第二十七章相似测试题
- 格式:doc
- 大小:474.50 KB
- 文档页数:9
九年级数学下册第二十七章《相似》测试题-人教版(含答案)一、选择题:本题共10小题,每小题5分,共50分.1.如图,四边形ABCD 和四边形EFGH 相似,则下列角的度数正确的是( )A.81D ∠=︒B.83F ∠=︒C.78G ∠=︒D.91H ∠=︒2.若线段a b c d ,,,成比例,且5cm 2.5cm 8cm a b c ===,,,则d 等于( ) A.2 cmB.4 cmC.5 cmD.6 cm3.已知ABC A B C '''∽,AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC 与A B C '''的周长比是( )A.3:5B.9:25C.5:3D.25:94.如图,小明为了测量大楼MN 的高度,在离N 点20 m 的A 处放了一个平面镜,小明沿射线NA 的方向后退1.5 m 到C 点,此时从镜子中恰好看到楼顶的M 点,已知小明的眼睛(点B )到地面的高度BC 是1.6 m ,则大楼MN 的高度(精确到0.1 m )约是( )A.18.75 mB.18.8 mC.21.3 mD.19 m5.如图,直线123////l l l ,直线AC 分别交直线1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交直线1l 、2l 、3l 于点D 、E 、F ,直线AC 、DF 交于点P ,则下列结论错误的是( )A.AB DEBC EF= B.PA PDPC PF= C.PA PEPB PF= D.PB ACPE DF=6.如图,下列四个选项中的结论不一定成立的是( )A.COD AOB∽ B.AOC BOD∽ C.DCA BAC∽ D.PCA PBD∽7.如图,在ABC中,ABC C∠=∠,将ABC绕点B逆时针旋转得到DBE,点E在AC上,若3ED=,1EC=,则EB=( )A.3B.32C.312+D.28.如图,点A在第一象限内,AB x⊥轴于点B,以点O为位似中心,把AB缩小为原来的1 2得到A B''(AB与A B''在点O的两侧).若把点O向上平移2个单位长度,得到点O',再以点O'为位似中心,把AB缩小为原来的12得到A B''''(AB与A B''''在点O'的两侧),则A'与A''之间的距离为( )A.2B.2.5C.3D.49.如图,直线////a b c,ABC的边AB被这组平行线截成四等份,ABC的面积为32,则图中阴影四边形DFIG 的面积是( )A.12B.16C.20D.2410.将三角形纸片ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知6AB AC ==,8BC =,若以点B ',F ,C 为顶点的三角形与ABC 相似,那么BF 的长度是( )A.247B.4C.127或2 D.4或247二、填空题:本题共5小题,每小题5分,共25分.11.如图,在平面直角坐标系中,已知(1,0)A ,(3,0)D ,ABC 与DEF 位似,原点O 是位似中心.若 1.3AB =,则DE =______________.12.如图,在ABC 中,AB AC ≠,D 、E 分别为边AB 、AC 上的点,3AC AD =,3AB AE =,点F 为BC 边上一点,添加一个条件:_____________,可以使得FDB 与ADE 相似.(只需写出一个)13.如图,在Rt ABC 中,904ACB AB ∠=︒=,,点D 、E 分别在边AB 、AC 上,且2,3DB AD AE EC ==,连接BE 、CD ,相交于点O ,则ABO 面积的最大值为________.14.如图,在ABC 中,点D 为AC 边上一点,且12CD AD =,过点D 作//DE BC 交AB 于点E ,连接CE ,过点D 作//DF CE 交AB 于点F .若15AB =,则EF =________.15.如图,在平面直角坐标系中,点A 、B 的坐标分别为()()4,00,4-,,点()3C n ,在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_______________.三、解答题:本题共2小题,第一小题10分,第二小题15分,共25分.16.如图,为了测量一栋楼的高度OE ,小明同学先在操场上的A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ,再将镜子放到C 处,后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得2AC =m, 2.1BD = m ,小明的眼睛距地面的高度BF ,DG 为1.6 m ,试确定楼的高度OE .17.回答下列问题:问题背景 如图(1),已知ABC ADE ∽,求证:ABD ACE ∽;尝试应用 如图(2),在ABC 和ADE 中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC 边上,3AD BD =DFCF的值; 拓展创新 如图(3),点D 是ABC 内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,23AC =AD 的长.参考答案1.答案:A 解析:四边形ABCD 和四边形EFGH 相似,78B F ∴∠=∠=︒,118A E ∠=∠=︒,83C G ∠=∠=︒,360781188381D H ∴∠=∠=︒-︒-︒-︒=︒.故选A.2.答案:B 解析:线段a b c d ,,,成比例,a cb d∴=,5cm a =, 2.5cm b =,8cm c =,582.5d∴=,4cm d ∴=,故选B.3.答案:C 解析:ABC A B C '''∽,AD 和A D ''是它们的对应中线,10AD =,6A D ''=,ABC ∴与A B C '''的周长比:10:65:3AD A D ===''.故选C.4.答案:C解析:BC CA ⊥,MN AN ⊥,90C MNA ∴∠=∠=︒.BAC MAN ∠=∠,BCA MNA ∴∽,BC AC MN AN ∴=,即1.6 1.520MN =, 1.620 1.521.3MN ∴=⨯÷≈(m ),即大楼MN 的高度约为21.3 m.故选C. 5.答案:C解析:123////l l l ,AB DE BC EF ∴=,A 中结论正确,不符合题意;PA PDPC PF=,B 中结论正确,不符合题意;PA PD PB PE =,C 中结论错误,符合题意;PB PC PA PE PF PD ==,PB AC PE DF∴=,D 中结论正确,不符合题意.故选C. 6.答案:C解析:OCD OAB ∠=∠,COD AOB ∠=∠, COD AOB ∴∽.ACO BDO ∠=∠,AOC BOD ∠=∠,AOC BOD ∴∽.180PCA ACD ∠+∠=︒,180ACD ABD ∠+∠=︒, PCA PBD ∴∠=∠,又P P ∠=∠,PCA PBD ∴∽.