC≌△CED(SSS),∴∠EDC=∠ACB,∠ABC=∠DEC,∵∠ACE=180°﹣∠ABC﹣2x°,∴∠ACE+∠ABC=180°﹣2x°,∵∠DFC=∠DEC+∠ACE,∴∠DFC=180°﹣2x°,∵∠DFC+∠FDC+∠FCD=180°,∴∠FDC=x°.故选:C.9.解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.10.解:过点D作DE⊥AB于点E,如图所示:∵∠C=90°,由作图方法可知AP是∠BAC的平分线,∴CD=DE,设CD=DE=x,在Rt△ABC中,∵AC=4,BC=3,∴AB=5.∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=4,∴EB=1,在Rt△DEB中,∵BD2=DE2+BE2,∴(3﹣x)2=x2+12,解得:x=.故选:B.11.解:∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣62°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故选:A.12.解:∵BO、CO分别平分∠ABC、∠PCB,∴∠OBC=∠ABC,∠OCB=∠PCB,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠ABC+∠PCB),=180°﹣(180°﹣∠BPC),=90°+∠BPC=90°+(∠A+∠ACP),=110°+∠ACP,∵∠A=40°,∠CBA=60°,∴∠ACB=180°﹣∠A﹣∠CBA=180°﹣40°﹣60°=80°,∵P点在AB边上且不与A、B重合,∴0°<∠ACP<80°,∴0°<2∠BOC﹣220°<80°,∴110°<∠BOC<150°,∴m=110,n=150.∴n﹣m=40.故选:B.二.填空题(共4小题)13.解:过点D作DF⊥AB于F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴DF=DE=2,∴△ABC的面积=△ABD的面积+△ACD的面积=×5×2+×4×2=9,故答案为:9.14.解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,∴AC=12﹣AB﹣BC=12﹣3﹣4=5,AC2=52=25,AB2+BC2=32+42=25,∴AC2=AB2+BC2,∴△ABC为直角三角形,∴△ABC的面积=×AB×BC=×3×4=6,故答案为:6.15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=25°,∴∠3=∠1+∠ABD=25°+20°=45°.故答案为:45°.16.解;如图所示:∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DF =DH ,∠DFG =DHE =90°,在Rt △DFG 和Rt △DHE 中,,∴Rt △DFG ≌Rt △DHE (HL ),∴S △DFG =S △DHE ,又∵S △DHE =6,∴S △DFG =6,在△ADF 和△ADH 中,,∴△ADF ≌△ADH (AAS ),∴S △ADF =S △ADH ,又∵S △ADG =S △ADF +S △DFG ,S △ADG =49,∴S △ADF =S △ADH =49﹣6=43,又∵S △ADH =S △ADE +S △DEH ,∴S △ADE =S △ADH ﹣S △DEH =43﹣6=37故答案为37.三.解答题(共5小题)17.(1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠E=∠DFC=90°,在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵DE=DF,DE=4,∴DF=4,∵AC=16,∴△ADC的面积是==32.18.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)由(1)可知,∠F=∠ACB,∵∠A=60°,∠B=80°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(60°+80°)=40°,∴∠F=∠ACB=40°.19.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.20.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS);(2)解:∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AOE=80°,∴∠OEF=∠OFE=AOE=40°.21.(1)证明:①∵AD=BC,∴AD=AB+BD,AF=BD,∴AF+AB=BC.②∵AF⊥AB,∴∠FAD=90°,又∵∠DBC=90°,∴∠FAD=∠DBC,∵AF=BD,AD=BC,∴△FAD≌△DBC(SAS),∴FD=CD,∠ADF=∠BCD,∴∠BDC+∠ADF=∠BDC+∠BCD=90°,即DF⊥DC;(2)解:作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.。
八年级(上)全等三角形测试题
一.填空题(每题3分,共39分)
1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:___ .
2.如图,△ABD≌△ACE,且∠
BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_______ .
3. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.
4. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.
5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.
6.已知:如图 , AC⊥BC于 C , DE⊥AC于 E , AD⊥AB于 A , BC=AE.若AB=5 , 则AD=___________.
7.已知△DE F≌△ABC,其中 AB=DE,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DE F 中的DF等于______.
8.如图,已知:在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要添加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.
9.等腰三角形中一个内角为50°,那么它的底角是.
10.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.
