[指南]第五章点的运动学和刚体的基础运动 - 副本
- 格式:ppt
- 大小:6.68 MB
- 文档页数:52
基础部分——运动学第5 章点的一般运动与刚体的基本运动一、运动学的研究对象及任务点刚体zz几何性质z合成分解例1例2例3例4例5例6二、学习运动学的目的三、运动学的分析方法矢量工具数值求解工具四、具体内容第5章点的一般运动与刚体的基本运动点的运动的矢量法点的运动的直角坐标法点的运动的弧坐标法一、运动方程二、轨迹三、点的速度O)(t r )(t t Δ+r vMM ′位矢四、点的加速度点的运动的矢量法一、运动方程点的运动的直角坐标法O rMxy z)(zy,x,xyz二、轨迹方程三、点的速度四、点的加速度AB点的运动的弧坐标法运动轨迹原点O 一、运动方程sMO)(−)(+正方向弧坐标s二、自然轴系主法线n 切线τ,指副法线b思考:共同点不同点)(t r M O三、点的速度⋅lim ⋅st s d d d d r⋅τ⋅=v tsv d d =)(t t Δ+r vM ′sΔO)(−)(+r Δτ四、点的加速度速度大小随时间的变化率方向ττa 22t d d d d tst v ==22t d d d d tst v a ==z切向tas t ΔΔ⋅→Δτ0lim⋅速度方向随时间的变化率z法向n a sΔΔτs ΔΔϕsd d ϕ→方向?n2n2taa +全t 讨论:加速减速[例5-1]纯滚动解:(1)运动方程运动方程=x =y (2)速度22yxv v +t ωcos 22−(3)切向、法向加速度思考:如何求速度投影加速度投影全加速度22a a yx +法向加速度2t2aa −曲率半径(4)运动方程(弧坐标)如何取弧坐标的原点?讨论:Array纯滚动速度为零加速度不为零5-4-1 平行移动(平移)任一直线z形状相同z速度相同z加速度相同5-4-2 定轴转动=矢量表示:=右手规则滑动矢量αωαkz线速度v(弧坐标法)Rv ω=Rna ta αta 方向?z加速度aRa α=t Ra 2n ω=2n2t aa +42ωα+t a α思考:过轴的任一条直线上θαθrωv ×=ααt a rαa ×=t na vωa ×=nr ωr×=td d αααx ′y ′z ′1O i ′j ′k ′rωv ×=[例5-2]解:r ω=+d d r tω−=avtr R +=22ππ[思考题]j i i k ⎜+′⎟⎜′⋅+′⎟′⋅提示:5-5-1 注意区别几组公式5-5-2 描述点的运动的其它方法点的一般运动与刚体基本运动点的一般运动刚体基本运动矢量法直角坐标法弧坐标法其它方法平移定轴转动5-5-3 本章知识结构框图补充:轮系的传动比一、齿轮传动z速度z 切向加速度外啮合内啮合=两齿轮之传动比:21=1 2112R R i ==ωω2112ωω=i 22211±=±=±=正号內啮合负号外啮合11±=外啮合转向推广:二、带轮(链轮)传动二、带轮(链轮)传动z z 皮带与带轮间无相对滑动。
95第5章 点的一般运动和刚体的基本运动 5.1 主要内容5.1.1 点的运动的表示法研究如何描述一个几何点(即动点)在空间运动的规律。
物体的运动是相对于某一参照物而言,离开参照物,无法确定物体在空间的位置。
这一特点称为运动的相对性。
通常以地球为参照系。
在同一参照系上,可以建立不同的坐标系来描述物体的位置及其随时间的变化。
如本章讨论的各种坐标系。
点的运动方程描述动点在空间的几何位置随时间的变化规律。
对于不同的坐标系,将有不同的形式。
1.矢量式()t r r =其中r 是点的矢径。
此式主要用于理论推导。
2.直角坐标形式—用于轨迹未知的情形建立直角坐标系Oxyz ,动点M 的位置由其在坐标系中的x ,y ,z 坐标确定。
