第五章流化床气化工艺介绍
- 格式:ppt
- 大小:552.50 KB
- 文档页数:62
流化床煤气化工艺技术0流化床煤气化概述所谓“流态化”是一种使固体微粒通过与气体或液体接触而转变成类似流体状态的操作。
当流体以低速向上通过微细颗粒组成的床层时,工艺条件和气化指标( 1 )工艺条件①原料。
褐煤是流化床最好的原料,但褐煤的水分含量很高,一般在12 %以上,蒸发这部分水分需要较多的热量(即增加了氧气的消耗量),水分过大,也会造成粉碎和运输困难,所以水分含量太大时,需增设干燥[wiki]设备[/wiki]。
煤的粒度及其分布对流化床的影响很大,当粒度范围太宽,大粒度煤较多时,大量的大粒度煤难以流化,覆盖在炉算上,氧化反应剧烈可能引起炉算处结渣。
如果粒度太小,易被气流带出,气化不彻底。
一般要求粒度大于10mm 的颗粒不得高于总量的5 % ,小于lmm 的颗粒小于总量的10 % - 15 %。
由于流化床气化时床层温度较低,碳的浓度较低,故不太适宜气化低活性、低灰熔点的煤种。
②气化炉的操作温度。
高炉温对气化是有利的,可以提高气化强度和煤气质量,但炉温是受原料的活性和灰熔点的限制的,一般在900 ℃左右。
影响气化炉温度的因素大致有汽氧比、煤的活性、水分含量、煤的加人量等。
其中又以汽氧比最为重要。
③二次气化剂的用量。
使用二次气化剂的目的是为了提高煤的气化效率和煤气质量。
被煤气带出的粉煤和未分解的碳[wiki]氢[/wiki]化合物,可以在二次气化剂吹人区的高温[wiki]环境[/wiki]中进一步反应,从而使煤气中的一氧化碳含量增加、甲烷量减少。
( 2 )气化指标褐煤的温克勒气化指标如表4 一10 所示。
由以上的叙述可知,温克勒气[wiki]化工[/wiki]艺单炉的生产能力较大。
由于气化的是细颗粒的粉煤,因而可以充分利用[wiki]机械[/wiki]化采煤得到的细粒度煤。
由于煤的干馏和气化是在相同温度下进行的,相对于移动床的干馏区来讲,其干馏温度高得多,所以煤气中几乎不含有焦油,酚和甲烷的含量也很少,排放的洗涤水对环境的污染较小。
流化床气化煤气设计
煤炭一直以来都是世界上最主要的能源资源之一,但随着环保
意识的增强,人们对于煤炭的利用方式也在不断地进行改进和创新。
流化床气化煤气设计就是其中的一种新型技术,它被广泛应用于煤
气化领域,可以高效地将煤炭转化为可再生能源。
流化床气化技术是一种将固体燃料在高温下转化为气体燃料的
过程。
在流化床气化煤气设计中,煤炭首先被粉碎成细粉,然后通
过气化剂(通常是空气或蒸汽)在高温下进行气化反应,产生可燃
气体。
这种气体可以用于发电、供热或其他工业用途。
流化床气化煤气设计的关键在于气化反应的控制和高效利用。
通过优化气化反应的温度、压力和气化剂的流速,可以最大限度地
提高气化效率,减少能源损失。
此外,流化床气化技术还可以减少
煤炭燃烧产生的污染物排放,对于保护环境具有重要意义。
除了煤炭,流化床气化技术还可以应用于其他固体废弃物的气
化转化,比如生物质、城市垃圾等。
这为资源再利用和能源转化提
供了新的途径,有助于实现清洁能源的可持续发展。
总的来说,流化床气化煤气设计是一种高效、环保的能源转化技术,可以有效地提高煤炭等固体燃料的利用率,减少环境污染。
随着技术的不断进步,相信流化床气化技术将在能源领域发挥越来越重要的作用。
循环流化床煤气化工艺的原理和特点摘要:本文从工艺流程、关键技术以及工艺特点三个方面就循环流化床煤气化工艺展开了详细介绍,并指出循环流化床煤气化工艺由于具有的强适应性、高碳转化率与气化强度,以及使用原料范围广等优势,因而得到了广泛的应用。
关键词:循环流化床煤气化工艺原理与特点一、引言我国在很长时期内将煤作为主要的能源,因此寻找出适合我国国情的洁净煤技术具有非常重要的意义。
作为高效、洁净利用煤炭途径的煤气化工艺,是现代煤化工、循环发电等洁净能源生产中非常关键的工艺之一。
由于循环流化床具有煤种适应性强、传热效率高、易完成大型化操作等优点,因而受到了十分广泛的重视。
二、循环流化床煤气化工艺的流程循环流化床中的皮带将原料煤运输至破碎机中,在将其粉碎在4毫米以下后,运至煤仓中,已备使用。
