内能和内能利用
- 格式:ppt
- 大小:789.50 KB
- 文档页数:41
知识点一:分子热运动1.物质的组成(1)物质是由大量的构成的,分子是保持物质化学性质的最小粒子。
(2)分子很小,如果把分子看成一个球形,直径通常只有10-10m,只有用高倍电子显微镜才能看到。
(3)物质是由分子组成的,分子又是由组成的,原子又是————组成的,原子核又是由组成的,质子和中子又是由更小的夸克组成的。
2.分子热运动扩散现象a.不同的物体在相互接触时,的现象叫做扩散现象。
b.扩散现象说明,它可以发生在任意两种物质之间。
c.扩散现象与有关,越高扩散越快。
3.分子运动和物体运动的区别分子热运动是指一切物质的分子都在不停地做无规则的运动。
分子的热运动与温度有关,温度越高,热运动就越剧烈。
分子的热运动是微观的,我们用肉眼无法观察,只能借助一些表象来了解。
物质的运动是宏观运动,可用肉眼看得到。
比如河流的流动。
4.分子间的作用力(1)当你去拉伸物体时,物体很难被拉长,说明分子间有,当你去压缩物体时,物体很难被压缩,说明分子间有。
分子间的引力和斥力是存在的。
(2)引力和斥力的变化规律:分子间的引力和斥力随分子间的距离增大而减小,随分子间的距离减小而增大。
当分子间的距离增大时,引力和斥力都减小,斥力减小得快,分子间的作用力表现为引力。
当分子间的距离减小时,引力和斥力都增大,斥力增加得更快,分子间的作用力表现为斥力。
(3)分子动理论的基本内容:常见的物质是由大量的构成的,物质内的分子在的热运动,分子之间存在着相互作用的。
例题解析1.走进鲜花店里,会闻到浓郁的花香,这表明()A.分子很小B.分子间有斥力C.分子在不停地运动D.温度越高,分子运动越快2.如图是一组实验,观察实验完成填空;(1)如图甲,向一端封闭的玻璃管中注水至一半位置,再注入酒精直至充满。
封闭管口,并将玻璃管反复翻转,使水和酒精充分混合,观察液面的位置。
发现混合后与混合前相比总体积变,说明分子间存在。
固体和液体很难被压缩说明分子间存在;(2)图乙是现象,说明分子在不停地做无规则运动;(3)图丙是把墨水滴入冷水和热水的情况,此实验说明,分子无规则运动越剧烈;(4)如图丁,把一块玻璃板用弹簧测力计拉出水面,观察到弹簧测力计示数在离开水面时比离开水面后,说明分子间存在。
内能及内能的利用复习课教案教案标题:内能及内能的利用复习课教案教学目标:1. 了解内能的概念和内能的单位。
2. 掌握计算物体内能的方法。
3. 理解内能的利用和转化。
教学重点:1. 内能的概念和单位。
2. 内能的计算方法。
3. 内能的利用和转化。
教学准备:1. 教师准备:课件、黑板、白板、投影仪等。
2. 学生准备:课本、笔记、练习题等。
教学过程:一、导入(5分钟)1. 引入内能的概念:请学生回顾上节课所学的内容,简要复习能量的概念和种类。
2. 提问:请学生思考,物体的能量是否只有动能和势能?如果不是,还有哪些能量存在于物体中?二、知识讲解(15分钟)1. 通过课件或黑板,详细解释内能的概念:内能是物体分子或原子的微观运动能量的总和,是物体内部各微观粒子的动能和势能之和。
2. 引导学生理解内能的单位:焦耳(J)。
3. 讲解计算物体内能的方法:内能的计算公式为E = mcΔT,其中E表示内能,m表示物体的质量,c表示物体的比热容,ΔT表示温度变化。
三、示范与实践(20分钟)1. 示范计算内能的例题:提供一个具体的物体质量、比热容和温度变化的情境,引导学生运用内能计算公式进行计算。
2. 学生练习:提供一些练习题,让学生独立进行计算,教师巡回指导和解答疑惑。
四、内能的利用和转化(15分钟)1. 介绍内能的利用和转化:内能可以通过热传递实现能量的转移和利用。
例如,燃烧、发电、加热等过程都是将内能转化为其他形式的能量。