故选C.7.答案:A解析:由旋转可得ABC DBE ≌,BC BE ∴=,3DE AC ==,C BEC ∴∠=∠.又ABC C ∠=∠,ABC BEC ∴∠=∠,又C C ∠=∠,ABC BEC ∴∽,EC BCBC AC∴=,即2BC CE CA =⋅,BC ∴=,BE ∴.故选A.8.答案:C解析:如图,连接A A ''',由题意易知A B ''和A B ''''都与AB 平行,且在同一条直线上,////A A AB OO ''''∴.由题意知,OA B OAB ''∽△△,12OA A B OA AB '''∴==,23OA AA ∴='.//A A OO '''',AO O AA A ''''∴∽△△,23OO OA A A AA '∴=='''',2OO '=,3A A '''∴=.9.答案:B 解析:直线////a b c ,ABC 的边AB 被这组平行线截成四等份,14AD AB ∴=,34AF AB =,ADG ABC ∽,AFI ABC ∽,211()416ADG ABCS S∴==,239()416AFI ABCS S==.ABC 的面积为32,1216ADGABCS S ∴==,91816AFIABCSS ==,18216AFIADGS SS∴=-=-=阴影.故选B.10.答案:D 解析:ABC 沿EF 折叠后点B 和'B 重合,BF B F '∴=.设(0)BF x x =>,则8CF x =-.要使B FC '与ABC 相似,只需B FC C '∠=∠或FB C C '∠=∠.当B FC C '∠=∠时,B FC ABC '∽,B F CF AB BC ∴=',6AB =,8BC =,868x x -∴=,解得247x =,即247BF =;当FB C C ∠'=∠时,FB C ABC '∽,FB FC AB AC ∴=',即866x x-=,解得4x =,即4BF =,故4BF =或247.故选D. 11.答案:3.9 解析:(1,0)A ,(3,0)D ,1OA ∴=,3OD =.ABC 与DEF 位似,//AB DE ∴,ABO DEO ∴∽,AB OA DE OD ∴=,即1.313DE =,解得 3.9DE =.12.答案:A BDF ∠=∠(或A BFD ∠=∠或ADE BFD ∠=∠或ADE BDF ∠=∠或//DF AC 或BD BF AE ED =或BD BFDE AE=) 解析:3AC AD =,3AB AE =,13AD AE AC AB ∴==,又A A ∠=∠,ADE ACB ∴∽,AED B ∴∠=∠. 故要使FDB 与ADE 相似,只需再添加一角相等,或夹角的两边成比例即可. 13.答案:83解析:本题考查平行线分线段成比例、三角形面积公式.如图,过点D 作//DF AE 交BE 于点F ,则21.,2,33DF BD EC DF EC DO AE BA AE ===∴=∴=222,,,33ADO ADC BDO OC DO DC S S S ∴=∴==22,90,33.BDC ABO ABC S S S ACB ︒∴=∠=∴点C 在以AB 为直径的圆上,设圆心为G ,当CG AB ⊥时,ABC 的面积最大,最大面积为1424,2⨯⨯=此时ABO 面积的最大值为284.33⨯=14.答案:103解析://,AD AEDE BC AC AB∴=. 12,23CD AD AD AC =∴=,即23AE AB =. 15,10AB AE =∴=.//,AF AD DF CE AE AC ∴=,即2103AF =,解得203AF =, 则20101033EF AE AF =-=-=.故答案为103. 15.答案:2.8解析:本题考查平面直角坐标系中点的坐标特征、相似三角形的判定与性质如图,过点C 作CD y ⊥轴于点D ,设AC 交y 轴于点E ,//CD x ∴轴, CAO ACD∠∠∴=,又DEC OEA ∠∠=,DEC OEA ∴~,2,BCA CAO BCD ACD ∠∠∠∠=∴=,BD DE ∴=,设BD DE x ==,则42OE x =-DC DE OA OE ∴=即3442xx=-,解得 1.2x =, 242 1.6, 1.2 1.6 2.8OE x n OD DE OE ∴=+=∴==+=+=.16.答案:如图,设E 关于O 的对称点为M ,延长GC 与FA ,易知GC 、FA 的延长线相交于点M ,连接GF 并延长,交OE 于点H .易知//GF AC ,MAC MFG ∴∽, AC MA MOFG MF MH∴==, AC OE OE OEBD MH MO OH OE BF ∴===++, 21.62.1OE OE ∴=+, 32OE ∴=.答:楼的高度OE 为32 m. 17.答案:问题背景 证明:ABC ADE ∽,AB ACAD AE∴=,BAC DAE ∠=∠, AB ADAC AE∴=,BAD CAE ∠=∠, ABD ACE ∴∽.尝试应用连接CE ,设BD t =,则AD =. 易得ADE ABC ∽,AB ACAD AE∴=, AB ADAC AE∴=. 又BAC DAE ∠=∠, BAD CAE ∴∠=∠, ACE ABD ∴∽,CE AC BD AB ∴=,CE ∴=,3ADCE∴==.ADE ABC ∠=∠,ABC ACE ∠=∠,30ACE ADE ∴∠=∠=.又AFD EFC ∠=∠, ADF ECF ∴∽,3DF ADCF CE∴==. 拓展创新 AD.解法提示:过点D 作AD 的垂线交AB 于点M ,连接CM . 易证ADB MDC ∽,AB ADCM MD∴==30DMC DAB ∠=∠=,CM ∴=,90AMC AMD DMC AMD DAB ∠=∠+∠=∠+∠=,AM ∴=,cos AD AM MAD ∴=⋅∠。
第二十七章相似全章测试一、选择题1.如图,ciABCD 中,EF 〃AB, DE : EA=2 : 3, EF = 4,则 CD 的长为()16A. —B. 8C. 10D. 163 【答案】CEF DE 2【解析】试题分析:由EF 〃AB 可得△ DEF^ADAB,根据相似三角形的性质可得一=——=-,再由EF=4AB AD 5 即可得AB=10,根据平行四边形的性质可得CD=AB=10.故答案选C. 考点:相似三角形的判泄及性质;平行四边形的性质.2.如图,ZACB=ZADC=90°, BC=a, AC=b, AB=c, S^A ABC^ACAD,只要 CD 等于()ab C.— c【解析】解:假设厶ABC-A CAD, 即・・・要使△ ABC-ACAD,只要CD 等于故AC ABAB cc3.在菱形ABCD'P ,BFE 是BC 边上的点,连接AE 交BD 于点F,若EC=2BE,则一的值是()Fl )c a【答案】A选A.1 1 1A•— B•— C. _2 3 41 D.