七年级上册同步练习数学答案2020
- 格式:docx
- 大小:37.94 KB
- 文档页数:5
4.1几何图形同步练习一、单选题1.下列图形中不是正方体的平面展开图的是()A. B.C. D.【答案】C【解析】:A、是正方体的展开图,不合题意; B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.一个几何体的边面全部展开后铺在平面上,不可能是()A. 一个三角形B. 一个圆 C. 三个正方形 D. 一个小圆和半个大圆【答案】B【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B.C.D.【答案】B【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A. 4个B. 3个C. 2个 D. 1个【答案】B【解析】:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:B.【分析】根据几何体的形状,可得答案.5.下列图形是四棱柱的侧面展开图的是()A. B. C.D.【答案】A【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6.下面现象能说明“面动成体”的是()A. 旋转一扇门,门运动的痕迹 B. 扔一块小石子,小石子在空中飞行的路线C. 天空划过一道流星D. 时钟秒针旋转时扫过的痕迹【答案】A【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确;B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.7.如图,将正方体沿面AB′C剪下,则截下的几何体为()A. 三棱锥B. 三棱柱 C. 四棱锥 D. 四棱柱【答案】A【解析】:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.8.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A. ①②③④B. ①②③C. ②③④D. ①③④【答案】B【解析】:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.二、填空题9.薄薄的硬币在桌面上转动时,看上去象球,这说明了________.【答案】面动成体【解析】:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去象球,这种现象说明面动成体.故答案为:面动成体.【分析】薄薄的硬币在桌面上转动时,看上去象球,这是面动成体的原理在现实中的具体表现.10.将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.【答案】-1【解析】:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a相对面的数字是﹣1.故答案为:﹣1.【分析】在正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,得到在此正方体上a相对面的数字是﹣1.11.六棱柱有________个顶点,________个面,________条棱.【答案】12;8;18【解析】:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.12.一个棱柱的棱数是18,则这个棱柱的面数是________.【答案】8【解析】:一个棱柱的棱数是18,这是一个六棱柱,它有6+2=8个面.故答案为:8.【分析】根据棱柱的概念和定义,可知有18条棱的棱柱是六棱柱,据此解答.13.将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).【答案】(1)、(2)、(3);(5)、(6);(4)【解析】:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.14.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.【答案】24【解析】:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、解答题15.如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?【答案】解:连接CE,与BD的交点处架立交桥;1座.【解析】【分析】连接CE时只与BD有一个交点,所以只有一座立交桥.16.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.17.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)【答案】解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积= =5.【解析】【分析】根据题意可知正方体被截取的一部分为一个直三棱柱,由正方体的棱长相等求出三棱柱各个边的长,求出三棱柱的体积.18.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.。
2021-2021学年数学人教版〔五四学制〕七年级上册11.4一元一次方程与实际问题同步练习〔1〕一、选择题1.今年“六一〞儿童节,张红用8.8元钱购置了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了〔〕件A. 4,5B. 3,4C. 2,3D. 1,32.一条公路甲队独修需24天,乙队需40天,假设甲、乙两队同时分别从两端开场修,〔〕天后可将全部修完.A. 24B. 40C. 15D. 163.选择题:用一个正方形在日历中任意圈出相邻的2×2个数,使这4个数的和为64,那么这4个数分别是〔〕A. 12,13,18,19B. 13,14,15,19C. 12,13,19,20D. 11,12,19,224.一根铁丝用去3/5后,还剩下10m,这根铁丝原来的长是多少米?假如设这根铁丝原来的长是xm,那么列出的方程是〔〕A. x-3/5=10B. x-10=3/5C. x-(3/5)x=10D. (3/5)x=105.某车间有26名工人,每人每天可以消费800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天消费的螺栓和螺母刚好配套,设安排x名工人消费螺母,那么下面所列方程正确的选项是〔〕A. 2×800〔26﹣x〕=1000x B. 800〔13﹣x〕=1000xC. 800〔26﹣x〕=2×1000xD. 800〔26﹣x〕=1000x6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.假设设完成此项工程共用x天,那么以下方程正确的选项是〔〕A. B. C. D.7.某班分两组志愿者去社区效劳,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,那么可列方程〔〕A.20=2〔26﹣x〕B.20+x=2×26C.2〔20+x〕=26﹣xD.20+x=2〔26﹣x〕二、填空题8.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,假如每人每天可以缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。
2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。
浙江版2019-2020学年度七年级数学上册第6章图形的初步知识6.1 几何图形【知识清单】1.几何图形:点、线、面、体称为几何图形.2.几何图形的形成:点动成线;线动成面;面动成体.3.平面图形:图形所表示的各个部分都在同一个平面内.4.立体图形:图形所表示的各个部分不在同一个平面内.【经典例题】例题1、圆柱体有______个面,其中平面______个,曲面______个.【考点】认识立体图形.【分析】根据圆柱体的特征可知,它的侧面是曲面,上下底面是平面,侧面与底面相交成一个圆形.【解答】圆柱体有3个面,其中平面2个,曲面1个.故答案为:3,2,1.【点评】考查了认识立体图形,熟记常见立体图形的特征是解决此类问题的关键.例题2、仔细观察下面的三个图形,然后在方框中选择一个合适的图形填在“?”.【考点】寻找图形的变化规律.【分析】遇到形状都不一样的图形,我们可以这样想:除形状以外寻找有没有相同的地方?方框中的第几号图形也符合这个特征?【解答】这三个图形都是由上、下两个部分组成,上半部分是空白部分,下半部分是阴影部分.所以应选择2号图形填在“?”处.【点评】寻找图形的变化规律,可以从图形的数量、颜色、形状、种类、位置、方向等方面的变化入手,寻找相同的特征是解决问题的关键.【夯实基础】1.下面几种图形:①正方形;②长方体;③球;④圆锥;⑤圆;⑥圆柱.其中属于立体图形的是()A.②③④⑥B.②④⑥C.②③⑥D.④⑥2.按组成面是平面还是曲面来划分,下列与圆锥体为同一类几何体的是()A.立方体B.六棱柱C.球D.长方体例题2图3.某人练习三分球,当蓝球出手后划出一道漂亮的弧线进入球框,在这个过程中,你认为下 列判断正确的是( )A .线运动成面B .点运动成线C .面运动成体D .线与线相交得点4.从棱长为6的正方体的一个顶点处挖去一个体积为8的小正方体,则余下部分的表面积为( ) A .228 B .216 C .204 D .1925.用火柴棒拼搭三角形,拼搭四个三角形最少 根火柴棒,这个几何体是 面体 6.小王买了4个同样的长方体形状的礼品,长、宽、高分别是6厘米、5厘米、4厘米,小王想7.请识别下列几何体,并回答下列问题:(1)上面几何体中:包围着体的是;面与面相交的地方形成 ;线与线相交的地方 是.(2)将其分类 (只填写编号):如果按“柱体”“锥体”“球体”来分,柱体有 ,锥体有 ,球体有 ;如果按“有无曲面”来分,有曲面的有 ,无曲面的有 .8.如图,把下列物体和与其对应的立体图形连接起来.9.下列图案均是用长度相同的小木块按一定规律拼搭而成;拼搭第1个图案需4块小木块,拼搭第2个图案需10块小木块,拼搭第3个图案需18块小木块,…,按照这个规律,拼搭第10个图案需多少块小木块?若拼搭一个图形需要小木块270块,设它是第x 个图形,请你给出所列方程.【提优特训】第4题图第7题图第8题图第9题图10.仔细观察图的变换规律,然后从选项中选择一个合适的填在图中的“?”处,则应该选择( )11.一个几何体有一个顶点,两个面,面与面相交形成一条曲线,则这个几何体是()A .长方体B .棱锥C.圆锥 D .圆柱 12.一个长方体锯掉一个角后,顶点的个数是( )A .7个B .8个C .9个D .7个或8个或9个或10个 13.如图,第一排的平面图形绕轴l 旋转一周,可以得到第二排的立体图形,那么与A 、B 、C 、D 、E 、F 六个平面图形相对应的立体图形的编号依次为( )A .⑤⑥①③④②B .①②③④⑤⑥C .⑤④③②⑥①D .⑤④③②①⑥ 14.一个几何体从正面、左面、上面看得到的平面图形如图所示.(1)下列说法:①这是一个四棱锥;②这个几何体有5个面,且都是平面;③这个几何体有4 个顶点;④这个几何体有8条棱,其中正确的是 . (2)请你再说出一个正确的结论 .15.(1)把棱长是一的立方体如图那样叠起来,从上到下数第一层有立方体一个,第二层有立方体 (2)笔尖在纸上写字说明____________;车轮旋转时看起来象个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明__________.16.仔细观察下列图形的变化,再回答问题.AB C D第10题图第13题图第14题图第15题图(1)在方框(4)中应画出怎样的图形?画一画.(2)按(1)、(2)、(3)、(4)的顺序数下去,第(2019)个方框中是怎样的图形?17.将一个圆柱形的面包切3刀,能将面包分成相等的6块吗?能分成7块吗?能等分成8块吗?试试看,并话出切法示意图.18.如图,观察图中的圆台和棱台,回答下列问题:(1) 圆台、棱台各有几个面组成?它们都是平的吗? (2)该圆台的侧面与底面相交形成几条线?这些线是直的吗? (3) 棱台共有几个顶点?经过每个顶点有几条棱?19.如图,正方形每条边上和正方体的每条棱上分别放置相同数目的小球,请回答下列问题:(1)如图1,设一条边上的小球数为x ,用两种不同的思考方法,列出2个含有x 的代数式表示正方形边上的所有小球数(不要化简). (2)如图2,若正方体每条棱上均放置n 个小球,请用含有n 的代数式表示正方体所有棱上小球数的数量.20.如图(1)是七巧板,七巧板是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型. 七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形3、4;一块中形三角形7和两块大形三角形1、2)、一块正方形6和一块平行四边形5;通过动手操作很容易拼成一个矩形[如图(2)].经过实践有些汉字和26个英文字母也可以用七巧板拼出,如A ,H ,C 三个字母模型(如图(3)(4)(5))就可以用七巧板拼;如果每块塑料板保持图(1)的标号不变,请你动手操作: (1)将图(3)中每块塑料板对应的标号填上去.(2)图(4)中,只画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,并填上 标号.(3)在图(5)中,请你适当画线,找出7块塑料板,并填上标号.第18题图第19题图图(1) 图(2) 图(3) 图(4) 图(5)21.下列图形中,图(1)是正方体木块,把它切去一块,得到如图(2)(3)(4)(5)的木块.(1)完成下表:(2)上表中,各种木块的顶点、棱、面之间的数量关系可以归纳出一定的规律,请你写出顶点数x 、棱数y 、面数z 之间的数量关系.【中考链接】22.