2. 引导学生思考内能的利用实例:通过课件或黑板,展示一些内能的利用实例,如太阳能、地热能等。
3. 提问与讨论:请学生举例说明内能的转化过程,并讨论其在生活中的应用。
五、小结与反思(5分钟)1. 小结:对本节课所学的内容进行小结,强调内能的概念、计算方法和利用转化。
2. 反思:请学生思考,内能在日常生活中的应用是否与他们的生活息息相关?如何更好地利用内能?教学延伸:1. 布置作业:要求学生完成课后练习题,巩固所学的知识。
内能和内能的利用综合计算Document number:PBGCG-0857-BTDO-0089-PTT1998内能和内能的利用综合计算1、某太阳能热水器,向其中注入50kg的水,阳光照射﹣段时间后,水温从10℃升高到50℃.试求:(1)这段时间该热水器中的水吸收的热量是多少(2)如果水吸收的热量用天然气来提供,需要完全燃烧多少m3的天然气(天然气的热值是×107J/m3)(3)如果这段时间该太阳能热水器接收到太阳辐射的热量是×107J,则这段时间该热水器的效率是多少2、管道天然气因使用方便而备受人们青睐,丽丽家在用管道天然气烧水时,将2kg水从20℃烧至100℃,用去燃气.已知家用燃气灶的效率为50%.[c水=×103J/(kg℃)]试求:(1)水吸收的热量;(2)液化气的热值.3、在西部大开发中,国家提出“退耕还林”的伟大举措,这对改善西部生态环境有着重要意义.据某新闻媒体报道,一万平方米的森林每秒钟吸收的太阳能约为×105J,如果这些能量被50kg的干泥土所吸收,那么,可使温度为7℃的干泥土的温度升高到多少℃[C干泥土=×103J/(kg℃)]4、为了倡导低碳生活,太阳能热水器被广泛应用于现代生活。
小星家的太阳能热水器,水箱容积是200L。
小星进行了一次观察活动:某天早上,他用温度计测得自来水的温度为20℃,然后给热水器水箱送满水,中午时“温度传感器”显示水箱中的水温为70℃。
请你求解下列问题:(ρ水=×103Kg/m3、c水=×103J/(kg℃))(1)水箱中水的质量;(2)水吸收的热量;(3)请你简述太阳能热水器的优点和缺点。
5、某品牌太阳能热水器的容积为100L,其装满水后在太阳的照射下水温从20℃的升高到40℃,不计热量的散失.(1)求热水器中的水吸收的热量.[水的比热容c=×103J/(kg.℃)](2)要完全燃烧多少体积的煤气可以产生相同的热量(煤气的热值q=×107J/m3)6、太阳能热水器是直接利用太阳能给水加热的装置,下表是小明家的太阳能热水器某天在阳光照射下的相关信息:其中太阳辐射功率是指1h内投射到1 m2面积上的太阳能(1)水在10h内吸收多少热量(2)如果水吸收的热量用天然气来提供,需要完全燃烧多少m3的天然气(天然气的热值为×107J∕m3,天然气完全燃烧放出的热量全部给水吸收)(3)该太阳能热水器的能量转化效率是多大7、当今太阳能热水器已经在广安城乡用得非常普遍了,如图所示。
第一部分:热运动一、分子动理论二、分子热运动1、物体中大量分子的无规则运动叫做分子热运动。
分子的运动有肉眼看不见的。
扩散现象是分子热运动的宏观体现。
2、扩散及影响扩散的因素(1)定义:不同的物质相互接触时,彼此进入对方的现象叫扩散。
实质:分子(原子)的相互渗入。
扩散现象说明一切分子都在不停的做无规则运动,也说明物质的分子间存在间隙。
(2)影响扩散的因素:温度温度越高,扩散越快(温度越高,分子的无规则运动越剧烈)注:扩散只发生在不同的物质间,同种物质之间不能发生扩散。
固体、液体、气体都能发生扩散,同时不同物质只有相互接触时,才能发生扩散。
三、分子热运动与机械运动的区别第二部分:内能一、内能注:(1)内能指的是物体的内能,不是分子的内能,更不能说内能是个别分子共同具有的动能和势能的总和。
(2)任何物体在任何情况下都有内能。