-5【答案】B【解析】解:如图,VABCD 是菱形,月.4D=BC, •••△BEFSAD4F,BF BE 1・:EC=2BE, :•吟BE,即 AZ>3BE, 故选 B.点睛:本题考查了相似三角形的判定与性质,菱形的性质.关键是由平行线得出相似三角形,由菱形的性 质得出线段的长度关系.4.己知:如图,DE 〃BC, AD:DB=1:2,则下列结论不正确的是()【答案】ADE AD AD I•••△ADESGBC ,・••芫荷莎面=亍・・•相似三角形周长比等于相似比,:・B, C 选项正确,:•四边形BCED 的面积=ZBC 的面积-AADE 的面积,•ID 选项正确. 故选A.5.如图,铁路道口的栏杆短臂长lm,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽A. 4mB. 6mC. 8mD. 12m竺=匹又FD ADAADE 的面积_1AABC 的面积9 AADE 的周长_ 1 AABC 的周长3 AADE 的面积 _ 1 四边形BCED 的面积8 面积比为相似比的平方, A' ^=2 B - 略不计)( )•【答案】C【解析】试题分析:设长臂端点升高X 米,则—/.解得:x 二&故选C. x 16 考点:相似三角形的应用. 止方形ABCD 与止方形BEFG 是以原点0为位似屮心的位似图形,且相似比【解析】试题解析:・・•正方形ABCD 与正方形BEFG 是以原点0为位似中心的位似图形,且相似比为£ AD 1OA 1 OA 1 , z ,•••— , •: BG=J :.AD=BC=2, •: AD//BG, :./XOAD^/XOBG, :.― 一,••- ------ ,解得:04=1, BG 3 OB 3 2 + OA 3 :・0B=3, ・・・C 点坐标为:(3, 2),故选A.7. 平面直角坐标系中,有一条“鱼J 它有六个顶点,则()A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B. 将各点纵坐标乘以2,横坐标不变,得到的鱼与原來的鱼位似C. 将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D. 将各点横坐标乘以2,纵坐标乘以丄,得到的鱼与原来的鱼位似2 【答案】C【解析】解:平面直角樂标系中图形的各个顶点,如果横纵坐标同吋乘以同一个非0的实数匕得到的图形 与原图形关于原点成位似图形,位似比是冈・若乘的不是同一个数,得到的图形一定不会与原图形关于原点 对称.故选C ・8. 对于平面图形上的任意两点P, Q,如果经过某种变换得到新图形上的对应点P',Q',保持PQ=P r Q\我为点A, B, E 在x 轴上, 若正方形BEFG 的边长为6,则C 点坐标为(C. (2, 2)D. (4, 2)6.如图,在平面直角坐标屮,y个■屮 ■ I* JI ■ !■丄们把这种变换称为“等距变换”,下列变换屮不一定是等距变换的是() A.平移 B.旋转 C.轴对称 D.位似【答案】D【解析】试题解析:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与 原图形的形状和大小完全相同,则平移变换是“等距变换旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换〃; 轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换〃; 位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换, 故选D.在格点上)为顶点的三角形与AABC 相似,则点E 的坐标不可能是() A. (6, 0) B. (4, 2) C. (6, 5) D. (6, 3) 【答案】D【解析】解:•・•点人、B 、C 的坐标分别是(1, 7) , (1, 1) ,(4, 1),・・・AB=6, BC=3, ZABC=90°.AB BC 3 AED=4, CD=2, ZEDO90。
D B C A N M O 第27章《相似》单元测试题 一、选择题(每小题3分,共30分)1、如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A .AD DF =BC CEB .BC CE =DF ADC .CD EF =BC BE D .CD EF =AD AF2、已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:13、如图,小正方形的边长均为1,则下列图中的三角形(阴影部份)与ABC △相似的是( )4、如图,△ABC 中,A ,B 两个极点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原先的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 5、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部份)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C . 8 cm 2D .16 cm 2六、如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 别离是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形7、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =, AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .2 八、美是一种感觉,当人体下半身长与身高的比值越接近时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是,为尽可能达到好的成效,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm 九、如图正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则 AO DO 等于( ) A .2 5 3 B .13 C .23 D .12 10、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张二、填空题(每小题3分,共18分)B .C .D . AB C A .A B F C D E O1一、在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .1二、如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .13、在平面直角坐标系中,△ABC 极点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形A B C '''△,使△ABC 与A B C '''△的相似比等于12,则点A ′的坐标为 . 