初中数学人教版八年级上册《1131多边形》教学设计
- 格式:docx
- 大小:235.21 KB
- 文档页数:5
教学设计6、什么是正多边形?正多边形有什么性质?【定义】:多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的边:组成多边形的线段叫做多边形的边。
多边形的内角:多边形相邻两边组成的角叫做多边形的内角。
多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
凸多边形:画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。
凹多边形:画出多边形的任何一条边所在直线,如果整个多边形不在这条直线的同一侧,那么这个多边形就是凹多边形。
正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。
探究:1、从四边形的一个顶点出发,可以引条对角线,它将四边形分成个三角形;2、从五边形的一个顶点出发,可以引条对角线,它将五边形分成个三角形;3、从六边形的一个顶点出发,可以引条对角线,它将六边形分成个三角形;4、从n边形的一个顶点出发,可以引条对角线,它将n边形分成个三角形;5、从n边形的n个顶点出发共可以引多少条对角线?【归纳】:多边形对角线:连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。
23-nn)(学生思考,讨论,回答。
三角形多一个元素,加深对对角线的理解。
通过探究培养学生发现规律总结规律的能力。
【活动三】巩固练习:练习:书P80练习1、2,P80习题1补充练习:1、下列不是凸多边形的是()学生思考,解决。
通过练习巩固多边形的有关知识。
2、下列图形中∠1是外角的是()【活动四】课堂小结:本节课收获了哪些知识?多边形的有关知识。
学生进行归纳小结,畅谈本节课的收获。
通过归纳小结巩固本节课所学习的知识点,使学生体验生活中处处有数学的道理。
七、教学评价设计观课记录:1.由实际生活图片引入多边形概念。
让学生大量感受,欣赏实际中的图形的同时,进行有意观察,概括出多边形的概念。
激发学生的学习兴趣,开拓学生视野,培养学生的审美情趣,2.与三角形类比建立多边形相关概念。
《多边形》教学设计方案(第一课时)一、教学目标1. 掌握多边形的定义和基本性质。
2. 学会运用多边形的基本性质进行问题解决。
3. 培养观察、分析和抽象思维的能力。
二、教学重难点1. 教学重点:多边形的定义和性质的理解与应用。
2. 教学难点:多边形内角和外角的计算以及多边形形状的判断。
三、教学准备准备教学用PPT,准备多边形模型,准备几何工具以便学生动手操作。
四、教学过程:本节课的教学设计主要分为以下几个环节:1. 引入新课起首,我会回顾之前学过的三角形相关知识,帮助学生回忆三角形的边和角,并引导学生思考多边形的基本特征。
通过引导学生观察身边的多边形物体,让学生感受多边形在生活中的广泛应用,激发学生对多边形的学习兴趣。
2. 探索新知接下来,我将引导学生探索多边形的定义和性质。
通过展示不同形状的多边形,让学生观察它们的共同特征,并引导学生通过观察、测量、比较等方法,归纳出多边形的定义和性质。
在此过程中,我会鼓励学生积极参与讨论,培养学生的观察能力和推理能力。
3. 实践操作为了加深学生对多边形性质的理解,我将组织学生进行实践操作。
通过设计一些与多边形相关的实际问题,让学生运用所学知识解决实际问题。
例如,让学生设计一个多边形图案,并计算其面积或周长等。
通过实践操作,学生可以更好地掌握多边形的性质和应用。
4. 教室小结最后,我将引导学生对本节课所学知识进行总结和归纳。
通过回顾多边形的定义、性质和应用,帮助学生稳固所学知识,并培养学生的总结能力和归纳能力。
同时,我也会强调多边形在平时生活中的应用和价值,鼓励学生将所学知识应用到实际生活中。
在每个环节中,我都会注重学生的参与度和教学效果,采用多种教学方法和手段,激发学生的学习兴趣和积极性。
同时,我也会关注学生的个体差别,根据学生的实际情况调整教学策略,确保每个学生都能在教室中获得进步和发展。
教学设计方案(第二课时)一、教学目标1. 学生能够熟练掌握多边形的内角和公式,并能够运用该公式计算多边形的内角和。
课题:11.3.1多边形
教学目标:
了解多边形及有关概念,理解正多边形及其有关概念.
重点:
多边形及有关概念.
难点:
多边形对角线的应用.
教学流程:
一、情境引入
问题:你能从图中想象出几个由一些线段围成的图形吗?
答案:
二、探究1
定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如:
四边形,五边形,六边形,八边形
练习1:
1.下列图形中是多边形的有( )
A.1个B.2个C.3个D.4个
答案:C
2.把一个多边形纸片剪去其中一个角,剩下的部分是一个四边形,则原多边形不可能是( )
A.三角形
B.四边形
C.五边形
D.六边形
答案:D
三、探究2
定义:多边形相邻两边组成的角叫做多边形的内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
归纳1:n边形的一个顶点能引出(n-3)条对角线,把这个多边形分成(n-2)个三角形
追问:你能画出其它的对角线吗?
答案:
归纳2:n边形的对角线总条数为
(3)
2
n n
.
练习2:
1.下列标注的角中是五边形ABCDE的外角的是( )
A.∠1
B.∠2
C.∠3
D.∠4
答案:C
2.如图,画出六边形ABCDEF的所有对角线.
(1)从一个顶点可以作____条对角线;
(2)六边形一共有____条对角线.
答案:3,9
四、探究3
想一想:下面的多边形有什么不同呢?
定义:整个多边形都在任何一边所在直线的同一侧,这样的多边形叫做凸多边形.整个多边形不都在某一边所在直线的同一侧,这样的多边形叫做凹多边形.
问题:观察下面的多边形,它们的边、角各有什么特点?
定义:各个角都相等,各条边都相等的多边形叫做正多边形.
练习3:
1.下列图形中,是正多边形的是( )
A.等腰三角形
B.长方形
C.圆
D. 正方形
答案:D
2.下列说法不正确的是( )
A.正多边形的各边都相等
B.正多边形的各角都相等
C.各角都相等的多边形是正多边形
D.各边都相等的多边形不一定是正多边形
答案:C
五、应用提高
1.一个多边形共有14条对角线,则这个多边形的边数为( )
A.6
B.7
C.8
D.9
答案:B
2.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边之长.
解:∵n-4=7,∴n=7,
设最小边长为x,则其余边长为x+1,x+2,x+3,x+4,x+5,x+6,可列方程,
x+x+1+x+2+x+3+x+4+x+5+x+6=56,解得x=5,
∴x+1=6,x+2=7,x+3=8,x+4=9,x+5=10,x+6=11,
即多边形的边长分别为5,6,7,8,9,10,11.
六、体验收获
今天我们学习了哪些知识?
1. 什么是多边形的内角?外角?对角线?
2.多边形的对角线有什么特点呢?
3.正多边形有什么特点呢?
七、达标测评
1.若从一个多边形的一个顶点出发可以引5条对角线,则它是( )
A.五边形
B.六边形
C.七边形
D.八边形
答案:D
2.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成8个三角形,则n=____.
答案:10
3.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数.
解:设这是一个n边形,依题意得
(3)42
n n n -= ∵n ≥3且为整数, ∴n =11.
八、布置作业
教材21页练习第1、2题.。