(3)内能有不可测性,只能比较物体内能的大小,不能确定这个物体具有的内能究竟是多少。
二、影响内能的因素1、温度:同一物体,温度越高,内能越大。
(内能还受质量、材料种类、状态等因素的影响)2、质量:在温度一定时,物体的质量越大,也就是分子的数量越多,物体的内能就越大。
3、体积:在质量一定时,物体的体积越大,分子间的势能越大,物体的内能就越大。
4、状态:同一物体,状态不同时所具有的内能也不同。
三、改变物体内能的两种方式(两种方式对改变物体内能是等效的)1、热传递定义:温度不同的物体互相接触,低温物体温度升高,高温物体温度降低的过程叫做热传递。
热传递条件:物体间存在着温度差。
热传递方向:能量从高温物体传递到低温物体。
热传递的结果:高温物体内能减少,低温物体内能增加,两物体最终达到热平衡,温度相同。
注:热传递传递的是内能,而不是传递温度,更不传递某种热的物质。
2、做功可以改变物体内能对物体做功,物体内能会增加;物体对外做功,物体的内能会减少;注:做功不一定都使物体的内能发生变化,这要看物体消耗的能量是否转化为物体的内能。
内能培优资料知识要点1、内能(1)内能是指物体内部所有做无规则运动的分子具有的分子动能和分子势能的总和,一切物体都有内能;(2)物体吸收热量,温度不一定升高,例如晶体在熔化过程中,吸收热量,温度不变;(3)改变物体内能的两种方式:做功和热传递;做功可以改变内能,且对物体做功,物体内能会增加,物体对外做功,物体内能会减小.2、分子热运动(1)组成物体的分子在不停地做无规则运动;(2)需要知道温度的概念和实质,温度是表示物体冷热程度的物理量,从分子运动论来看,温度反映了物体内分子做无规则运动的剧烈程度,温度越高分子运动越剧烈,温度越低,分子运动越缓慢,热运动和温度有关,温度越高分子扩散就越快.3、比热容①比热容是物质本身的一种特性,与物质的种类和状态有关,与质量、温度计吸放热情况无关;②质量相同的不同物质,吸收相同的热量,温度变化与物质的比热容成反比;练习2.(2014?安徽)运用分子动理论,可以对液体的蒸发现象作出合理地解释:由于液体表面的分子在做,所以在任何温度下蒸发现象都能发生;温度越高,分子的,从而蒸发越快3.(2014?安徽)某太阳能热水器装有100kg、初温为20℃的冷水,经过一天的太阳照射,水温升高到65℃,则这些水吸收的热量等于完全燃烧 m3天然气所放出的热量.[已知水的比热容为4.2×103J/(kg?℃)、天然气的热值为4.2×107J/m3].4.(2014?株洲)下列现象与分子热运动有关的是()A.春天,百花争艳B.夏天,波光粼粼 C.秋天,丹桂飘香D.冬天,大雪纷飞分析:分子运动是肉眼看不见的运动,机械运动是宏观上物体的运动.分子运动,即扩散现象是肉眼看不见的,在不知不觉中发生的.5.(2014?株洲)净含量为350mL(lmL=1×10﹣6m3)的瓶装饮用纯净水的质量为 kg.若将其放入冰箱冷藏,温度降低了20℃,则水放出的热量为 J.已知水的密度ρ水=1.0×103 kg/m3,水的比热容c=4.2×103J/(kg?℃).6.(2014?威海)下面关于热现象的说法,正确的是()A.物体温度升高一定是吸收了热量B.冰在融化时温度不变内能增加C.从游泳池里上来感觉冷是由于水蒸发放热D.汽车发动机用水作冷却液是因为水的比热容较小7.(2014?泰安)在“比较水与煤油吸收热量时温度升高的快慢”实验中,需要控制某些变量,以下做法多余的是()A.采用完全相同的加热方式B.采用酒精灯加热时,酒精灯里加热的酒精量相同C.取相同质量的水和煤油D.盛放水和煤油的容器相同8.(2014?江西)莲莲家的汽车尾部上标有“2.0T”的字样,其中“T”就是“涡轮增压”,是利用高温、高压的废气去冲击“废气涡轮”高速旋转,来带动同轴的“进气涡轮”也高速旋转,从而增加吸气冲程的进气量并增大进气气压,使汽油燃烧更充分,燃气压强更大,同时也减少了废气中的有害物质,达到提高发动机效率和减少废气污染的目的.