(2018•杭州临安) 如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是( ) A .2 B .4C .8D .1023.(2018•舟山) 5.(3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A .B .C .D .第21题图第22题图第23题图24.(2018•烟台)(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11C.14 D.1825.(2018•济宁)(3.00 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.第24题图第25题图参考答案1、A2、C3、B4、B5、6,46、376平方厘米7、(1)点、线、面 (2) ②③④;①⑤;⑥;①④⑥;②③⑤ 10、A 11、C 12、D 13、A 14、(1)①③④ (2)侧面与侧面相交的棱相等 15、(1)9,19,(2n -1) (2) 点动成线;线动成面;面动成体. 22、B 23、A 24、B 25、C8.解:①→C ②→E ③→B ④→A ⑤→D . 9.解:根据题意:第1个图案需要小木棒1×(1+3)=4根, 第二个图案需要2×(2+3)=10根, 第三个图案需要3×(3+3)=18根, 第四个图案需要4×(4+3)=28根, …,第10个图案需要小木棒的根数=10×(10+3)=130根. 所列方程为:x (x +3)=270.16.解:(1);(2)17.解:能将面包分成相等的6块,能分成7块,能等分成8块. 下面是分法示意图:18.解:(1) 圆台有3个面,该棱台有7个面,圆台有两个平面,一个曲面,棱台的7个面都是平面. (2) 圆台的侧面与底面相交形成1条线,是一条曲线. (3) 棱台共有10个顶点,经过每个顶点有3条棱. 19.解:(1)当一条边上的小球数为x 时,正方形边上的所有小球的个数为 4(x -2)+4或4(x -1)或2x +2(x -2). (2)当一条边上的小球数为n 时,立方体上的所有小球数为12n -8×2=12n -16. 20.解:如图所示:21.下列图形中,图(1)是正方体木块,把它切去一块,得到如图(2)(3)(4)(5)的木块.第17题图6等分 分成7块 8等分(1)完成下表:(2)上表中,各种木块的顶点、棱、面之间的数量关系可以归纳出一定的规律,请你写出顶点数x、棱数y、面数z之间的数量关系.解:y=x+z 2或y+2=x+z.。
七年级上册数学同步练习附带答案大全学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
下面是小编为大家整理的七年级上册数学同步练习附带答案,希望对您有所帮助!七年级数学同步练习训练题一、选择题(本大题共8题,每题3分,共24分。
每题的四个选项中,只有一个选项是符合要求的。
)1、∠1与∠2是两条平行直线被第三条直线所截的同旁内角,若∠1=50°,则∠2为 ( )A、50°B、130°C、50°或130°D、不能确定2、下列运算中,正确的是( )A. B. C. = D.3、下列命题中是假命题的是( )A、三角形的一条中线将三角形分成面积相等的两部分;B、三角形的三条角平分线相交于一点;C、三角形的三条高相交于一点;D、三角形的任意两边之和大于第三边4、已知a、b、c是有理数,下列不等式变形中,一定正确的是( )A、若 ac>bc,则a>bB、若a>b,则ac>bcC、若ac >bc ,则a>bD、若a>b,则ac >bc5、、等腰三角形的两边长分别为6和11,则它的周长为( )A、23B、2 8C、23或28D、256、把多项式(m+1)(m-1)+(m+1)提取公因式m+1后,余下的部分是( )A.m+1B. m-1 C . m D.2 m+17、假期到了,17名女教师到外地培训,住宿时有2人间和3人间可租住把,每个房间都要住满,她们有几种租住方案 ( )A. 5种B. 4种 C .3种 D. 2种8、小芳和小亮两人分别有“喜羊羊”卡片若干张,小亮对小芳说:“把你卡片的一半给我,我就有10张”.小芳却说:“只要把你的给我,我就有10张”,如果设小芳的卡片数为张,小亮的卡片数为张张,那么列出的方程组正确的是( )A. B. C. D.第Ⅱ卷(非选择题共126分)二.填空题(本大题共10题,每题3分,共30分。
1.5 有理数的乘法和除法一、选择题1.把转化为乘法是( )A. B.C. D.2.0.4的倒数是()A. B.4 C.3.÷ 的结果是()A.1B.C.D.4.下面根据× =1的说法中,错误的是()A.是倒数,也是倒数B.和互为倒数C.是的倒数5.若x=(﹣1.125)× ÷(﹣)× ,则x的倒数是()A. 1B.﹣1 C. ±1 D. 26.计算:24÷(﹣4)×(﹣3)的结果是()A.﹣18B.18C.﹣2D.27.已知a是一个整数,则它的倒数是()A. B.a C.或没有8.下面互为倒数的是()。
A.和B.和C.和1D.和9.因为× =1,所以()A.是倒数B.是倒数C.和互为倒数10.下列运算错误的是()A. (﹣2)×(﹣3)=6 B.(﹣)×(﹣6)=-3C. (﹣5)×(﹣2)×(﹣4)=﹣40D. (﹣3)×(﹣2)×(﹣4)=﹣2411.若|a|=3,b=1,则ab=()A. 3B. ﹣3 C. 3或﹣3 D. 无法确定12.下列结论:①若ab>0,则a>0,b>0;②若a÷b<0,则a>0,b<0;③若a>0,b>0,则ab>0;④若a<0,b<0,则a÷b>0,其中,正确的个数是()A.1B.2C.3D.4二、填空题13.的倒数是________。
14.________.15.a的相反数是一,则a的倒数是________.16.某小商店每天亏损20元,一周的利润是________ 元.17.a、b是不为0的整数,a乘b再乘b的倒数,结果是________18.如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m2=________;19.计算(﹣2.5)×0.37×1.25×(﹣4)×(﹣8)的值为________.20.绝对值小于π的所有正整数的积等于________.三、解答题21.计算: 2×(﹣)÷(﹣1 )22.在计算(﹣9 )×(﹣8 )时,小明是这样做的?(﹣9 )×(﹣8 )=9 ×8=3×8=24他的计算对吗?如果不对,是从哪一步开始出错的?把它改正过来.23. 用简便方法计算:(1)﹣13× ﹣0.34× + ×(﹣13)﹣×0.34(2)(﹣﹣+ ﹣)×(﹣60)24.已知:|x|= ,|y|=4,且xy<0,求x﹣y的值.25. (1)两数的积是1,已知一个数是,求另一个数;(2)两数的商是,已知被除数是,求除数.26.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.参考答案一、选择题1.【答案】D【解析】原式=(-)×(-).故答案为:D.【分析】根据有理数的除法法则除以一个数等于乘以这个数的倒数可得,原式=()()。
1.1正数和负数随堂练习一、选择题1.如果收入80元记作+80元,那么支出20元记作()A.+20元B.-20元C.+100元D.-100元2.一个物体做左右方向的运动,规定向右运动6m记做+6m,那么向左运动8m记做( )。
A.+8mB.-8mC.+14mD.-14m3.下列说法:①+2是正数,但2不是正数;②0既不是正数也不是负数;③0℃表示没有温度;④一个数不是正数就是负数;⑤如果a是正数,那么-a一定是负数,其中正确的有()A.1个B.2个C.3个D.4个4.四个数-3.14,0,1,2中为负数的是()A.-3.14 B.0 C.1 D.25. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元6.若某日最低气温为“-3 ℃”,则它的意义是 ( )。
A.零上3 ℃B.零下3 ℃C.比最低气温多3 ℃D.比最低气温少3 ℃7.在-3,-5,-1,0这四个数中,与其余三个数不同的是()A.-3 B.-5 C.-1 D.08. 某天的温度上升了-2℃的意义是( )A.上升了2℃ B.下降了-2℃C.下降了2℃ D.没有变化9.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“-32”写成“”,下列算筹表示负数的是()。
A. B. C. D.10. 纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时 +2 -13当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时二、填空题11. 用正数或负数表示下面的数量:(1)零下7 ℃:________;(2)海拔220 m:________;(3)如果向右走150 m记作+150 m,那么向左走280 m记作________.12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示。
正数和负数巩固练习(附答案)一、选择题1.如图某用户微信支付情况,3月28日显示的意思A. 转出了150元B. 收入了150元C. 转入元D. 抢了20元红包2.规定10吨记为0吨,11吨记为吨,则下列说法错误的是A. 8吨记为吨B. 15吨记为吨C. 6吨记为吨D. 吨表示重量为13吨3.规定:表示向右移动3,记作,则表示向左移动2,记作A. B. C. D.4.一动物爬行,逆时针旋转记为,则顺时针旋转记为A. B. C. D.5.某种药品说明书上标明保存温度是,则该药品最合适保存的温度A. B. C. D.6.中国古代著作九章算术在世界数学史上首次正式引入负数,如果盈利70元记作元,那么亏本50元记作A. 元B. 元C. 元D. 元7.下列用正数和负数表示相反意义的量,其中正确的是A. 一天凌晨的气温是,中午比凌晨上升,所以中午气温是B. 如果表示比海平面高,那么表示比海平面低C. 如果生产成本增长记作,那么表示生产成本降低D. 收入增加8元记作元,那么元表示支出减少5元8.五个数,0,,,8中正数的个数是A. 1B. 2C. 3D. 49.给出一列数:1,,5,,观察它的规律可知,第10个数是.A. 19B.C. 21D.10.下列各数中:,0,,,3,正数与负数一共有A. 2个B. 3个C. 4个D. 5个11.若有理数,则A. 三个数中至少有两个负数B. 三个数中有且只有一个负数C. 三个数中至少有一个负数D. 三个数中有两个是正数或两个是负数二、填空题12.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为______.13.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少”换一种说法可以叙述为“体重增加______kg”.14.如果规定向北为正,那么走米表示______.15.将上升记作,那么表示______.16.下列各数中:,,5,0,,,100,正数有:________;负数有:________.三、计算题17.某市第5路公交车从起点到终点共有8个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如下表:站次二三四五六七八人数下车人24375816上车人7864350求起点站上车人数;若公交车收费标准为上车每人2元,计算此趟公交车从起点到终点的总收入;公交车在哪两个站之间运行时车上乘客最多?是几人?18.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312这10筐西红柿一共重多少千克?若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?答案和解析1.B解:如图某用户微信支付情况,3月28日显示的意思是收入了150元2.A解:A、吨所以8吨记为吨,而不是吨,故A说法错误;B、吨所以15吨记为吨说法正确;C、吨所以吨表示重量为6吨说法正确;D、吨所以吨表示重量为13吨说法正确;3.B解:表示向左移动2,记作.4.D解:“正”和“负”相对,所以若逆时针旋转记作,则顺时针旋转表示.5.C解:所以该药品在范围内保存才合适.6.A解:如果盈利70元记作元,那么亏本50元记作元,7.C解:A、一天凌晨的气温是,中午比凌晨上升,所以中午的气温是,故本选项错误;B、如果表示比海平面高,那么表示比海平面低9m,故本选项错误;C、如果生产成本增加记作,那么表示生产成本降低,故本选项正确;D、如果收入增加8元,记做元,那么表示支出5元,故本选项错误.8.B解:由正数的定义可得正数有:,8.正数共有2个,9.B解:第10个数是.10.C解:正数有:,,3,负数有:,即正数与负数一共有4个.11.C解:有理数,三个数中至少有一个负数.12.解:如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:.13.解:“体重减少”换一种说法可以叙述为“体重增加”.14.向南走200米解:规定向北走为正,则向南走为负,故走米表示向南走200米.15.下降解:上升记作,上升与下降是具有相反意义的量,表示下降;16.,5,100,;,,解:下列各数中:,,5,0,,,100,.正数有:,5,100,;负数有:,,.17.解:根据题意得:人,则起始站上车12人;根据题意得:元,则此趟公交车从起点到终点的总收入为90元;根据表格得:四站到五站车上的乘客最多,是24人.18.【小题1】解:因为,所以这10筐西红柿一共重千克.【小题2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.人教版七年级数学上册第一章第1节正数与负数(附答案)一、选择题1.气温上升,记作,那么下降记为A. B. C. D.2.飞机上升了米,实际上是A. 上升80米B. 下降米C. 先上升80米,再下降80米D. 下降80米3.2019年内,甲同学的体重增加了记为,乙同学的体重减少了,应记为A. B. 3 C. D.4.