()()()()()()t f t z z t f t y y t f t x x 321,,======上式亦可看作点的运动轨迹的参数方程。
如果消去时间参数t ,即可得到轨迹的曲线方程,它是下列两空间柱面方程的交线。
()0,=y x ψ ()0,=z y ψ3.弧坐标形式(自然法)—用于轨迹已知的情形 在轨迹上建立弧坐标系,以s 为弧坐标。
()()t f t s s ==点的速度是个矢量,它反映点的运动的快慢和方向。
点的加速度是个矢量,它反映速度大小和方向随时间的变化率。
1.矢径法r rv a r r v =====22d d d d ,d d tt t 2.直角坐标法96 ⎪⎪⎪⎭⎪⎪⎪⎬⎫======z t z v yt y v x t x v z y x d d d d d d ⎪⎪⎪⎭⎪⎪⎪⎬⎫=========z t z t v a y t y t v a x t x t v a z z y y x x222222d d d d d d d d d d d d , k j i v z y x ++=,k j i a zy x ++=222z y x ++=v ,222zy x ++=a 3.弧坐标法τττv v s t s ===d d τττa ττa s tv=== d dn n a n n a v ==ρ20=b ab n τa a a a ++=22n a a +=τa切向加速度τa 只反映速度大小随时间的变化,法向加速度n a 只反映速度方向随时间的变化。
第五章点的运动学本章将研究点的运动,包括点的运动方程、运动轨迹、速度、加速度等。
点的运动学也是研究刚体运动的基础。
第一节点的运动方程点在取定的坐标系中位置坐标随时间连续变化的规律称为点的运动方程。
点在空间运动的路径称为轨迹。
在某一参考体上建立不同的参考系,点的运动方程有不同的形式。
一、矢量法设点作空间曲线运动,在某一瞬时t ,动点为M,如图5-1所示。
选取参考体上某固定点O为坐标原点,自点O向动点M作矢量r,称r为点M相对于原点O的矢径。
当动点M运动时,矢径r随时间而变化,并且是时间的单值连续函数,即(5-1)上式称为矢量形式表示的点的运动方程。
显然,矢径r的矢端曲线就是动点的运动轨迹。
图5-1二、直角坐标法过点O建立固定的直角坐标系Oxyz,则动点M在任意瞬时的空间位置也可以用它的三个直角坐标x , y , z表示,如图5-1所示。
由于矢径的原点和直角坐标系的原点重合,矢径r可表为(5-2)式中i , j , k 分别为沿三根坐标轴的单位矢量。
坐标x , y , z也是时间的单值连续函数,即(5-3)式(5-3)称为点的直角坐标形式的运动方程,也是点的轨迹的参数方程。
三、自然法当动点相对于所选的参考系的轨迹已知时,可以沿此轨迹确定动点的位置。
在轨迹上任取固定点O 作为原点,选定沿轨迹量取弧长的正负方向,则动点的位置可用弧坐标s 来确定。
如图5-2所示。
动点沿轨迹运动时,弧长s 是时间的单值连续函数(5-4)上式称为点用自然法描述的运动方程。
图5-2以上三种形式的运动方程在使用上各有所侧重。
矢量形式的运动方程常用于公式推导;直角坐标形式的运动方程常用于轨迹未知或轨迹较复杂的情况;当轨迹已知为圆或圆弧时,用自然法则较为方便。
第二节点的速度和加速度动点运动的快慢和方向用速度表示,速度的变化情况则用加速度表示。
下面给出在各坐标系下,速度、加速度的数学表达式。
一、用矢量法表示点的速度和加速度如动点矢量形式的运动方程为r=r(t) ,则动点的速度定义为(5-5)即动点的速度等于动点的矢径r对时间的一阶导数。