这辆汽车的最低油耗可达0.2kg/(kW?h),已知汽油的热值为4.6×107J/kg.(温馨提示:最低油耗是指燃烧最少的汽油获得最大有用功的能量;0.2kg/(kW?h)表示获得1kW?h能量消耗0.2kg汽油).求:(1)0.2kg的汽油完全燃烧时放出的热量为多少(2)该汽车发动机的效率最高可达多少(结果保留整数)9.(2014?菏泽)阅读下面的材料,解答问题山东菏泽向“大气污染宣战”某环保局研究表明:“PM2.5来源中,机动车的排放占33.1%,排第一位,燃煤污染排放占第二位”.“减少污染排放,还我一片蓝天”成为每一个公民的责任.菏泽首批50辆LNG(液化天然气)新能源公交车已经投入运营.天然气汽车和汽油车相比较根据下表提供的信息,通过计算说明:①天然气车燃烧1m天然气所做的有用功是多少做同样多的有用功,汽油车需要燃烧多少千克汽油②若某公交汽车每天消耗100m3的天然气,与用汽油相比,它每天节约的运行成本是多少10.(2014?威海)我国自主研制的某型新一代战斗机,它具备超音速巡航、电磁隐身、超机动性、超视距攻击等优异性能,该飞机最大起飞质量为37t,最大飞行高度达20000m,最大航行速度达2.5倍声速(合3060km/h),最大载油量为10t,飞机航行时所受阻力的大小与速度的关系见下表:已知飞机发动机燃油完全燃烧的能量转化为机械能的效率是40%,飞机使用的航空燃油的热值为5×107J/kg.求:(1)飞机发动机完全燃烧10t燃油获得的能量是多少焦(2)当飞机以400m/s的速度巡航时,飞机发动机的输出功率是多少千瓦(3)若在飞机油箱中加满燃油,并且以500m/s的速度巡航时,飞机的最大航程约是多少千米11. (2014苏州)燃气灶烧水时,把质量为2kg、初温为20℃的水加热到100℃,共燃烧了0.02m3天然气(假设天然气完全燃烧).已知水的比热容为4.2×103J/(kg.℃),天然气的热值为8.4×l07J/m3.求:(1)水吸收的热量;(2)天然气完全燃烧放出的热量;(3)燃气灶烧水时的效率.12.(2014?巴中)由Q=cm(t﹣t0)得c=,关于同一种物质的比热容,下列说法正确的是()A.若质量增大一倍,则比热容减小一半B . 若质量增大一倍,则比热容增大一倍C . 比热容与物体质量多少、温度变化大小、吸热或放热的多少都无关D . 若吸收的热量增大一倍,比热容增大一倍16.(2014?聊城)煤、石油、天然气的过量开采使人类面临能源危机.某县在冬季利用地热能为用户取暖.县内有一口自喷状态地热井,出水温度为90℃,出水流量为150 m 3/h . (1)求每小时流出的地热水温度降低到50℃,所放出的热量.(2)这些热量如果用天然气蒸汽锅炉供热,且天然气蒸汽锅炉的热效率为90%,则利用上述地热能供暖一小时可以节约多少天然气(ρ水=1.0×l03kg/m 3,c 水=4.2×l03J/(kg?℃),天然气的热值为4×l07J/m 7)13.(2013连云港)随着人们生活水平的提高,越来越多的家庭采用“水地暖”进行取暖。
十三章内能<一>知识点总结一、分子热运动1、物质的构成常见的物质由大量的分子、原子构成,分子的直径用10-10m度量。
2、扩散(1)定义:不同的物质在相互接触时分子彼此进入对方的现象(2)影响扩散快慢的因素:温度和物体状态(3)扩散现象说明:①分子在永不停息地做无规则运动;②分子间有间隙(4)酒精和水混合总体积会变小说明:分子间有间隙(5)红墨水在热水中扩散的冷水中快说明:温度越高分子运动越剧烈。
(6)扩散现象与机械运动的区别:扩散现象是微观中分子的运动产生的,机械运动是宏观物体的运动3.分子间的作用力(1)分子间的引力和斥力是同时存在的,不会有单独存在引力或者单独存在斥力的时候。