一个物体做左右方向的运动,规定向右运动6m记做,那么向左运动8m记做A. B. C. D.5.小红设计了一个游戏规则:先向南走5米,再向南走米,最后向北走5米,则结果是A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米6.下列不是具有相反意义的量是A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.给出下列各数:,0,,,,,2004,其中是负数的有A. 2个B. 3个C. 4个D. 5个8.下列各组数中,具有相反意义的量是A. 节约汽油10公斤和浪费酒精10公斤B. 向东走5公里和向南走5公里C. 收入300元和支出500元.D. 身高180cm和身高90cm9.下列各数一定是负数的是.A. B. C. D.10.一袋大米的质量标识为“千克”,则下列大米中质量合格的是A. 千克B. 千克C. 千克D. 千克11.向东行进米表示的意义是A. 向东行进30米B. 向东行进米C. 向西行进30米D. 向西行进米12.如果将“收入50元”记作“元”,那么“支出20元”记作A. 元B. 元C. 元D. 元13.在0,,,5这四个数中,正数是A. 0B.C.D. 514.若存入2500元记做“”,则支出3000元记做A. B. C. D.15.某图纸上注明:一种零件的直径是,下列尺寸合格的是A. B. C. D.二、计算题16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减辆生产量最多的一天比生产量最少的一天多生产多少辆?本周的总生产量和原计划相比___________填“增加”或“减少”了_____辆.17.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312(1)这10筐西红柿一共重多少千克?(2)若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?三、解答题18.某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是一周的生产情况超过每天计划量记为正、不足每天计划量记为负.星期一二三四五六日与计划量的差值该厂星期四生产自行车________辆;产量最多的一天比产量最少的一天多生产自行车________辆;求该厂本周实际平均每天生产多少辆自行车?19.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况增产为正,减产为负,单位:个星期一二三四五六日增根据记录可知前三天共生产____个;产量最多的一天比产量最少的一天多生产____个;该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?答案1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C12.【答案】A13.【答案】D14.【答案】B15.【答案】D16.【答案】解:辆;答:生产量最多的一天比生产量最少的一天多生产17辆;减少;4.17.【答案】【1】解:因为,所以这10筐西红柿一共重千克.【2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.18.【答案】解:辆,所以该厂星期四生产自行车213辆,故答案为:213;辆,所以产量最多的一天比产量最少的一天多生产自行车24辆,故答案为:24;19.【答案】解:;故答案为298;;故答案为23;这一周多生产的总辆数是:个;元;答:该厂工人这一周的工资是35390元.1.1 正数和负数(附答案)一.选择题1.为防止新型冠状病毒的传染,某药店2020年1月份买进6000只一次性口罩,记作+6000,那么卖出5000只一次性口罩,记作()A.+1000B.+6000C.+5000D.﹣50002.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃3.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.4.规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作()A.+8B.﹣8C.+D.﹣5.某种食品保存的温度是﹣2±2℃,以下几个温度中,适合储存这种食品的是()A.1℃B.﹣8℃C.4℃D.﹣1℃6.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了﹣2米的意思是()A.物体又向右移动了2米B.物体又向右移动了4米C.物体又向左移动了2米D.物体又向左移动了4米7.一小袋味精的质量标准为“50±0.25克”,那么下列四小袋味精质量符合要求的是()A.50.35克B.49.80克C.49.72克D.50.40克8.在下列四个数中,负数是()A.0B.﹣2C.0.5D.π9.拖拉机加油50L记作+50L,用去油30L记作﹣30L,那么+50+(﹣30)等于()A.20B.40C.60D.8010.四个数﹣2,2,﹣1,0中,负数的个数是()A.0B.1C.2D.3二.填空题11.一种零件的内径尺寸在图纸上是(9±0.05)mm,表示这种零件的标准尺寸是mm,加工要求最大不超过mm,最小不小于mm.12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加kg”.13.在90%,+8,0,﹣15,﹣0.7,+,19中正数有个.14.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额元.支付宝帐单日期交易明细10.16乘坐公交¥﹣4.0010.17转帐收入¥+200.0010.18体育用品¥﹣64.0010.19零食¥﹣82.0010.20餐费¥﹣100.0015.如果“节约10%”记作+10%,那么“浪费6%”记作:.16.在一次数学测验中,一年(4)班的平均分为86分,把高于平均分的部分记作正数.(1)李洋得了90分,应记作;(2)刘红被记作﹣5分,她实际得是;(3)王明得了86分,应记作;(4)李洋和刘红相差分.三.解答题17.下列各数中哪些是正数,哪些是负数?﹣6.1,+20,72,0,﹣5,﹣32,20%.18.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?19.在新型冠状病毒疫情期间,某粮店购进标有50千克的大米5袋,可实际上每袋都有误差,若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):+0.2,﹣0.1,﹣0.5,+0.6,+0.3(1)这5袋大米总计超过多少千克或不足多少千克?(2)这5袋大米总重量多少千克?20.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东为正,某天从地出发到收工时,行走记录如下:(单位:km)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5(1)请问:收工时检修小组距离A有多远?在A地的哪一边?(2)若检修小组所乘的汽车每一百千米平均耗油8升,则汽车从A地出发到收工大约耗油多少升?21.“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3﹣0.2﹣0.1500.10.25与标准质量的差值(单位:千克)箱数142328(1)20箱冬桃中,与标准质量差值为﹣0.2千克的有箱,最重的一箱重千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?22.今年夏天某市发生特大山洪泥石流灾害,该市消防总队迅即出动兵力驰援灾区,在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10(1)B地在A地何处?(2)冲锋舟距离A地最远在东或西方向多少千米?(3)若冲锋舟每千米耗油0.5升,出发时油箱还剩20升汽油,求途中至少还需补充多少升汽油?参考答案一.选择题1.D.2.A.3.D.4.B.5.D.6.C.7.B.8.B.9.A.10.C.二.填空题11.9;9.05;8.95.12.﹣1.5.13.4.14.810.15.﹣6%.16.4分;81分;0分;9.三.解答题17.解:正数有+20,72,20%;负数有﹣6.1,﹣5,﹣32.18.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.19.解:(1)与标准重量比较,这5袋大米总计超过+0.2﹣0.1﹣0.5+0.6+0.3=0.5(千克).故这5袋大米总计超过0.5千克;(2)5×50+0.5=250.5(千克).故这5袋大米总重量250.5千克.20.解:(1)(+15)+(﹣2)+(+5)+(﹣3)+(+8)+(﹣3)+(﹣1)+(+11)+(+4)+(﹣5)+(﹣2)+(+7)(﹣3)+(+5)=36(km),∵36>0,∴收工时检修小组在A地的东边.答:收工时检修小组在A地的东边,距离A地36千米.(2)|+15|+|﹣2|+|+5|+|﹣3|+|+8|+|﹣3|+|﹣1|+|+11|+|+4|+|﹣5|+|﹣2|+|+7|+|﹣3|+|+5|=74(km),(升)答:汽车站从A地出发收工大约耗油5.92升.21.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.22.解:+14+(﹣9)+8+(﹣7)+13+(﹣6)+10=23(千米)答:B在A的东方23千米的地方.(2)每一次救援离开A地的距离为:14千米,5千米,13千米,6千米,19千米,13千米,23千米,答:冲锋舟距离A地最远,在东方23千米.(3)0.5×(14+9+8+7+13+6+10)﹣20=0.5×67﹣20=13.5(升)答:途中至少还需补充13.5升汽油.第一章正数和负数1、正数和负数(附答案)建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃3.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是()A.30mm B.30.03mm C.30.3mm D.30.04mm4.如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包5.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.6.下面对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0二、填空题(每小题3分,共9分)7.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作:.8. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为__.9.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.三、解答题(共23分)10.(7分)有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?11.(8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6天,仓库里的货品是(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?12.(8分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?正数和负数参考答案一选择题1.A2.A3.B4.B5.C6.B二、填空题(每小题3分,共9分)7.﹣3.8.-39.49.3kg.三、解答题(共23分)10.解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.11.解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6天要付860元装卸费.12.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.第1章有理数 1.1正数和负数(附答案)一、选择题1.下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A.2个B.3个C.4个D.5个2.下列关于“0”的说法正确的是( )A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度3.在下列选项中,具有相反意义的量的是( )A.收入20元与支出30元B.上升6米与后退7米C.卖出10千克米与盈利10元D.长大1岁与减少2千克4.若海平面以上1045米,记作+1045米,则海平面以下155米,记作( ) A.-1200米B.-155米C.155米D.1200米5.在跳远测验中,合格的标准是4.00 m,王非跳了4.12 m,记作+0.12 m,何叶跳了3.95 m,记作( )A.+0.05 m B.-0.05 mC.+3.95 m D.-3.95 m6.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( ) A.-3 B.-1 C.2 D.47.某粮食店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)千克,(25±0.2)千克,(25±0.3)千克的字样.从中任意拿出两袋,它们的质量最多相差( )A.0.8千克B.0.6千克C.0.5千克D.0.4千克二、填空题8.如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.9.若指针顺时针旋转4圈记作+4圈,则-5圈表示的意义是______________.10.