14、如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD= . 1五、将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为极点的三角形与△ABC 相似,那么BF 的长度是 . 1六、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号).三、(本大题共3小题,第17题6分,第17、18题各7分,共20分)17、如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC .1八、如图,在矩形ABCD 中,点E F 、别离在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.【关键词】矩形的性质1九、如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.A D E CB 第12题 第14题 E (第15题图) A B ′ CF B四、(本大题共3小题,每小题8分,共24分)20、小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发觉对面墙上有这栋楼的影子,针对这种情形,他设计了一种测量方案,具体测量情形如下:如示用意,小明边移动边观看,发觉站到点E 处时,能够使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.现在,测得小明落在墙上的影子高度CD =,CE =,CA =30m (点A E C 、、在同一直线上). 已知小明的身高EF 是,请你帮小明求出楼高AB (结果精准到).2一、如图,网格中的每一个小正方形的边长都是1,每一个小正方形的极点叫做格点.△ACB 和△DCE 的极点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .2二、如图,△ABC 在方格纸中(1)请在方格纸上成立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′;(3)计算△A ′B ′C ′的面积S .五、(本大题共2小题,每小题9分,共18分)23、如图,△ABC 中,∠C =90°,AC =4,BC =3。
第27章相似单元测试卷及解析(时间45分钟,满分100分)一.选择题(每题4分,共24分)1.用一个2倍的放大镜照一个ΔABC,下列命题中正确的是()A.ΔABC放大后角是原来的2倍B.ΔABC放大后周长是原来的2倍C.ΔABC放大后面积是原来的2倍D.以上的命题都不对2.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比爸爸矮0.3m,则她的影长为().A.1.3m B.1.65m C.1.75m D.1.8m3( )A.2对B.3对C.4对D.5对4.如图,△ABC中,∠B=900,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C´处,并且C´D∥BC,则CD的长是( )A.409B.509C.154D.2545.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在( )A.P1处B.P2处C.P3处D.P4处6.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且14CF CD=,下列结论:①30BAE∠=,②A B E A E F△∽△,③A E E F⊥,④A D F E C F△∽△.其中正确的个数为()A.1 B.2 C.3 D.4二.填空题(每题4分,共24分)7.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm,面积是250cm2,则这个地区的实际周长_________m,面积是___________m28.如图,在Rt△ABC中,∠C=90°,点D是AB边上的一定点,点E是AC上的一个动点,若再增加一个条件就能使△ADE与△ABC相似,则这个条件可以是________________________.9.在平面直角坐标系中,已知A(6,3)、B(10,0)两点,以坐标原点O为位似中心,相似比为13,把线段AB缩小后得到线段A/B/,则A/B/的长度等于____________.10.如图,矩形ABCD中,AE⊥BD于E,若BE=4,DE=9,则矩形的面积是______________.11.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.12.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图).则小鱼上的点(a,b)对应大鱼上的点是____________________.三.解答题(每题10分,共40分)13.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0;(2)求出△ABC与△A′B′C′的位似比;(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.ODCBAPAB CFDEDC BA(第5题) (第6题)(第3题)(第4题)C(第8题) (第10题)(第10题)14.在ABC △和DEF △中,90A D ==∠∠,3AB DE ==,24AC DF ==. (1)判断这两个三角形是否相似?并说明为什么? (2)能否分别过A D ,在这两个三角形中各作一条辅助线,使ABC △分割成的两个三角形与DEF △分割成的两个三角形分别对应相似?证明你的结论.15.如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)若CE = 3,CB=5 ,求DE 的长.16.如图,把菱形ABCD 沿着BD 的方向平移到菱形A /B /C /D /′的位置, (1)求证:重叠部分的四边形B /EDF /是菱形(2)若重叠部分的四边形B /EDF /面积是把菱形ABCD 面积的一半,且BD=2,求则此菱形移动的距离.四. 探究题: (12分)17.如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问题:(1n 1 2 3 n x(2)第n 个正方形的边长n;(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n p q ,,,的关系.AB DF F E /CB/A/DB BC A2x3x1x答案或提示1.B 2.C 3.C 4.A 5.C 6.B 7.2400,4⨯1058.