在开车前,还需利用输送机将煤粉送至立管;在开车过程中,利用提升机将细煤粉送入计量煤斗中,在升高压强后,再将细煤粉从旋转阀、螺旋给料器、进料管中稳定地输送至循环流化床气化炉的下部。
在这一过程中,用到的所有空气均来自于压缩机,将其预热后与锅炉产生的水蒸气进行混合,并从炉底的分布板进入到气化炉内。
气化炉中的温度应保持在1055℃,,气压保持在0.2MPa,气体的流速为1-5m/s,停留时间大约为4至6s。
煤气生成后,从气化炉的顶部将其引出。
由于大量的水蒸气和为转化的碳颗粒夹杂在粗煤气中,因而需要经分离系统进行分离操作。
经分离后,超过90%的颗粒下落至立管中,并重新返回到气化炉的底部。
此外,原料、气化剂等循环物质由于迅速进行了混合,因而在气化炉的底部附近便立即开始了气化反应。
循环物料与加入的新原料之间的比值最高可达到40,因而具有非常高的碳转化率。
气化炉底部的灰经过螺旋出料器,再由旋转阀送出[1]。
生产出的粗煤气在经过锅炉以及列管等回收热量后,温度得到下降,再经洗涤塔除尘与降温后,送入煤气灌中进行储存。
三、循环流化床煤气化工艺的关键技术煤气化的主要场所为反应器,用料的特性、气化能力及反应性能决定了反应器的大小与操作条件。
北京化工大学化工资源有效利用国家重点实验室5.6 气流床煤气化工艺5.7 煤地下气化重点:掌握煤气化的基本原理,认识煤气化固定床、流化床、气流床的特性,熟悉三种典型的气化工艺的特点。
5.1z气化所得的可燃气体成为气化煤气,其中有效成分包括CO、H2、甲烷等。
气化煤气可以用作城市煤气、工业燃气和化工原料气。
z煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量。
煤气化技术的应用领域z冶金还原气:z联合循环发电燃气:z燃料油合成原料气和煤炭液化气源:直接、间接液化等z煤炭气化制氢:用于电子、冶金、玻璃、化工合成、航空航天、氢能电池等z煤炭气化燃料电池:燃料电池与高效煤气化结合发电技术等煤气化技术的发展历史1857德国Siemens兄弟最早开发出用块煤生产煤气的炉子z U-Gas美国IGT(1974z KRW美国西屋(1975z1950s气流床德国Koppers-Totzekz Texaco美国,第一套中试装置(z Shell荷兰,第一个实验装置(z GSP原民主德国(1976z Prenflo德国Krupp-Uhde5.2 煤气化的基本原理和均相反应z非均相反应:气化剂或气态反应物与固体煤或煤焦的反应z均相反应:气态反应物之间的相互作用或与气化剂的反应(CH)n + O2+ H2O −−煤C + H 2O H 2+ CO C + CO 22CO C + 2H 2CH 4H 2+ O 2H CO + O 2CO CO + H 2O H 1212CO + 3H 2CH 煤= CH 4+ 气体烃+ 气体烃、焦油煤= C + CH z产生的焦油和气态烃还可能进一步裂解或反应生成气态产物煤气化的基本反应C + 2S CS 22H 2S + 2SO 2CO + S COS N 2+ 3H 22NH N 2+ H 2O + 2CON 2+ xO 22NOx气化反应的化学平衡温度压力K ∆H = 173.3 kJ/molCO 与CO 2的平衡组成与压力的关系1.气体反应物向固体(碳)表面转移或者扩散2.气体反应物被吸附在固体(碳)的表面上3.被吸附的气体反应物在固体(碳)表面起反应而形成中间配合物4.中间配合物的分解或与气相中达到固体(碳)表面的气体分子发生反应5.反应产物从固体(碳)表面解吸并扩散到气体主体C 与H 2各反应的基元反应及动力学方程气化反应动力学气化反应动力学¾混合模型¾收缩未反应核模型:随着反应进行,反应面逐渐向内推进,适用于化学反应速率K: 反应速率常数,Ψ:孔结构参数,与初始孔隙率和孔的长度有关X :气化反应的碳转化率t :气化反应的时间,气化反应动力学未反应的煤粒气化反应动力学工业煤气的组成混合煤气1127.5半水煤气3733.3空气煤气:以空气作为气化剂生产的煤气水煤气:将空气(富氧空气或纯氧)和水蒸气分别交替送入气化炉内间歇进行生产的煤气混合煤气:以空气(富氧空气或纯氧)和水蒸气的混合物作为气化剂,生产的煤气半水煤气:气体成分经过适当调整(主要是调整含氮气的量)后,生产的符合合成氨原料气的要求的煤气气化剂固定床煤粒不动气体穿过煤粒:6-50 mm气化剂5.3 气化炉的基本原理不同类型气化炉的压力损失和热传导行为最小流化速度C.Y. Wen颗粒带出速度固定(移动)床气化炉z固定床气化炉一般使用块煤或煤焦为原料,颗粒大小为6~50mm煤煤固定床(移动床)气化炉(非熔渣)及炉内温度分布图灰煤气水蒸气氧气床层高度温度/o C灰气化剂煤气烧蜂窝煤的炉子里,蜂窝煤Æ渣固定、移动?