若小亮的体重增加了3 kg,记作+3 kg,则小阳的体重减少了2 kg,可记作________kg.11.在4个不同时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降.如果上升3厘米记为+3厘米,那么,其余3个记录分别记为____________________.12.如果运进40千克大米记为+40千克,那么运进-45千克大米表示的意义是________________.13.将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.正数:_____________________________________________________________________ __;负数:_____________________________________________________________________ _.链接听P1例1归纳总结14.写出与下列各量具有相反意义的量:(1)飞机上升200米,____________;(2)铝球的质量低于标准质量2克,__________________________________________;(3)木材公司购进木材2000立方米,_____________________________________________.15.如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.16.某种药品的说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度:________.三、解答题17.2019年,小明、小刚、小兰、小颖四个家庭的旅游费用开支比上一年的变化情况如下:小明家增长20%,小刚家减少15%,小兰家增长18%,小颖家与上一年持平.请用正、负数分别表示这一年中四个家庭的旅游费用增长率;哪些家庭的旅游费用增长了?哪些家庭的旅游费用减少了?哪个家庭的旅游费用的增长率最高?哪个家庭的旅游费用最高?18.某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?19.粮库粮食进出记录如下(运进为正):请说明每天粮食进出记录的实际意义.链接听P1例3归纳总结20.“牛牛”饮料公司的一种瓶装饮料外包装上有“(500±30)mL”的字样,那么“±30 mL”是什么含义?质检局抽查了5瓶该产品,容量分别为503 mL,511 mL,489 mL,473 mL,527 mL,则抽查的产品的容量是否合格?21.某化肥厂计划每月生产化肥500吨,2月份超额生产12吨,3月份少生产2吨,4月份少生产3吨,5月份超额生产6吨,6月份刚好完成计划指标,7月份超额生产5吨.请你设计一个表格,用所学知识表示这6个月的生产情况.参考答案1.B 2.C 3.A 4.B 5.B6.B7.B8.-209.指针逆时针旋转5圈10.-211.-6厘米,-1厘米,0厘米12.运出45千克大米13.67,4,1.3,3.14,π-15,-0.02,-171,-21314.(答案不唯一)(1)飞机下降200米(2)铝球的质量高于标准质量2克(3)木材公司售出木材2000立方米15.15 516.答案不唯一,如20 ℃[解析] 只要是大于或等于18 ℃且小于或等于22 ℃的温度都正确.17.解:小明家:+20%,小刚家:-15%,小兰家:+18%,小颖家:0;小明家和小兰家的旅游费用增长了,小刚家的旅游费用减少了;小明家的旅游费用的增长率最高;无法比较各个家庭的旅游费用.18.解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.19.解:由表格可知15日运进粮食82 t,16日运出粮食17 t,17日运出粮食30 t,18日运进粮食68 t,19日既没有运进粮食也没有运出粮食.20.解:“±30 mL”表示产品的实际容量比500 mL最多多30 mL,最少少30 mL.抽查的5瓶产品容量都在(500-30)mL和(500+30)mL之间,所以抽查的产品的容量都是合格的.21.解:规定500吨为标准,超过的吨数记为正数,不足的吨数记为负数,则该化肥厂2~7月份的生产情况如下:。
2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。
数学七年级上册练习册答案北师大版2020§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90 三、1. 正数有:1,2.3,68,+123;负数有:-5.5,13,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{负分数集合:{121223,0.02,-7.2,2,1011,2.1…},-7.2,1011… }非负有理数集合:{0.02, 223,6,0,2.1,+5,+10…};1102. 有31人能够达到引体向上的标准3. (1) §1.2.2数轴一、1. D 2. C 3. C 二、1. 右 5 左 3 2.412(2)120093. -34. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3 §1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9 三、1. (1) -3 (2) -4 (3)2.5 (4) -62. -33. 提示:原式= 12(x2y12z)3=12(x2y4y12z)33。
1.1 正数和负数(附答案)一.选择题1.在0,﹣1,3,﹣0.1,0.08中,负数的个数是()A.1B.2C.3D.42.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元3.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃4.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.5.规定一个物体向上移动1m,记作+1m,则这个物体向下移动了2m,可记作()A.﹣2m B.2m C.3m D.﹣1m6.《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入120元记作+120,则﹣40元表示()A.收入40元B.收入80元C.支出40元D.支出80元7.如果收入1000元记作+1000元,那么支出300元记作()A.﹣300 元B.+300 元C.1300 元D.+1300 元8.规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作()A.+8B.﹣8C.+D.﹣9.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃二.填空题10.如果收入100元记作+100元,则支出20元记作元.11.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第4袋大米的实际质量是kg.12.某规格的钢管长度范围是“10m±1mm”,则钢管长度范围应是m~10.001m.13.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.14.如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.16.在90%,+8,0,﹣15,﹣0.7,+,19中正数有个.17.某同学计划在假期每天做6道数学题超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做的数学题有道.18.某检修小组乘检修车沿检修公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走的路程为(单位汗米):+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.若检修车每千米耗油0.2升,则从A地出发到收工时共耗油升.19.检查商店出售的袋装白糖,白糖每袋按规定重500g,一袋白糖重499g,就记作﹣1g,如果一袋白糖重503g,应记作.三.解答题20.在新型冠状病毒疫情期间,某粮店购进标有50千克的大米5袋,可实际上每袋都有误差,若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):+0.2,﹣0.1,﹣0.5,+0.6,+0.3(1)这5袋大米总计超过多少千克或不足多少千克?(2)这5袋大米总重量多少千克?21.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?参考答案一.选择题1.B.2.C.3.A.4.D.5.A.6.C.7.A.8.B.9.A.二.填空题10.﹣20.11.51.1.12.9.999.13.﹣4.14.﹣2℃.15.﹣8.16.4.17.72.18.13.4.19.+3g.三.解答题20.解:(1)与标准重量比较,这5袋大米总计超过+0.2﹣0.1﹣0.5+0.6+0.3=0.5(千克).故这5袋大米总计超过0.5千克;(2)5×50+0.5=250.5(千克).故这5袋大米总重量250.5千克.21.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.1.1正数和负数提升练习(附答案)一、选择题1.下列关于“0”的叙述中,正确的有()①0是正数与负数的分界;②0比任何负数都大;③0只表示没有;④0常用来表示某种量的基准.A.1个B.2个C.3个D.4个2.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )mm。
2020七上同步练习册答案一、选择题1. 我国古代四大发明不包括以下哪一项?A. 造纸术B. 火药C. 指南针D. 望远镜答案:D2. 以下哪个选项不是《论语》中的主要思想?A. 仁B. 义C. 礼D. 法答案:D3. 以下哪个数学公式是正确的?A. \( a^2 + b^2 = c^2 \)(当a、b、c为直角三角形的边时)B. \( \sqrt{4} = 4 \)C. \( 1 + 1 = 3 \)D. \( (a + b)^2 = a^2 + 2ab + b^2 \)答案:D二、填空题1. 请写出圆的面积公式:\( S = \pi r^2 \)。
2. 请写出牛顿第二定律的表达式:\( F = ma \)。
3. 请写出水的化学式:\( H_2O \)。
三、简答题1. 请简述《三国演义》中“赤壁之战”的背景和结果。
答案:赤壁之战发生在东汉末年,是曹操与孙权、刘备联军之间的一场决定性战役。
曹操意图统一中国,但最终在赤壁被联军以少胜多,大败而归,这场战役也奠定了三国鼎立的基础。
2. 请解释什么是“光合作用”。
答案:光合作用是植物、藻类和某些细菌利用太阳光能将水和二氧化碳转化为葡萄糖和氧气的过程,是生态系统能量流动和物质循环的重要环节。
四、计算题1. 若一个长方体的长、宽、高分别为3米、2米、1米,请计算其体积。
答案:长方体的体积为 \( V = 长 \times 宽 \times 高 = 3\times 2 \times 1 = 6 \) 立方米。
结束语以上是2020年七年级上册同步练习册的部分答案示例,希望对同学们的学习和复习有所帮助。
请同学们认真对待每一次练习,不断巩固和提高自己的知识水平。
2020年七年级上册数学练习册参考答案参考答案第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90 三、1. 正数有:1,2.3,68,+123;负数有:-5.5,13,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{负分数集合:{121223,0.02,-7.2,2,1011,2.1…},-7.2,1011… }非负有理数集合:{0.02, 223,6,0,2.1,+5,+10…};1102. 有31人能够达到引体向上的标准3. (1) §1.2.2数轴一、1. D 2. C 3. C 二、1. 右 5 左 3 2.412(2)120093. -34. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3 §1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9 三、1. (1) -3 (2) -4 (3)2.5 (4) -62. -33. 提示:原式=12(x2y12z)3=12(x2y4y12z)33。