(2)分子间的距离等于平衡距离时引力=斥力,作用力表现为零。
(3)什么时候表现引力或者斥力①当分子间的距离减小时,引力和斥力同时增大,斥力比引力增加的更快,斥力>引力,表现为斥力。
如:固体、液体很难被挤压,说明分子间有斥力。
②当分子间的距离增大时,引力和斥力同时减小,斥力比引力减小的更快,斥力<引力,如:物体被拉伸,两个铅块粘在一起下面可以挂物体,两滴水靠近会合在一起,水珠呈球形。
③当分子间的距离大于10倍的平衡距离时,分子间的作用力几乎没有。
如破镜不能重园,是裂缝间的分子距离大,分子分没有作用力,而不是分子间存在斥力。
4.内能概念:物体内部所有分子热运动的动能和分子势能的总和。
(1)影响分子动能大小的因素:①温度---分子平均动能的宏观标志,温度越高分子运动越快分子平均动能就越大。
②质量---分子数目的多少,质量越大分子个数越多。
(2)影响分子势能大小①状态一分子势能的大小②质量---分子数目的多少,质量越大分子个数越多。
(3)改变物体内能的两种方式:热传递和热传递方式1:热传递热传递有三种方式传导----热量沿物体从高温部分传到低温部分。
对流---发生在气体液体中,温度高的密度小上升,温度低的密度大下降进行热量传递辐射---热量在真空中可以不借助介质直接传播热传递的方向:高温一一→低温(不是内能多的传给内能少的)热传递发生条件:存在温度差热传递的实质:内能的转移(能的种类没变)内能的变化:吸收热量内能增加,放出热量内能减少。
内能-内能的利用知识点汇总内能知识点汇总01 分子热运动1.分子动理论的内容是:(1)物质由分子组成;(2)一切物体的分子都在不停地做无规则运动(3)分子间存在相互作用的引力和斥力。
2.扩散:不同的物质在互相接触时彼此进入对方的现象。
扩散现象说明:(1)分子在不停地做无规则运动。
(2)分子之间有间隙。
气体、液体、固体均能发生扩散现象。
扩散快慢与温度有关。
温度越高,扩散越快。
3.分子的热运动:由于分子的运动跟温度有关,所以把分子的无规则运动叫做分子的热运动。
温度越高,分子的热运动越剧烈。
02 内能1.内能:构成物体的所有分子,其热运动的动能和分子势能的总和,叫做物体的内能。
单位:焦耳(J)。
2.一切物体在任何情况下都有内能;无论是高温的铁水,还是寒冷的冰块都具有内能。
3.物体的内能大小与温度的关系:在物体的质量、材料、状态相同时,温度越高物体内能越大。
4.内能的改变:(1)改变内能的两种方法:做功和热传递。
(2)热量:热传递过程中,传递的能量的多少叫热量,热量的单位是焦耳。
热传递的实质是内能的转移。
A.热传递可以改变物体的内能。
①热传递的方向:热量从高温物体向低温物体传递或从同一物体的高温部分向低温部分传递。
②热传递的条件:有温度差。
热传递传递的是内能(热量),而不是温度。
③热传递过程中,物体吸收热量,内能增加;放出热量,内能减少。
注意:物体内能改变,温度不一定发生变化。
B.做功改变物体的内能。
①做功可以改变内能:对物体做功,物体内能会增加,物体对外做功,物体内能会减少。
②做功改变内能的实质是内能和其他形式的能的相互转化。
做功与热传递改变物体的内能是等效的。
03 比热容1.定义:一定质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比。
2.定义式:c=Q/m△t3.单位:J/(kg℃)4.物理意义:表示物体吸热或放热的能力的强弱。
5.比热容是物质的一种特性,大小与物质的种类、状态有关,与质量、体积、温度、密度、吸热放热、形状等无关。
《内能》与《内能的利用》知识点总结内能是热力学中的重要概念,指物体内部分子和原子的热运动所具有的能量。
在物理学中,我们经常会遇到与内能相关的问题,以及如何有效地利用内能的方法。