∠AED=90°, ∠ADE=90°,AE ∶AC=AD ∶AB,AE ∶AB=AD ∶AC 9.5310.78 11.22.5 12.(-2a,-2b) 13.(1)提示:位似中心在各组对应点连线的交点处.(2)位似比为1:2.(3)略. 14.(1)不相似.∵在Rt BAC △中,90A ∠=°,34AB AC ==,;在Rt EDF △中,90D ∠=°,32DE DF ==,,12AB AC DE DF ==∴,.AB ACDE DF≠∴.Rt BAC ∴△与Rt EDF △不相似. (2)能作如图所示的辅助线进行分割.NM FE DC BA具体作法:作BAM E ∠=∠,交BC 于M ;作NDE B ∠=∠,交EF 于N .由作法和已知条件可知BAM DEN △≌△.BAM E ∠=∠∵,NDE B ∠=∠,AMC BAM B ∠=∠+∠,FND E NDE ∠=∠+∠, AMC FND ∠=∠∴.90FDN NDE ∠=-∠∵°,90C B ∠=-∠°,FDN C ∠=∠∴. ∴AMC FND △∽△.15.(1)证明:∵弦CD 垂直于直径AB ∴BC=BD ∴∠C =∠D 又∵EC = EB ∴∠C =∠CBE ∴∠D =∠CBE 又∵∠C =∠C ∴△CEB ∽△CBD(2)解:∵△CEB ∽△CBD ∴CE CB CB CD=∴CD=2252533CB CE == ∴DE = CD -CE =253-3 =163 16.(1)有平移的特征知A ´B ´∥AB,又CD ∥AB ∴A ´B ´∥CD,同理B ´C ´∥AD ∴四边形BEDF 为平行四边形∵四边形ABCD 是菱形 ∴AB=AD ∴∠ABD=∠ADB 又∠A ´B ´D=∠ABD ∴∠A ´B ´D=∠ADB ∴FB ´=FD∴四边形B ´EDF 为菱形.(2)∵菱形B ´EDF 与菱形ABCD 有一个公共角 ∴此两个菱形对应角相等 又对应边成比例∴此两个菱形相似∴B D BD '=∴1B D '== ∴平移的距离BB ´=BD –B ´117.(1)2483927,, (2)23n⎛⎫⎪⎝⎭.(3)m n p q x x x x = 22223333m n p q⎛⎫⎛⎫⎛⎫⎛⎫∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2233m np q++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭.m n p q ∴+=+。
第27章 相似单元达标检测试卷形;④如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,则这两个图形是位似图形;⑤邻边之比都等于2的两个平行四边形相似。
正确的有( )个。
A .4 B . 3 C . 2 D .12.两个相似三角形的面积比为1:4,则它们对应的中线的比为( )A .1:2B .2:1C .1:2D . 2:13.已知△ABC ∽△A′B′C′,AB=12cm ,AC=15cm , A′B′=16cm ,则A′C′等于( ) A .18cm B .20cm C .24cm D .32cm4.有一个多边形的各边长分别为4cm ,5cm ,6cm ,4cm ,5cm ,和它相似的另一个多边形的最长边为9cm ,则这个多边形的周长是( )A .12cmB .18cmC .36cmD .48cm 5.下列四个三角形,与右图中的三角形相似的是()6.如图,在矩形ABCD 中,E ,F 分别是CD ,BC 上的点,若∠AEF=90°,则一定有( )A .△ADE ∽△ECFB .△ECF ∽△AEFC .△ADE ∽△AEFD .△AEF ∽△ABF 7.如图,线段AC ,BD 交于点O ,由下列条件,不能得出△AOB 与△DOC 相似的是( ) A .OB :OC=OA :ODB .OA :OB=OD :OC C .OA :OD=AB :CD D .AB ∥CDE 第6题 第7题 第8题 第9题 8.若P 是Rt △ABC 的斜边AB 上异于B ,A 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条9.□ABCD 中,E 是边BC 延长线上一点,连接AE ,图中共有相似三角形( )对。
A .4 B .5 C . 6 D .710.如图,在△ABC 中,AD 、BE 是两条中线,则S △EDC ∶S △ABC =( ) A 、1∶2 B 、2∶3 C 、1∶3 D 、1∶4 11、在斜坡的顶部有一铁塔,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=14m ,塔影长DE=36m ,小惠和小岚的身高都是1.6m ,同一时刻,小惠站在点E 处,影子在坡面上,小岚站在平地上,影子也在平地上,两人的影长分别是2m 和1m ,那么塔高AB 为( )m 。
单元测试 第27章 相似 (时间:100分钟 满分:120分)一、选择题(每小题3分,共30分。
下列各小题均有四个答案,其中只有一个是正确的)A B C D2.下列四条线段中,不是成比例线段的为(B)A .a =3,b =6,c =2,d =4B .a =4,b =6,c =5,d =10C .a =1,b =2,c =6,d = 3D .a =2,b =5,c =15,d =23 3.如图,已知△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是(D) A.BC DF =12 B.∠A 的度数∠D 的度数=12 C.△ABC 的面积△DEF 的面积=12 D.△ABC 的周长△DEF 的周长=124.如图,四边形ABCD ∽四边形A 1B 1C 1D 1,AB =12,CD =15,A 1B 1=9,则边C 1D 1的长是(C)A .10B .12 C.454 D.3655.如图,△ABC 与△DEF 是位似图形,位似比为2∶3.已知AB =4,则DE 的长等于(A)A .6B .5C .9 D.836.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,∠AED =∠B ,且AD =2,AE =4,BD =10,则DE ∶BC 等于(B)A .1∶2B .1∶3C .2∶3D .1∶57.如图,根据测试距离为5 m 的标准视力表制作一个测试距离为3 m 的视力表.如果标准视力表中“E ”的长a 是3.6 cm ,那么制作出的视力表中相应“E ”的长b 是(B)A .1.44 cmB .2.16 cmC .2.4 cmD .3.6 cm8.以下各图放置的小正方形的边长都相同,分别以小正方形的顶点为顶点画三角形,则与△ABC 相似的三角形图形为(A)9.