七年级数学上册第二章 2.1.1正数和负数 同步测试题一、选择题1.下列各组量中,不具有相反意义的量是( )A .支出3 000元和收入2 000元B .向南走1千米和向北走2千米C .上升6米和下降7米D .增加20%和减少-30%2.记录一个水库的水位变化情况,如果把上升3 cm 记作+3 cm ,那么水位下降3 cm 时水位变化记作( )A .-3 cmB .3 cmC .+3 cmD .±3 cm3.如果+20%表示增加20%,那么-8%表示( )A .增加12%B .增加8%C .减少28%D .减少8%4.在12,0,1,-9四个数中,负数是( )A .12B .0C .1D .-95.下列数:-3,1.5,23,-133,7,0中,不是负数的有( )A .1个B .2个C .3个D .4个6.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( )A .+3B .-3C .-13D .+137.某天的温度上升了-2 ℃的意义是( )A .上升了2 ℃B .没有变化C .下降了-2 ℃D .下降了2 ℃8.一种面粉的质量标识为“25±0.20千克”,下列面粉质量中合格的是( )A .25.30千克B .24.70千克C .25.51千克D .24.82千克二、填空题9.在-1,0,1,2这四个数中,既不是正数也不是负数的是______.10.下列各数:-101.2,+18,0.002,-60,0,-45,+3.2,属于正数的有______.______.;属于负数的有______.11.若把顺时针旋转90°记作+90°,则逆时针旋转12°应记作______,+35°表示的意义是______,-27°表示的意义是______. 三、解答题12.教室高3 m ,教室里课桌高0.8 m ,如果把课桌桌面高度记作0 m ,那么天花板高度和地面高度分别记作什么?如果把天花板高度记作0 m ,那么桌面高度和地面高度分别记作什么?13.如图,黄河大堤高出开封市20米,另有开封铁塔高约58米.李芳和好朋友林雪燕、明明出去玩,李芳站在黄河大堤上,林雪燕站在地面上放风筝,顽皮的明明则爬上铁塔顶.按下列要求分别用正数、0、负数表示出三人的位置(“高于”记为“+”,“低于”记为“-”).(1)以大堤为基准,记为0米; (2)以铁塔顶为基准,记为0米.14.观察下列一列数:1,-2,3,-4,5,-6,7,-8,9,….(1)请写出这一列数中的第99个数和第2 019个数;(2)在前2020个数中,正数和负数分别有多少个?(3)2 020和-2 020是否都在这一列数中?若在,请指出它们分别在第几个数;若不在,请说明理由.参考答案一、选择题1.下列各组量中,不具有相反意义的量是(D)A.支出3 000元和收入2 000元 B.向南走1千米和向北走2千米C.上升6米和下降7米 D.增加20%和减少-30%2.记录一个水库的水位变化情况,如果把上升3 cm记作+3 cm,那么水位下降3 cm时水位变化记作(A)A.-3 cm B.3 cm C.+3 cm D.±3 cm3.如果+20%表示增加20%,那么-8%表示(D)A.增加12% B.增加8% C.减少28% D.减少8%4.在12,0,1,-9四个数中,负数是(D )A .12B .0C .1D .-95.下列数:-3,1.5,23,-133,7,0中,不是负数的有(D )A .1个B .2个C .3个D .4个6.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作(B )A .+3B .-3C .-13D .+137.某天的温度上升了-2 ℃的意义是(D )A .上升了2 ℃B .没有变化C .下降了-2 ℃D .下降了2 ℃8.一种面粉的质量标识为“25±0.20千克”,下列面粉质量中合格的是(D )A .25.30千克B .24.70千克C .25.51千克D .24.82千克二、填空题9.在-1,0,1,2这四个数中,既不是正数也不是负数的是0.10.下列各数:-101.2,+18,0.002,-60,0,-45,+3.2,属于正数的有+18,0.002,+3.2;属于负数的有-101.2,-60,-45.11.若把顺时针旋转90°记作+90°,则逆时针旋转12°应记作-12°,+35°表示的意义是顺时针旋转35°,-27°表示的意义是逆时针旋转27°. 三、解答题12.教室高3 m ,教室里课桌高0.8 m ,如果把课桌桌面高度记作0 m ,那么天花板高度和地面高度分别记作什么?如果把天花板高度记作0 m ,那么桌面高度和地面高度分别记作什么?解:如果把桌面高度记作0 m ,那么天花板高度记作+2.2 m ,地面高度记作-0.8 m ;如果把天花板高度记作0 m,那么桌面高度记作-2.2 m,地面高度记作-3 m.13.如图,黄河大堤高出开封市20米,另有开封铁塔高约58米.李芳和好朋友林雪燕、明明出去玩,李芳站在黄河大堤上,林雪燕站在地面上放风筝,顽皮的明明则爬上铁塔顶.按下列要求分别用正数、0、负数表示出三人的位置(“高于”记为“+”,“低于”记为“-”).(1)以大堤为基准,记为0米;(2)以铁塔顶为基准,记为0米.解:(1)以大堤为基准,记为0米,则李芳所在的位置高为0米,林雪燕所在的位置高为-20米,明明所在的位置高为+38米.(2)以铁塔顶为基准,记为0米,则明明所在的位置高为0米,林雪燕所在的位置高为-58米,李芳所在的位置高为-38米.14.观察下列一列数:1,-2,3,-4,5,-6,7,-8,9,….(1)请写出这一列数中的第99个数和第2 019个数;(2)在前2020个数中,正数和负数分别有多少个?(3)2 020和-2 020是否都在这一列数中?若在,请指出它们分别在第几个数;若不在,请说明理由.解:(1)第99个数是99,第2019个数是2019.(2)在前2 020个数中,正数有1 010个,负数有1009个.(3)2 020不在这列数中,因为在这列数中奇数是正数,偶数是负数;-2020在这列数中,是第2020个数.1、在最软入的时候,你会想起谁。
2020年人教版七年级上册同步练习:3.4实际问题与一元一次方程一.选择题1.某车间有22名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母20个,现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按照1:2配套,下列方程正确的是()A.12x=20(22﹣x)B.2×12x=20(22﹣x)C.2×20x=12(22﹣x)D.12x=2×20(22﹣x)2.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x3.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定4.某超市华山牌水杯原价每个x元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天继续降价每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,列出方程是()A.(x﹣5)=60B.0.8(x﹣5)=60C.0.8x﹣5=60D.(x﹣5)﹣0.8x=605.为了对学生进行爱国主义教育,庐江某中学组织七年级学生参观位于汤池镇的新四军江北指挥部纪念馆,若租用33座客车x辆,则有6人没座位;若租用45座客车,则可少租1辆,且有1辆车空9个座位,请求出有多少名学生参加此项活动?根据题意列出方程,其中正确的是()A.33x﹣6=45x+9B.33x﹣6=45(x﹣1)+9C.33x+6=45x﹣9D.33x+6=45(x﹣1)﹣96.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,求共有多少人?设有x人,根据题意可列方程为()A.﹣2=B.+2=C.+2=D.﹣2=7.某工程甲独做需10天完成,乙独做需8天完成.现由甲先做3天,再由甲乙合作完成.若设完成此项工程共需x天,则下列方程正确的是()A.+=1B.C.D.8.在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23B.21C.15D.129.如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.70B.78C.161D.10510.已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5B.2或10C.2.5或3D.312.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小彬站在A处,小强站在B处,两人同时逆时针方向跑步,小彬每秒跑4m,小强每秒跑6m.当小强第一次追上小彬时,他们的位置在()A.半圆跑道AB上B.直跑道BC上C.半圆跑道CD上D.直跑道AD上二.填空题13.某件商品,以原价的出售,现售价是300元,则原价是元.14.一艘轮船航行在A、B两码头之间,顺水航行用了3小时,逆水航行比顺水航行多用30分钟,轮船在静水中的速度是26千米/时,则水流速度为千米/时.15.一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时.已知风速为24千米/小时,求飞机在无风时的速度.设飞机飞行无风时的速度为x千米/小时.则列方程为.16.甲从A地到B需3小时,乙B地到A地需6小时.两人同时从A,B两地相向而行,经过小时相遇.17.淘宝“双十一”大促,某店铺一件标价为480的大衣打八折出售,仍可盈利20%,若设这件大衣的成本是x元,根据题意,可得到的方程是.18.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分,则他做对了道题.19.学校修建运动场,如果让甲工程队单独做需要15天完成,如果让乙工程队单独做需要10天完成,如果让甲、乙工程队合做2天后,剩下的工程由乙工程队单独完成,问整项工程共需要多少天?若设共用x天,列方程20.某超市在“十一”黄金周活动期间,推出如下购物优惠方案:①一次性购物在200元(不含200元)以内,不享受优惠;②一次性购物在200元(含200元)以上,400元(不含400元)以内,一律享受九折优惠;③一次性购物在400元(含400元)以上,一律享受八折优惠;李兰妈妈在该超市两次购物分别付款189元和440元,如果李兰妈妈把这两次购物合并为一次性购物,则应付款元.三.解答题21.义安中学七O一班有40位学生,班主任想在元旦联欢会上给每位学生发纪念品,已知纪念品软面抄每20本60元,硬面抄每30本120元,用150元共买了40本,则班主任软面抄和硬面抄各买了多少本?22.一项工程,甲独做要12天完成,乙独做需18天完成,现由甲独做4天,余下的由乙做,乙还要几天完成?(用方程解)23.1号探测气球从海拔2m处出发,以每秒0.8m的速度上升.与此同时,2号探测气球从海拔10m处出发,以每秒0.3m的速度上升,设气球出发的时间为x秒.(1)根据题意填空:1号探测气球的海拔高度为;2号探测气球的海拔高度为;(用含x的代数式表示)(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.24.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;25.A、B两地相距480千米,一列慢车从A地出发,每小时走60千米,一列快车从B地出发,每小时走65千米.(1)两车同时出发相向而行,x小时相遇,可列方程;(2)两车同时出发相背而行,x小时后两车相距620千米,可列方程;(3)慢车出发1小时后快车从B地出发,同向而行,请问快车出发几小时后追上慢车?26.某学校组织七年级学生参加研学活动,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求该校此次参加研学活动的学生有多少人?(2)若单独租用60座的客车,需租辆;(3)已知45座客车的日租金为每辆1000元,60座客车的日租金为每辆1200元,该校单独租用哪种车更合算?27.如图是2021年3月的月历,回答下列问题.(1)带阴影的十字框中的5个数的和与十字框中间的数有什么关系?(2)若将式子框上下左右移动,但一定要框住月历中的5个数,设中间的数为a.①用含a的式子表示b,c,d,e;②求式子框中五个数的和,结果用含a的式子表示.28.阅读理解:【探究与发现】:如图1,在数轴上点E表示的数是8,点F表示的数是4,求线段EF 的中点M所示的数对于求中点表示数的问题,只要用点E所表示的数﹣8,加上点F所表示的数4,得到的结果再除以2,就可以得到中点M所表示的数:即M点表示的数为:.【理解与应用】:把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=.【拓展与延伸】:如图2,已知数轴上有A、B、C三点,点A表示的数是﹣6,点B表示的数是8.AC=18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?参考答案一.选择题1.解:设现有x名工人生产螺栓,则有(22﹣x)人生产螺母,依题意,得:2×12x=20(22﹣x).故选:B.2.解:设用x立方米的木料做桌子,则用(90﹣x)立方米的木料做椅子,依题意,得:4x=5(90﹣x).故选:A.3.解:设两件衣服进价分别x元、y元,依题意得90﹣x=x•25%,解得x=72,y﹣90=y•25%,解得y=120,因为72+120=192>90×2,所以亏损192﹣180=12元.答:卖出这两件衣服总的是亏损12元.故选:B.4.解:设华山牌水杯原价为每个x元,依题意,得:0.8(x﹣5)=60.故选:B.5.解:设租用33座客车x辆,则租用45座客车(x﹣1)辆,依题意,得:33x+6=45(x﹣1)﹣9.故选:D.6.解:设有x人,依题意,得:+2=.故选:C.7.解:依题意,得:+=1.故选:A.8.解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.9.解:设“U”型框中的正中间的数为x,则其他6个数分别为x﹣15,x﹣8,x﹣1,x+1,x﹣6,x﹣13,这7个数之和为:x﹣15+x﹣8+x﹣1+x+1+x﹣6+x﹣13=7x﹣42.由题意得:A、7x﹣42=70,解得x=16,能求出这7个数,不符合题意;B、7x﹣42=78,解得x=,不能求出这7个数,符合题意;C、7x﹣42=161,解得x=29,能求出这7个数,不符合题意;D、7x﹣42=105,解得x=21,能求出这7个数,不符合题意;故选:B.10.解:设火车的速度是x米/秒,根据题意得:800﹣40x=60x﹣800,解得:x=16,即火车的速度是16米/秒,火车的车长是:60×16﹣800=160(米),故选:C.11.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.12.解:设小强第一次追上小彬的时间为x秒,根据题意,得:6x﹣4x+115=2×115+2×85,解得x=142.5,则4x=570,570﹣400=170>115,∴他们的位置在直跑道BC上,故选:B.二.填空题13.解:设原价为x元,由题意可得:x=300,解得:x=375,答:原价375元,故答案为375.14.解:设水流速度是x千米/时,则船在顺水中的速度为(26+x)千米/时,船在逆水中的速度为(26﹣x)千米/时,由题意得,(26+x)×3=(26﹣x)×(3+),解得:x=2,则水流速度是2千米/时.