本文将对内能和内能的利用进行知识点总结。
一、内能的概念和性质内能是一个系统的微观性质,它包括系统中所有分子和原子的动能和势能之和。
内能与物体的质量、温度、物态以及组成成分有关。
内能的性质如下:1. 内能是一种宏观的状态函数,只与系统的初始状态和末状态有关,与过程的路径无关;2. 内能是一个系统的综合性质,不能用单一的宏观量来刻画;3. 内能为宏观系统的热平衡状态函数,在绝对零度时内能最小,且无法低于零度的内能。
二、内能的传递和转化内能可以通过热传递、功以及物质传递而进行转化和传递。
以下是内能的传递和转化方式:1. 热传递:内能可以通过热传递的方式,从高温物体传递给低温物体。
这种传递可以是传导、对流或者辐射;2. 功:内能可以转化为功,也可以以功的形式增加内能。
例如,物体通过压缩或扩展等方式进行的机械工作会增加内能;3. 物质传递:内能可以通过物质的传递而进行转化。
例如,当两种不同温度的流体混合时,内能会通过物质传递而进行转移。
三、内能的利用内能的利用在生活和工业生产中具有广泛的应用。
以下是几个常见的内能利用方式:1. 热能利用:内能可以转化为热能,用于加热、热水供应、暖气等方面。
例如,电热水器通过电能转化为热能,产生热水供应给用户;2. 动能利用:内能可以转化为动能,用于产生电力、驱动机械等。
例如,火力发电厂利用燃烧产生的高温高压气体驱动汽轮机来发电;3. 化学能利用:内能可以转化为化学能,用于进行化学反应和工业制造。
例如,化肥生产中利用内能促进化学反应的进行;4. 光能利用:内能可以转化为光能,用于照明和光能转化技术。
例如,太阳能电池板利用光能将其转化为电能。
四、内能与能量守恒定律内能是能量守恒定律的重要组成部分。
能量守恒定律指出,在一个孤立系统中,能量总量始终保持不变。
内能是指物体内部的能量,也称为微观能量。
在物理学中,我们常常需要利用内能来解决一些问题,比如计算热力学系统的状态变化、分析物质的热力学性质等等。
本文将通过一步一步的思考,总结内能的利用知识点。
首先,我们需要了解内能的定义。
内能是物体内各种微观粒子的能量之和,包括分子的动能和势能。
在热力学中,我们通常用U表示内能。
内能的变化可以通过热量和功进行计算,根据内能的一级不变性原理,一个系统的内能变化等于系统所接收的热量减去对外界所做的功。
其次,我们需要掌握内能的计算方法。
对于理想气体来说,内能与温度成正比,可以用内能的计算公式U = (3/2) * nRT表示,其中n表示气体的摩尔数,R为气体常数,T为温度。
这个公式表明内能与温度成正比,也与气体的摩尔数有关。
通过这个公式,我们可以计算理想气体在不同温度下的内能变化。
接着,我们需要了解内能在热力学过程中的应用。
热力学过程包括绝热过程、等容过程、等压过程和等温过程。
在这些过程中,内能的变化对系统的热力学性质产生重要影响。
例如,在绝热过程中,系统内部没有热量交换,因此内能不变;在等容过程中,内能的变化等于热量的变化;在等压过程中,内能的变化等于热量和功的和;在等温过程中,内能的变化等于零。
最后,我们需要掌握内能与其他热力学量的关系。
内能与焓、熵等热力学量有一定的关联性。
例如,焓H定义为H = U + PV,其中P为压强,V为体积。
焓可以看作是内能与对外界所做的功之和。
另外,熵S定义为dS = dQ/T,其中dQ为系统所吸收的热量,T为温度。
内能与熵的关系可以用熵增原理来解释,即系统的熵增等于系统所吸收的热量与温度的比值。
通过以上的思考,我们对内能的利用知识点进行了总结。
我们了解了内能的定义、计算方法,以及内能在热力学过程中的应用。
我们还了解了内能与其他热力学量的关系。
掌握了这些知识,我们就能更好地理解和应用内能的概念,解决一些与内能有关的物理问题。
总之,内能是物体内部的能量,它与物体的微观粒子的能量有关。