流化床气化炉z加入炉中的煤粒度一般为流化床气化炉示意图及炉内温度分布图气流床气化炉z将粉煤(200目左右,≈0.08mm )用气化剂输送入炉中,以并流方式在高温火焰中进行反应,其中部分灰分可以以熔渣的方式分离出来,反应可在所提供的空间连续地进行,炉内的温度很高。
流化床气化技术
流化床气化技术是气化碎煤的另一个主要方法。
颗粒可在10mm以下,与固定床要求是块煤有所不同。
其过程是将气化剂(氧气或空气与水蒸汽)从气化炉底部鼓入炉内,炉内煤的细粒被气化剂流动起来,在一定温度下发生燃烧和气化反应。
气流达到一定速度先鼓泡,叫鼓泡床,进一步就湍流,叫湍流床,再进一步叫快速流化床。
应用在气化煤上,形成很多炉型。
美国有U-Gas,德国有高温温克勒HTW,中国有ICC灰熔聚、灰黏聚恩德炉等。
2.1 反应特性:
2.1.1 流化床煤气化的主要反应包括:煤热解反应、热解气体二次反应、煤焦与CO2及水蒸汽反应、水蒸汽变换反应和甲烷化反应。
流化床气化过程也可分为氧化层和还原层。
氧化层高度为约为80-100mm,其高度与原料粒度无关。
氧化层上面为还原层,还原层一直延伸到床层的上部界限。
2.1.2 流化床的气体流量,一方面受到煤粒流化的最小速度--临界速度限制,又不能大于煤粒的终端速度--吹出速度,在两者之间寻求最佳流化速度。
例如,某流化床热态最小速度0.98m/s,最大为7.5m/s。
2.1.3 提高压力,可大幅提高气化强度。
提高温度,可提高煤气转化率及煤气产量。
煤种的适应性:较适合褐煤,长焰煤和弱粘煤,若气化贫煤和无烟煤时要提高温度。
由于流化床是固态干法排渣,为防止炉内结渣,在保持一定流速的同时,要求煤的灰熔点应大于1250℃,气化炉操作温度一般选定在比ST温度低
150-200℃。
流化床生物质气化实验报告一、实验目的1. 了解流化床气化技术的基本原理和特点;2. 掌握流化床生物质气化实验的操作步骤和注意事项;3. 测定生物质气化产物的组成和质量,并对其进行分析和评价。
二、实验原理生物质气化是将生物质在高温下和少量氧气或水蒸气作用下转化成气体的过程,主要包括物理变化、热解和气化反应。
流化床气化是一种高效、灵活、适用于各种生物质的气化技术。
流化床气化是利用气体动力学的原理,让气体通过布满细孔的固体床层,使床层呈现流化状态,达到充分混合的目的。
在这种状态下,生物质在高温下气化反应所需的温度减低,而且气化反应的速率大大加快。
三、实验步骤1. 实验前的准备工作a. 细磨生物质,并筛选出粒径在0.5~1.0 mm的颗粒;b. 液化气罐、氮气气罐、循环水罐、氢气检测仪等设备检查和准备;c. 将试验设备清洗干净,并进行消毒处理。
2. 生物质预处理a. 将精细磨碎的生物质置于加热炉中,在350°C下干燥2h;b. 将生物质暴露在200°C下,将生物质暴露在300°C、350°C、400°C、450°C温度下,分别在每个温度下干燥12h。
3. 开始实验a. 将预处理好的生物质颗粒装入固定在试验设备内的试验装置中;b. 测定试验开始前的初始重量;c. 打开液化气罐,向试验装置中充入高压液化气体,使固体床层中气体充分流化;d. 开始实验,设定气化反应温度和反应时间。
4. 实验结束a. 关闭液化气罐,气体通道和试验设备内过多的气体通道,使气体压力下降到大气压;b. 将试验装置取出,并将其放置在防护室中,防止气体泄漏;c. 测定固体床层中的残余量和气化产物的组成和质量。
四、实验结果及分析实验中得到的气化产物主要为氢气、甲烷、一氧化碳和二氧化碳等气体,并且检测结果显示气化产物中的氢气占主导地位,说明本次流化床生物质气化实验的效果良好。