故答案为:2.15.解:设飞机在无风时的飞行速度为x千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x﹣24)千米/时,根据题意得:5.5•(x+24)=6(x﹣24).故答案为:5.5•(x+24)=6(x﹣24).16.解:设经过x小时相遇,依题意,得:+=1,解得:x=2.故答案为:2.17.解:设这件大衣的成本是x元,由题意得:480×0.8=x×(1+20%),故答案为:480×0.8=x×(1+20%).18.解:设他做对了x道题,则做错或不答(15﹣x)道题,根据题意得:4x﹣2(15﹣x)=42,解得x=12.故答案为:12.19.解:设共需x天,由题意得,+=1,故答案为:+=1.20.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<200时,x=189;当200≤x<400时,0.9x=189,解得:x=210;∵0.8y=440,∴y=550.∴0.8(x+y)=591.2或608.故答案为:591.2或608.三.解答题21.解:设软面抄x本,硬面抄(40﹣x)本,根据题意可得:x+(40﹣x)=150,解得:x=10∴40﹣x=30本,答:软面抄10本,硬面抄30本.22.解:设乙还要x天完成,×4+x=1,解得,x=12答:乙还要12天完成.23.解:(1)根据题意:1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m;故答案为:(0.8x+2)m;(0.3x+10)m;(2)依题意有0.8x+2=0.3x+10,解得x=16.故出发16秒长时间1号探测气球与2号探测气球的海拔高度相同.24.解:(1)没有资格参加决赛.因为积分为4×2+(10﹣4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10﹣x)场,由题意,得:2x+1×(10﹣x)=18,解得:x=8,所以,10﹣x=10﹣8=2,答:甲队初赛阶段胜8场,负2场.25.解:(1)由题意可得:60x+65x=480;故答案为:60x+65x=480;(2)由题意可得:60x+65x+480=620,故答案为:60x+65x+480=620;(3)设快车出发y小时后追上慢车,根据题意可得:65y=60(y+1)+480解得:y=108,答:快车出发108小时后追上慢车.26.解(1)设该校此次参加研学活动的学生有x人,根据题意,得﹣=1,解得:x=225.答:该校此次参加研学活动的学生有225人.(2)=4(辆).故需租4辆;(3)需租45座客车:4+1=5(辆),则租用45座客车一天的费用为:1000×5=5000(元),租用60座客车一天的费用为:1200×4=4800(元),∵4800<5000,∴单独租用60座客车更合算.27.解:(1)9+15+16+17+23=80=16×5,则带阴影的十字框中的5个数的和是十字框中间的数的5倍.(2)①b=a+1,c=a+7,d=a﹣1,e=a﹣7;②a+a+1+a﹣1+a﹣7+a+7=5a.28.解:m==1000;故答案为:1000;(1)①点A向右移动的距离为3t,因此点A从数轴上表示﹣6的点向右移动3t的单位后,所表示的数为3t﹣6,故答案为:3t﹣6,②当点B为线段AC的中点时,Ⅰ)当移动后点C在点B的右侧时,此时t<4,如图1,由BA=BC得,8﹣(3t﹣6)=(12﹣t)﹣8,解得,t=5>4(舍去)Ⅱ)当移动后点C在点B的左侧时,此时t>4,如图2,由BA=BC得,(3t﹣6)﹣8=8﹣(12﹣t),解得,t=5,答:当点B为线段AC的中点时,t的值为5秒.(2)根据运动的方向、距离、速度可求出,点P、C相遇时间为12÷(2+1)=4秒,点A、C相遇时间为18÷(3+1)=秒,点A追上点P的时间为6÷(3﹣2)=6秒,当点P到点A、C的距离相等时,①如图2﹣3所示,此时t<4,由P A=PC得,2t﹣(3t﹣6)=(12﹣t)﹣2t,解得,t=3;②当A、C相遇时符合题意,此时,t=,③当点A在点P的右侧,点C在点P的左侧时,此时t>6,∵点A追上点P时用时6秒,之后P A距离每秒增加1个单位长度,而PC每秒增加4个单位长度,∴不存在点P到点A、C的距离相等的情况,因此:当点P到点A、C的距离相等时,t=3或t=.。
2020年人教新版七年级数学上册同步试卷:3.4 实际问题与一元一次方程一、选择题(共12小题)1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的2020设把x公顷旱地改为林地,则可列方程()A.54﹣x=2020108 B.54﹣x=2020108+x)C.54+x=2020162 D.108﹣x=202054+x)2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2020度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2020)=150000 B.6x+6(x+2020)=150000C.6x+6(x﹣2020)=15 D.6x+6(x+2020)=153.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.324.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2020人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:005.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为2020现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元6.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台7.某商品的标价为2020,8折销售仍赚40元,则商品进价为()元.A.140 B.12020.160 D.1008.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.72020D.1080元9.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是() A.65元B.80元C.100元D.104元10.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出2020,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(2020x)=24000B.0.6×250x+0.8×125(2020x)=24000C.0.8×125x+0.6×250(2020x)=24000D.0.8×125x+0.6×250(2020x)=2400011.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=3382512.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=87二、填空题(共11小题)13.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.14.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.15.某市为提倡节约用水,采取分段收费.若每户每月用水不超过2020,每立方米收费2元;若用水超过2020,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.16.王大爷用280元买了甲、乙两种药材,甲种药材每千克2020乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.17.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.19.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.2020验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.21.(2020•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.22.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2020次相遇在边上.23.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为.三、解答题(共7小题)24.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?25.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.26.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?27.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?28.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?29.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2020年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?30.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件12020价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?2020年人教新版七年级数学上册同步试卷:3.4 实际问题与一元一次方程参考答案与试题解析一、选择题(共12小题)1.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的2020设把x公顷旱地改为林地,则可列方程()A.54﹣x=2020108 B.54﹣x=2020108+x)C.54+x=2020162 D.108﹣x=202054+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的2020出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=2020108+x).故选B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2020度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2020)=150000 B.6x+6(x+2020)=150000C.6x+6(x﹣2020)=15 D.6x+6(x+2020)=15【考点】由实际问题抽象出一元一次方程.【分析】设上半年每月平均用电x度,在下半年每月平均用电为(x﹣2020)度,根据全年用电量15万度,列方程即可.【解答】解:设上半年每月平均用电x度,在下半年每月平均用电为(x﹣2020)度,由题意得,6x+6(x﹣2020)=150000.故选A.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程.3.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.32【考点】一元一次方程的应用.【分析】由将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,得出甲尺相邻两刻度之间的距离:乙尺相邻两刻度之间的距离=48:36=4:3,如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据甲尺的刻度21与刻度0之间的距离=乙尺刻度x与刻度4之间的距离列出方程,解方程即可.【解答】解:如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据题意得36(x﹣4)=21×48,解得x=32.答:此时甲尺的刻度21会对准乙尺的刻度32.故选D.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2020人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00【考点】一元一次方程的应用.【分析】设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2020人”列出方程并解答.【解答】解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2020,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为2020现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元【考点】二元一次方程的应用.【专题】压轴题.【分析】设该商品的进价为x元,标价为y元,根据题意可以得到x,y的值;然后计算打九折销售该电器一件所获得的利润.【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B.【点评】此题考查二元一次方程的实际运用,掌握销售中的基本数量关系是解决问题的关键.6.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台【考点】一元一次方程的应用.【分析】设今年购置计算机的数量是x台,根据今年购置计算机数量是去年购置计算机数量的3倍列出方程解得即可.