如图所示,在▱ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF ∶FC =(B)A .1∶3B .1∶2C .1∶4D .2∶310.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB =∠EPC ;②∠APE =∠APB ;③P 是BC 的中点;④BP ∶BC =2∶3.其中能推出△ABP ∽△ECP 的有(C)A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共15分)11.如图,已知AD AB =DEBC ,请添加一个条件,使△ADE ∽△ABC ,这个条件可以是答案不唯一,如:∠D =∠B 等.(写出一个条件即可)12.若△ABC ∽△A′B′C′,且AB ∶A′B′=3∶4,△ABC 的周长为12 cm ,则△A′B′C′的周长为16_cm .13.如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.若S △CMN =1,则S 四边形NBAM =3.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =5.5m.15.如图,已知AD ∥BC ,AB ⊥BC ,AB =3,点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B′处,过点B′作AD 的垂线,分别交AD ,BC 于点M ,N.当点B′为线段MN 的三等分点时,BE 2或5三、解答题(本大题共8个小题,满分75分)16.(8分)如图,DE ∥BC ,EC =AD ,AE =2 cm ,AB =7.5 cm ,求DB 的长.解:∵DE ∥BC , ∴BD AB =CE AC. ∵EC =AD ,AE =2 cm ,AB =7.5 cm , ∴BD7.5=7.5-BD 2+7.5-BD. 解得BD =4.5或12.5(舍去). ∴BD =4.5 cm.17.(9分)如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.18.(9分)如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2∶1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧);(2)分别写出点A1、B1的坐标.解:(1)如图.(2)A1(4,0),B1(2,-4).19.(9分)如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA =∠ADE,∠CAD=∠BAE.求证:(1)△ABC∽△AED;(2)BE·AC=CD·AB.证明:(1)∵∠BAE=∠DAC,∠BAC=∠BAE-∠CAE,∠DAE=∠DAC-∠CAE,∴∠BAC=∠DAE.∵∠ACB=∠ADE,∴△ABC∽△AED.(2)∵△ABC ∽△AED ,∴AB AC =AEAD .∵∠BAE =∠CAD , ∴△ABE ∽△ACD. ∴BE CD =AB AC, 即BE·AC =CD·AB.20.(9分)如图,AB 是⊙O 的直径,OD 垂直于弦AC 于点E ,且交⊙O 于点D ,F 是BA 延长线上一点,连接FD ,CD.若∠CDB =∠F. (1)求证:FD 是⊙O 的一条切线; (2)若AB =10,AC =8,求DF 的长.解:(1)证明:∵∠CDB =∠CAB ,∠CDB =∠F , ∴∠CAB =∠F. ∴FD ∥AC.∵∠AEO =90°,∴∠FDO =90°. ∴FD 是⊙O 的一条切线.(2)∵AB =10,AC =8,DO ⊥AC , ∴AE =EC =4,AO =5.∴EO =3. ∵AE ∥FD , ∴△AEO ∽△FDO. ∴AE FD =EO DO .∴4FD =35. 解得FD =203.21.(10分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图所示.已知小丽同学的身高是1.5 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,求旗杆DE 的高度.解:由题意,得AB =1.5 m ,BC =0.5 m ,DC =4 m , △ABC ∽△EDC , 则AB ED =BC DC .即1.5DE =0.54. 解得DE =12.答:旗杆DE 的高度为12 m.22.(10分)如图,直线y =ax +1与x 轴,y 轴分别相交于A ,B 两点,与双曲线y =kx (x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0).(1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q ,C ,H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.解:(1)把A(-2,0)代入y =ax +1中,求得a =12,∴y =12x +1.把y =2代入y =12x +1中,得x =2,∴P(2,2).把P(2,2)代入y =k x 得k =4.则双曲线解析式为y =4x .(2)设Q(a ,b),∵Q(a ,b)在y =4x 上,∴b =4a .当△QCH ∽△BAO 时,CH AO =QHBO ,即a -22=b 1.∴a -2=2b ,即a -2=8a .解得a =4或a =-2(舍去).∴Q(4,1);当△QCH ∽△ABO 时,可得CH BO =QHAO ,即a -21=b 2. 整理,得2a -4=4a.解得a =1+3或a =1-3(舍). ∴Q(1+3,23-2).综上,Q(4,1)或Q(1+3,23-2).23.(11分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD ∶BD =1∶2,AD 与BE 相交于点P ,求APPD的值.小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和计算能够使问题得到解决(如图2). 请回答:AP PD 的值为32.参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC ∶BC ∶AC =1∶2∶3 .图1 图2 图3 (1)求APPD的值;(2)若CD =2,则BP =6.解:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,设DC =k , ∵DC ∶BC =1∶2,∴BC =2k.∴DB =DC +BC =3k. ∵E 是AC 中点,∴AE =CE. ∵AF ∥DB ,∴∠F =∠DBP. 又∵∠AEP =∠BEC ,∴△AEF ≌△CEB.∴AF =BC =2k. ∵AF ∥DB ,∴△AFP ∽△DBP. ∴AP PD =AF DB .∴AP PD =23. (2)提示:根据DC ∶BC ∶AC =1∶2∶3,DC =2,可得BC =4,AC =6.由E 为AC 的中点,可以求出CE =12AC =3.在Rt △BEC 中,由勾股定理求出BE =5.结合△AEF ≌△CEB ,从而得出EF =BE =5,∴BF =10.再根据△AFP ∽△DBP ,得出FP PB =AP PD =23,即10-PB PB =23,解得PB =6.。