同时,我们还对气化产物进行了质量分析,测定其产率、热值和成分等,评价了本次流化床气化实验的效果。
气化工艺操作规程及说明气化工艺操作规程及说明气化工艺是指将固体或液体燃料经过高温下的化学反应,将其转化为气体形式的能源的过程。
这种能源转化过程的重要性在于,可以将非常难以利用的燃料通过气化过程转化为易于利用的气体形式,不仅能够为生产和生活提供大量的清洁、高效、环保的热能资源,还能够为深加工和高效利用提供优良的燃料原料。
气化工艺所涉及的操作规程及说明,主要与燃料的类型、气化工艺的类型、气化反应器的类型和操作参数等因素相关。
下面,我们将就这些方面进行详细的说明。
一、燃料类型目前,气化燃料主要有三种类型:固体、液体和气体。
不同燃料类型在气化过程中所需的操作规程和说明也不尽相同。
1.固体燃料:对于固体燃料,气化过程需要将其转化为易于气化的中间产物,如焦炭、中间渣等。
这需要将固体燃料的质量、粒度、水分、灰分等因素进行严格控制。
此外,还需进行合适的预处理,如颗粒化、干燥等处理,以制备出适于气化的固体燃料。
2.液体燃料:气化液体燃料主要是指生物质、石油和液化煤等。
与固体燃料不同的是,液体燃料首先需要将其转化为气体、蒸汽或细颗粒物质,然后才可以进行气化反应。
气化液体燃料需要注意温度、压力、气化剂和氧化剂的类型以及气化剂和氧化剂的流量等参数,需要进行系统性调节和掌握。
3.气体燃料:气体燃料指的是天然气、合成气等。
对于气体燃料,由于其已经处于气态,因此气化过程相对固体和液体燃料来说更为简洁,主要需要掌握气化反应器的参数以及气体的流量和压力等因素。
二、气化工艺类型气化工艺类型包括固定床气化、流化床气化、上升管气化、旋流床气化、压力气化、二次气化等几个类型,这些类型之间的操作规程和说明也有所不同。
1.固定床气化:固定床气化是最简单的气化工艺之一,只需要将燃料直接投入气化反应器的固定床中,加热后自然气化。
操作规程和说明也比较简单,主要需要控制气化反应器中的温度、压力与气化剂的流量。
2.流化床气化:流化床气化则是在固定床气化的基础上,添加压缩空气或氧气,使燃料在气化反应器中以流化床的形式进行气化。
流化床气流磨工艺流化床气流磨一、流化床气流磨原理简介流化床气流磨是压缩空气经拉瓦尔喷咀加速成超音速气流后射入粉碎区使物料呈流态化(气流膨胀呈流态化床悬浮沸腾而互相碰撞),因此每一个颗粒具有相同的运动状态。
在粉碎区,被加速的颗粒在各喷咀交汇点相互对撞粉碎。
粉碎后的物料被上升气流输送至分级区,由水平布置的分级轮筛选出达到粒度要求的细粉,未达到粒度要求的粗粉返回粉碎区继续粉碎。
合格细粉随气流进入高效旋风分离器得到收集,含尘气体经收尘器过滤净化后排入大气。
流化床气流磨用于各种硬度工业废弃物微粉化的研究与产品开发。
二、工艺流程介绍流化床气流磨对压缩空气的要求在0.7-0.8MPa之间,需要保持压力稳定,即使有波动,但是频率不宜过高,否则将会影响产品的质量。
其次,对气体质量,要求洁净、干燥,应对压缩空气进行净化处理,把气体中的水份、油雾、尘埃清除,使被粉碎的矿产物料不受污染,特别对要求纯度较高的物料的粉碎要求更高,因此当需要一级、二级过滤器以及冷冻式干燥机对空气进行净化处理。
用提升机把原料提升原料仓内,然后通过输料阀把原料送入气流粉碎机的粉碎室。
原料输送机输送原料的速度采用自动控制保持粉碎室的原料和空气混合的浓度相对稳定,我们采用这样的方法可以达到粉碎时超细粉产量最佳。
粉碎室内对称安装有两对喷嘴,压缩空气通过喷嘴时形成超音速气流带起原料进行加速,在空间相互碰撞,把原料粉碎成超细粉,粉碎效果和喷嘴内径形状、距离,对称性以及原料和空气的混合浓度有关。
喷嘴内径形状决定其形成音速的最佳速度、距离以及决定原料加速路程。
分级是通过高速旋转的分级轮进行,分级轮像一个圆“铁桶”底部的中心固定在直连电机的主轴上,由电机驱动高速旋转,开口处和微粉收集系统的管道入口相对,且保持一定间隙也不能过大,否则未经分选的粗粉从间隙进入微粉收集系统的管道,影响产品质量,为防止此类事件发生,在间隙处进行气封处理。
分级轮的用边安装有叶片,叶片间的缝隙为分选微粉的通道。