第4题图
第1题图第3题图
第2题图
第6题图
第5题图
4
32
1E
D
C
B
A
11.如图,AD 沿AM 折叠使D 点落在BC 上,若AD=7cm ,DM=5cm ,∠DAM=30°,则AN=_ __
cm ,∠NAM=_________。
12.如图,在△ABC
中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点
D 到AB 的距离为 .
13.如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠, DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm . 二.选择题(每题3分,共30分)
14、下列条件中,不能判定三角形全等的是 ( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等
15. 如果两个三角形全等,则不正确的是 ( )
A.它们的最小角相等
B.它们的对应外角相等
C.它们是直角三角形
D.它们的最长边相等
16. 如图,已知:△ABE ≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是 ( )
A.AB=AC
B.∠BAE=∠CAD
C.BE=DC
D.AD=DE
17.在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,若证⊿ABC≌⊿A /B /C /还要从下列条件中补选一个,错误的选法是( )
(A )∠B=∠B / (B )∠C=∠C / (C )BC=B /C / (D )AC=A /C / 18. 如图,△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是( )
(A )SSS (B )SAS (C )ASA (D )AAS
19.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
(A )带①去 (B )带②去 (C )带③去 (D )带①和②去
第10题图 第12题图
第11题图 第16题图
C
A B
第8题
D A
B
C
D
E 第18题
20.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED 的度数是 ( )
A.70°
B. 85°
C. 65°
D. 以上都不对
21.已知:如图,△ABC ≌△DEF,AC ∥DF,BC ∥EF.则不正确的等式是 ( )
A.AC=DF
B.AD=BE
C.DF=EF
D.BC=EF
22.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC 的度数为 ( )
A.50°
B.30°
C.45°
D.25°
23.如图,△ABC 中,∠A =90°,AB=AC ,BD 平分∠ABC 交AC 于D, DE ⊥BC 于点E ,且BC=6,则CD+DE=( )
A 6cm
B 4 cm
C 10 cm
D 以上都不对 三.解答题(共81分)
24.(8分) 已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB.
25. (8分)如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C,连结AC 并延长到D,使CD=CA.连结BC 并延长到E,使EC=CB,连结DE,量出DE 的长,就是A 、B 的距离.写出你的证明.
第21题图
第20题图
第22题图
C
E
D
B
O A
26. (8分)已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .
27. (8分)已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,
求证:AB=AC
28. (8分)如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,即CM=CN,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?
A
B
C
D E
29.(10分)如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.8分
已知:
求证:
证明:
30.(10分)等边三角形△ABC 中,AD=CE,求∠BPC 的度数。
A B
C E
D A B C
D
E P
31.(10分)如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC
32.(11分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF。
⑴求证:BG=CF
⑵求证:EG=EF
⑶请你判断BE+CF与EF的大小关系,并证明你的结论。
答案
1.BC 和BC,CD 和CA,BD 和AB
2.AB 和AC,AD 和AE,BD 和CE
3. ∠F,CF
4.AC, ∠CAE
5. ∠ADC,AD
6.5
7.12
8.ASA DEC SAS
9. ∠B=∠C 10.DE<EF<DF. 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B
21.由ASA 可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC ≌△CED AB=ED 23.证△ABC ≌△FED 得∠ACB=∠F 所以AC ∥DF
24.证△OMC ≌△ONC 得∠COM=∠CON ,所以过角尺顶点C 的射线OC 便是∠AOB 的平分线 25.证△BED ≌△CFD 得∠E=∠CFD 所以CF ∥BE
11. 如图,已知AE ∥BF, ∠E=∠F,要使△ADE ≌△BCF,可添加的条件是__________.
12. 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距
离为 .
13.如图,AD 沿AM 折叠使D 点落在BC 上,若AD=7cm ,DM=5cm ,∠DAM=30°,则AN=_ __ cm ,∠
NAM=_________。
14.如图,E 点为ΔABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB=6cm ,CN=4cm ,则AB=____________
15.如图,△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是____________。
三. 解答题(共55分)
A
C
D B
第15题
F
A C
B
D E
第12题
图4A B
D
C
M
N
第13题
第14题
如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,
DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm .
10.如图,△ABC 中,∠A =90°,AB=AC ,BD 平分∠ABC 交AC 于D,DE ⊥BC 于点E ,且BC=6,则CD+DE=( )
(A )6cm (B )4 cm (C )10 cm (D )以上都不对
二、填空题(每小题3分,共15分)
B
C
A
D
E。