BACDEF''AB CBCAP第二十七章 相似单元测试卷 姓名一、选择题1.ABC ∆和DEF ∆相似,且相似比为3,那么DEF ∆和ABC ∆的相似比为( )A.32B.23C.49D.942.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DEDB AD =B .ADEFBC BF = C .FC BF EC AE =D .BCDEAB EF =3.下列说法正确的是( ) A.各有一个角是100 的两个等腰三角形相似; B.各有一个角是45 的两个等腰三角形相似 C.有两边对应成比例的两个等腰三角形相似; D.两腰对应成比例的两个等腰三角形相似4.下列四个三角形,与右图中的三角形相似的是( )A B C D 第4题 5.中午12点,身高为150cm 的小冰的影长为20cm ,同学小雪此时在同一地点的影长为22cm ,那么小雪的身高为( )A.150cmB.155cmC.160cmD.165cm6.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )A .PA ·AB =PC ·PB B .PA ·PB =PC ·PD C .PA ·AB =PC ·CD D . PA ∶PB =PC ∶PD7.如图,ACD ∆和ABC ∆相似需具备的条件是( ) A.AC AB CDBC= B.CD BC ADAC=C.2AC AD AB =⋅D.2CD AD BD =⋅ 第6题图8.如图,一张矩形报纸ABCD 的长AB a =,宽BC b =,E F 、分别是AB CD 、的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽的比等于矩形ABCD 的长与宽的比,则:a b 等于( )B.D.9、△ABC 中,D 是AB 上的一点,在AC 上取一点E ,使得以A 、D 、E 为顶点的三角形与△ABC 相似,则这样的点最多是( ) A 、0 B 、1 C 、2 D 、无数第7题 第8题 第11题 第12题二、填空题10. 若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.11. 如图,已知ACP ∆∽ABC ∆,4,2AC AP ==,则AB 的长为 . 12.在针孔成像问题中,根据图中尺寸可知像A B ''的长是物AB 长的___.13.如图,ABC ∆中,DE ∥FG ∥BC ,且::2:3:4AD DF FB =,则B::ADE DFGE FBCG S S S ∆=梯形梯形 .14.如图,点O 是正三角形PQR 的中心,P Q R '''、、分别是OP OQ OR 、、 的中点,则P Q R '''∆与PQR ∆是位似三角形,此时P Q R '''∆与PQR ∆的 位似中心是_____,位似比为______ 三、解答与证明15.如图,四边形ABCD 各顶点的坐标 分别为(2,6),(4,2),(6,2),(6,4)A B C D ,在第一象限内,画出以原点为位似中心,相似比为12的位似图形1111A B C D ,并写出各点坐标.16、如图;正方形ABCD 中,P 是BC 上的点,BP=3PC ,Q 是CD 中点,求证:△ADQ ∽△QCP17、如图,已知AB//EF//CD 。
第二十七章 相似全章测试一、选择题(本题共32分,每小题4分)1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( ) A .32 B .41 C .31 D .21 2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC 4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )A .1B .23 C .2 D .255.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( )A .1条B .2条C .3条D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DEDB AD =B .ADEF BC BF = C .FC BFEC AE =D .BCDEAB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC其中一定能判定△ABC 是直角三角形的共有( )A .3个B .2个C .1个D .0个二、填空题(本题共16分,每小题4分)9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.10.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.12.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61EB AE ,射线CF 交AB 于E 点,则FDAF等于______.三、解答题(本题共33分,13--15每小题5分,16—18每小题6分)13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.N PE C B A 17.如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?18.已知:如图,在△ABC 中,AB =AC = 5,BC = 8,D ,E 分别为BC ,AB 边上一点,∠ADE =∠C . (1)求证:△BDE ∽△CAD ; (2)若CD =2,求BE 的长.四、解答题(本题共25分,19--21每小题6分,22题7分)19.如图所示,⊙O 的内接△ABC 中,∠BAC =45°,∠ABC =15°,AD ∥OC 并交BC 的延长线于D 点,OC 交AB 于E 点. (1)求∠D 的度数;(2)求证:AC 2=AD ·CE .20.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.21.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形.22.如图,DB 为半圆的直径,且BD=2,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .(1)连接BE ,求证:BE 平分∠DBC ;(2)设AD=x ,CF=y ,求y 关于x 的函数解析式.