【解答】解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.故选C.【点评】此题考查一元一次方程的应用,关键是根据今年购置计算机数量是去年购置计算机数量的3倍列出方程.7.某商品的标价为2020,8折销售仍赚40元,则商品进价为()元.A.140 B.12020.160 D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×2020,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×2020,由题意,得0.8×2020x+40,解得:x=12020故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.8.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.72020D.1080元【考点】一元一次方程的应用.【分析】设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.【解答】解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.【点评】本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.9.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是() A.65元B.80元C.100元D.104元【考点】一元一次方程的应用.【分析】设书包每个的进价是x元,等量关系是:售价﹣进价=利润,依此列出方程,解方程即可.【解答】解:设书包每个的进价是x元,根据题意得130×0.8﹣x=30%x,解得x=80.答:书包每个的进价是80元.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出2020,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(2020x)=24000B.0.6×250x+0.8×125(2020x)=24000C.0.8×125x+0.6×250(2020x)=24000D.0.8×125x+0.6×250(2020x)=24000【考点】由实际问题抽象出一元一次方程.【分析】由于外套卖出x件,则衬衫和裤子卖出(2020x)件,根据题意可得等量关系:外套的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.【解答】解:若外套卖出x件,则衬衫和裤子卖出(2020x)件,由题意得:0.6×250x+0.8×125(2020x)=24000,故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.11.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=33825【考点】由实际问题抽象出一元一次方程.【专题】增长率问题.【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.【解答】解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60﹣x)=87C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60﹣x)支圆珠笔的售价=87,据此列出方程即可.【解答】解:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60﹣x)=87.故选:B.【点评】考查了由实际问题抽象出一元一次方程,根据根据描述语找到等量关系是解题的关键.二、填空题(共11小题)13.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.【考点】由实际问题抽象出一元一次方程.【分析】根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.【解答】解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.【点评】此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.14.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8元.【考点】一元一次方程的应用.【分析】按照优惠条件第一次付180元时,所购买的物品价值不会超过300元,不享受优惠,因而第一次所购物品的价值就是180元;300元的9折是270元,因而第二次的付款288元所购买的商品价值可能超过300元,也有可能没有超过300元.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.【解答】解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=32020两次所购物价值为180+3202000>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.【点评】本题考查了一元一次方程的应用.能够分析出第二次购物可能有两种情况,进行讨论是解决本题的关键.15.某市为提倡节约用水,采取分段收费.若每户每月用水不超过2020,每立方米收费2元;若用水超过2020,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28m3.【考点】一元一次方程的应用.【分析】2020米时交40元,题中已知五月份交水费64元,即已经超过2020米,所以在64元水费中有两部分构成,列方程即可解答.【解答】解:设该用户居民五月份实际用水x立方米,故2020+(x﹣20203=64,故x=28.故答案是:28.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.16.王大爷用280元买了甲、乙两种药材,甲种药材每千克2020乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了5千克.【考点】一元一次方程的应用.【分析】设买了甲种药材x千克,乙种药材(x﹣2)千克,根据用280元买了甲、乙两种药材,甲种药材比乙种药材多买了2千克,列方程求解.【解答】5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得202060(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.17.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.【考点】一元一次方程的应用.【分析】根据总售出门票100张,共得收入4000元,可以列出方程求解即可.【解答】解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.【点评】此题考查一元一次方程的应用,本题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.【考点】一元一次方程的应用.【分析】根据题意可知商店按零售价的8折再降价10元销售即销售价=150×80%﹣100,得出等量关系为150×80%﹣10﹣x=x×10%,求出即可.【解答】解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.【点评】此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.19.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.【考点】一元一次方程的应用.【专题】数字问题.【分析】设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.【解答】解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:.【点评】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.20202020•绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【考点】一元一次方程的应用.【专题】压轴题;分类讨论.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.【考点】一元一次方程的应用.【专题】压轴题.【分析】(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.。
1.1正数和负数评价练习(附答案)一、选择题1. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( )A .-3B .-1C .2D .52.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个。
A.2 B.3 C.4D.53.如果收入100元记作+100元,那么支出100元记作( ) A .-100元 B .+100元 C .-200元 D .+200元4. 在+1.2,-3.5,0,-53,+3.14,-1.56,-2020,+9这些数中,负数有( ) A .1个 B .2个 C .3个 D .4个5.下列用正数和负数表示相反意义的量,其中正确的是 ( )。
A.一天凌晨的气温是-5 ℃,中午比凌晨上升4 ℃,所以中午气温是+4 ℃B.如果+3.2 m 表示比海平面高3.2 m ,那么-9 m 表示比海平面低5.8mC.如果生产成本增长5%记作+5%,那么-5%表示生产成本降低5%D.收入增加8元记作+8元,那么-5元表示支出减少5元 6.如果向右走5步记为+5,那么向左走3步记为( ) A .+3 B .-3 C .+13 D .-137. 海水涨了-4cm 的意义是( )A .海水涨了4cmB .海水下降了4cmC .海水水位没有变化D .无法确定8.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度 ( )。
A.17℃~20℃B.20℃~23℃C.17℃~23℃D.17℃~24℃9. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为( ) A .零上3 ℃ B .零下3 ℃ C .上升3 ℃ D .下降3 ℃ 二、填空题10. 有一列数:-1,4,-7,10,-13,16,…,其中第101个数是________. 11.在知识竞赛中,如果用+10分表示加10分,那么扣20分表示为______分。
2022-2023学年全国初中七年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图是一组有规律的图案,第①个图中共有个矩形,第②个图中共有个矩形,第③个图中共有个矩形,…,则第个图中矩形个数为( )A.B.C.D.2. 将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第个图形中“○”的个数是,则的值是( )A.B.C.D.3. 设三个连续自然数中的第二个自然数为,则另外两个自然数是( )A.,B.,C.D.15118557189109n 78n 11121314m−1m−2m2m 3m2m−1,2m+1m+1,m+24. 按一定规律排列的单项式:,,,,,,第个单项式是( )A.B.C.D.5. 如图,观察下列图形,第个图形有个三角形,第个图形有个三角形,第个图形有11个三角形,依照此规律,第个图形中共有三角形 ( )A.个B.个C.个D.个6. 至个月的婴儿生长发育得非常快,他们的体重和月龄(月)间的关系可以用来表示,其中是婴儿出生时的体重.一个婴儿出生时的体重是,这个婴儿第个月的体重为( )A.B.C.D.7. 如图是由的方格构成的,每个方格内各有一数,每一横行,每一竖列以及两条斜对角线上的三个数之和都相等,那么方格内所对应的数是 A.2x −4x 36x 5−8x 710x 9⋯n (2n)(−1)n+1x 2n−1(2n)(−1)n x 2n−1(2n)(−1)n+1x 2n+1(2n)(−1)n x 2n+113273124743393616y(g)x y =a +700x a 3000g 237004000440067003×3a ()3C.D.8. 如图所示是一组有规律的图案:第个图案由个基础图形组成,第个图案由个基础图形组成,…,第个图案中的基础图形个数为 A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,下面是用火柴棍摆的正方形,仔细观察第个图形中共有________根(用的代数式表示)火柴棍.10. 设某数为,则某数的一半减去某数的平方的差可以表示为________.11. 观察下图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第个图形中共有________个“”.12. 下列图形都是由完全相同的小梯形按一定规律拼成的.如果第个图形的周长为,那么第个图形的周长为________三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )阅读理解:有足够多的如图所示的长方形和正方形的卡片,57142710()30313233n n x 2021∘152020如果选取号卡片张、号卡片张、号卡片张,可拼成一个如图所示的正方形(不重叠无缝隙),正方形的边长为.如果选取号、号、号卡片分别为张、张、张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义;小明想用类似的方法解释多项式乘法,那么需用号卡片________张,号卡片________张,号卡片________张.14. 观察下列等式:第个等式: ;第个等式: ;第个等式: ;第个等式: ;按照以上规律,解决下列问题:写出第个等式:________.写出你猜想的第个等式(用含的等式表示),并说明你写的等式的正确性.15. 为了增强学校文化氛围,提升同学们的班级归属感,太原市某中学举办了第一届班徽设计征集大赛.七年级班数学兴趣小组受到班徽启发,设计了如下一道习题,如图,将图的正方形剪开得到图,图中有个正方形;将图中的一个正方形剪开得到图,图中有个正方形;将图中最小的一个正方形剪开得到图,图中有个正方形,,如此剪下去,则第个图中的正方形有( )A.个B.个C.个1122312a +b (1)123132(2)(a +3b)(2a +b)1231+−×=21122112322+−×=1221322133+−×=23142314344+−×=2415241535⋯⋯(1)5(2)n n 11224233734410⋯n (3n+1)(3n−1)(3n+2)16. 已知:.求的值;求的值.+a −1=0a 2(1)2+2a a 2(2)+2+2a 3a 2015参考答案与试题解析2022-2023学年全国初中七年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】规律型:图形的变化类规律型:数字的变化类【解析】由已知图形得出第个图中矩形的个数为=,再将=代入即可得.【解答】解:∵图②矩形有个,图③矩形有个,…∴第个图有个矩形.当时,,即第个图中矩形个数为.故选.2.【答案】B【考点】规律型:图形的变化类规律型:数字的变化类有理数的加法【解析】n ×2−1n(n−1)2+n−1n 2n 85=2×(2+1)−111=3×(3+1)−1n n(n+1)−1=+n−1n 2n =8+n−1n 2=+8−1=8271871B【解答】解:第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;第个图形有个小圆;∵第个图形中“○”的个数是,∴,解得:,(不合题意舍去).故选.3.【答案】A【考点】列代数式【解析】根据每两个相邻的自然数相差,所以三个连续自然数,中间一个是.另外的两个数,一个比多,一个比少.由此得出答案.【解答】解:因为每两个相邻的自然数相差,所以三个连续自然数,中间一个是,另外的两个数分别是 .故选.4.【答案】A【考点】规律型:数字的变化类【解析】观察指数规律与系数、符号规律,进行解答便可.【解答】解:,1121+2=331+2+3=641+2+3+4=10n 1+2+3+...+n =n(n+1)2n 7878=n(n+1)2=12n 1=−13n 2B 1m−1m−11m−111m−1:m−2,m A 2x =⋅(2×1)⋅(−1)1+1x 2×1−1,,,由上可知,第个单项式是.故选.5.【答案】A【考点】规律型:图形的变化类【解析】【解答】解:第一个图案有三角形个,第二图案有三角形=个,第三个图案有三角形=个,…第个图案有三角形个,第个图中三角形的个数是=个.故选.6.【答案】C【考点】列代数式【解析】直接利用函数关系式,把,的值代入进而得出答案.【解答】6=⋅(2×3)⋅x 5(−1)3+1x 2×3−1−8=⋅(2×4)⋅x 7(−1)4+1x 2×4−110=⋅(2×5)⋅x 9(−1)5+1x 2×5−1⋯n (2n)(−1)n+1x 2n−1A 33+473+4+411n 3+4(n−1)123+4(12−1)47A a x故选.7.【答案】D【考点】规律型:数字的变化类【解析】解决此题的关键是确定所在横行的另一方格内(即最左边)的数.【解答】解:由题可知,解得,.故选.8.【答案】B【考点】规律型:图形的变化类【解析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多个基础图案,从而得出第个图案中基础图案的表达式,然后把代入进行计算即可得解.【解答】解:观察可知,第个图案由个基础图形组成,;第个图案由个基础图形组成,;第个图案由个基础图形组成,;…,第个图案中基础图形有:,当时,,即第个图案中的基础图形个数为.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.C P a +2=5+4a =7D 3n n =9144=3+1277=3×2+131010=3×3+1n 3n+1n =103×10+1=30+1=311031B【考点】规律型:图形的变化类【解析】通过观察图形可知,第一个图形是由四根火柴摆成,以后加三根就可加一个正方形,以此类推,得出结论.【解答】解:从图中可知每增加,就要多用根火柴棍,所用火柴棍根;,所用火柴棍根;,所用火柴棍根;,所用火柴棍根;第个图形中就该有火柴棍根.故答案为:.10.【答案】【考点】列代数式【解析】根据题意可得,某数的一半为,某数的平方为,然后列出代数式即可.【解答】解:由题意,得.故答案为:.11.【答案】【考点】(3n+1)n 13n =13+1=4n =22×3+1=7n =33×3+1=10n =44×3+1=13⋯n (3n+1)(3n+1)x−12x 2x 12x 2x−12x 2x−12x 26064规律型:图形的变化类【解析】首先确定第,,,个图形中“○”的个数,然后归纳总结第个图形“○”的个数,最后计算当时的值即可.【解答】解:如图可知:第个图形中共有个“”;第个图形中共有个“”,;第个图形中共有个“”,;第个图形中共有个“”,;∴第个图形中“”的个数为:.当时,(个).∴第个图形中“”的个数为个.故答案为:.12.【答案】【考点】规律型:图形的变化类【解析】根据已知图形得出每增加一个小梯形其周长就增加,据此可得答案.【解答】解:第个图形的周长为,第个图形的周长为,第个图形的周长为,∴第个图形的周长为.故答案为:三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】1234n n =202114∘27∘7=4+3310∘10=4+3+3=4+3×2413∘13=4+3+3+3=4+3×3⋯n ∘4+3(n−1)=3n+1n =20214+3×(2021−1)=60642021∘606460646062312+3×1=522+3×2=832+3×3=11⋯20202+3×2020=60626062.(1);,,【考点】列代数式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:见下图;;.号卡片的面积为,号卡片的面积为,号卡片的面积为,小明想用类似的方法解释该多项式的乘法时,需用号卡片张,号卡片张,号卡片张.故答案为:;;.14.【答案】第个等式是 ;说明:因为等式左边等式右边,所以猜想成立.【考点】规律型:数字的变化类(a +b)(a +2b)=+3ab +2a 2b 2273(1)(a +b)(a +2b)=+3ab +2a 2b 2(2)(a +3b)(2a +b)=2+ab +6ab +3a 2b 2=2+7ab +3a 2b 2∵1a 22ab 3b 2∴122733273+−×==251625163612(2)n +−×=2n 1n+12n 1n+13n+1====2(n+1)+n−2n(n+1)3nn(n+1)3n+1解:第个等式: .故答案为:.第个等式是 ;说明:因为等式左边等式右边,所以猜想成立.15.【答案】D【考点】规律型:图形的变化类【解析】从第一、第二、第三、第四个……图形中的正方形个数,容易得出规律,从而得出答案.【解答】解:第一个图形中有个正方形,第二个图形中有个正方形,第三个图形中有个正方形,第四个图形中有个正方形,……第个图形中有个正方形.故选.16.【答案】解:由得:,..【考点】列代数式(1)5+−×==251625163612+−×==251625163612(2)n +−×=2n 1n+12n 1n+13n+1====2(n+1)+n−2n(n+1)3n n(n+1)3n+1(3×1−2)(3×2−2)(3×3−2)(3×4−2)n (3n−2)D (1)+a −1=0a 2+a =1a 22+2a =2(+a)=2×1=2a 2a 2(2)+2+2015a 3a 2=+++2015a 3a 2a 2=a(+a)++2015a 2a 2=a ++2015a 2=1+2015=2016解:由得:,..(1)+a −1=0a 2+a =1a 22+2a =2(+a)=2×1=2a 2a 2(2)+2+2015a 3a 2=+++2015a 3a 2a 2=a(+a)++2015a 2a 2=a ++2015a 2=1+2015=2016。
七年级上册数学同步练答案人教版2020七年级上册数学同步练答案人教版20201. 选择题1. 下列数中,负数占多数的是(B)A. 3/5B. -3/5C. 2/5D. -2/52. 已知正方形的面积为4平方米,则正方形的周长是(C)A. 2mB. 4mC. 8mD. 16m3. 下列选项中,一个不能成为正整数的数是(B)A. 1.5B. -1C. 3/2D. 2/34. 某数学竞赛,参赛学生男女比为5:3,则参赛男生人数所占的百分数是(C)A. 50%B. 60%C. 62.5%D. 80%5. 已知一边长为4,对角线长为4的平行四边形的面积为(A)A. 8B. 4C. 2D. 12. 填空题1. 凸多边形n个角的和为(n-2)180度。
2. 二次方程x²-6x+5=0的一组解为x=5。
3. 若a<b,则a²<b²。
4. 已知一元二次不等式x²-4x<4的解集为(-∞,2)∪(4,+∞)。
5. 在等式3y-2x=7中,当x取2时,y的值为(11/3)。
3. 计算题1. 计算π的值,精确到小数点后三位。
解:π≈3.1422. 已知a=((-4)^4/16-4)×(1/8)^2,则a的值为多少?解:a=03. 计算(-6)/(-1/3)的商。
解:(-6)/(-1/3)=(-6)×(-3)=184. 已知∠ABD=50º,∠CBD=30º,BD=10,则BC的长度为多少?解:利用余弦定理,得BC≈8.85. 列式计算5a³-3ab²+10a²b-6b³,其中a=2,b=1。
解:5a³-3ab²+10a²b-6b³ = 5(2³) - 3(2×1²) + 10(2²×1) - 6(1³) = 624. 解答题1. 某支队实行“一长两短”制度,其中每个战士天天站岗,长岗和短岗各一天。
七年级上册同步练习数学答案2020第一章有理数
§1.1正数和负数(一)
一、1. D 2. B 3. C
二、1. 5米 2. -8℃ 3. 正西面600米 4. 90
三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格
3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.
§1.1正数和负数(二)
一、1. B 2. C 3. B
二、1. 3℃ 2. 3℃ 3. -2米 4. -18m
三、1.不超过9.05cm, 最小不小于8.95cm;
2.甲地,丙地最低,的地方比最低的地方高50米
3. 70分
§1.2.1有理数
一、1. D 2. C 3. D
二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10
三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-
30,6,0,+5,-302,+10…}
负整数集合:{-30,-302… }分数集合:{ ,0.02,-
7.2, , ,2.1…}
负分数集合:{ ,-7.2, … }
非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};
2. 有31人能够达到引体向上的标准
3. (1) (2) 0
§1.2.2数轴
一、1. D 2. C 3. C
二、1. 右 5 左 3 2. 3. -3 4. 10
三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3
§1.2.3相反数
一、1. B 2. C 3. D
二、1. 3,-7 2. 非正数 3. 3 4. -9
三、1. (1) -3 (2) -4 (3) 2.5 (4) -6
2. -3
3. 提示:原式= =
§1.2.4绝对值
一、1. A 2. D 3. D
二、1. 2. 3. 7 4. ±4
三、1. 2. 20 3. (1)|0|
§1.3.1有理数的加法(一)
一、1. C 2. B 3. C
二、1. -7 2.这个数 3. 7 4. -3,-3.
三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;
2.(1) (2) 190.
§1.3.1有理数的加法(二)
一、1. D 2. B 3. C
二、1. -11.76 2. 2 3. -6 4. 7,0
三、1. (1) 10 (2) 63 (3) (4) -2.5
2. 在东边距A处40dm 480dm
3. 0或 .
§1.3.2有理数的减法(一)
一、1. A 2. D 3. A.
二、1. -5 2.-200-(-30) 3.互为相反数 4.-8.
三、1. (1) -12 (2) 12 (3) -4.3 (4) 2. (1) (2) 8 §1.3.2有理数的减法(二)
一、1. A 2. D 3. D.
二、1. 8 2. -2.5 3. 7+8-4.2-5.3 4. 7或-5.
三、1. 3.5 2.盈452(万元) 3. 160cm.
§1.4.1有理数的乘法(一)
一、1. B 2. A 3. D
二、1. 10 2. -10 3. 3.6 3.6 4. 15
三、1. (1) 0 (2)10 (3) 1 (4)
2.当m=1时, 当m=-1时,
3.-16°C.
§1.4.1有理数的乘法(二)
一、1. D 2. B 3. C
二、1. 99 2. 0 3.负数 4. 0
三、1. (1) (2) -77 (3) 0 (4) 2. 107。