五、解答题(本题满分7分)23.在边长为1的正方形网格中,正方形ABFE 与正方形EFCD 的位置如图所示. (1)请你按下列要求画图: ① 联结BD 交EF 于点M ;② 在AE 上取一点P ,联结BP ,MP ,使△PEM 与△PMB 相似;(2)若Q 是线段BD 上一点,连结FQ 并延长交四边形ABCD 的一边于点R ,且满足BD FR 21,则QRFQ 的值为_____________.六、解答题(本题满分7分)24.在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.(1)填空:①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(,);A ,②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换)得到△ADE,则线段BD的长为cm;(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFCG,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△A BI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系.。
c b a 第2题图n m F E D C B A 第3题图E D C B A第4题图F E D C B A 第7题图PD C BA E 第8题图DC B A九年级数学(下)第二十七章《相似》单元测试一、 选择题:(本大题共12小题,每小题2分,共24分)1.下列四组线段中,不能成比例的是.A. a =3,b =6,c =2,d =4B. a =1,b =3,c =4,d =12C. a =4,b =6,c =5,d =10D. a =2,b =3,c =4,d =62.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于A 、C 、E 、B 、D 、F , AC =4,CE =6,BD =3,则BF =.A. 7B. 7.5C. 8D. 8.53.如图,在△ABC 中,已知DE ∥BC ,AD =3,DB =6,DE =2,则BC =. A. 4 B. 6 C. 10 D. 84.如图,E 是□ABCD 的边BC 的延长线上的一点,连接AE 交CD 于F ,则图中共有相似三角形.A. 1对B. 2对C. 3对D. 4对 5.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是. A. ∶1 B. 4∶1 C. 3∶1 D. 2∶1 6.已知a 、b 、c 为正数,且===k ,下列四个点中,在正比例函数y =k x 的图像上的是. A.(1,) B.(1,2) C.(1,-) D.(1,-1)7.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB =4,CD =7,AD =10,则AP 的长等于. A. B. C. D.8.如图,在△ABC 中,∠BAC =90°,D 是BC 中点, AE ⊥AD 交CB 的延长线于E ,则下列结论正确的是 A.△AED ∽△ACB B. △AEB ∽△ACDC.△BAE ∽△ACED.△AEC ∽△DAC9.要作一个多边形与已知多边形相似,且使面积 扩大为原来16倍,那么边长为原来.A. 2倍B. 3倍C. 4倍D. 5倍10.在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,则下列结论:①AC 2=AD ·AB ; ②CD 2=AD ·BD ;③BC 2=BD ·AB ;④CD ·AD =AC ·BC ;⑤=.第10题图D C BA 第11题图第12题图F ED C B A第14题图E D C B A第16题图ED C B A 第15题图E D C B A QKGF D AG D A E D A正确的个数有.A.2个B.3个C.4个D.5个11.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C为位似中心,在x 轴的下方作△ABC 的位似图形△A /B /C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B /的横坐标是a ,则点B /的横坐标是. A. -a B. - C. - D. -12.如图,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC于点F ,设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,关于x 的函数图像是二、填空题:(本大题共10小题,每小题2分,共20分)13.如果两个相似三角形的面积比是1∶2,那么它们对应边的比是. 14.如图,DE 是△ABC 的中位线,已知=2,则四边形BCED 的面积为.15.如图,在矩形ABCD 中,AB =2,BC =1,E 是DC 上一点,∠DAE =∠BAC , 则EC 长为.16.顶角为36°的等腰三角形称为黄金三角形,如图,△ABC 、△BDC 、△DEC 都是黄金的三角形,已知AB =1,则DE =.17.如图,Rt △ABC 内有三个内接正方形,DF =9cm ,GK =6cm ,则第三个正方形的边长PQ 的长是.第22题图P E D C B A 第23题图D C B A P M F D C18.如图,已知△ABC 中,若BC =6,△ABC 的面积为12,四边形DEFG 是△ABC 的内接的正方形,则正方形DEFG 的边长是.19.如图,以A 为位似中心,将△ADE 放大2倍后,得位似形△ABC ,若S 1表示△ADE的面积,S 2表示四边形DBCE 的面积,则S 1∶S 2=.20.直角三角形的两条直角边的长分别为a 和b ,则它的斜边上的高与斜边比为21.如图,直角坐标系中,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA /B /C /与矩形OABC 关于点O 位似,且矩形OA /B /C /的面积等于矩形OABC 面积的,那么点B /的坐标是.22.△ABC ≌Rt △ADE ,∠A =90°,BC 和DE 交于点P ,若AC =6,AB =8, 则点P 到AB 边的距离是. 三、解答题:(本大题共56分)23.(6分)如图,点C 、D 在线段AB 上,△PCD 是等边三角形. ⑴当AC 、CD 、DB 满足怎样的关系式时,△ACP ∽△PDB ? ⑵当△ACP ∽△PDB 时,求∠APB 的度数.24.(10分)如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M. ⑴求证:△EDM ∽△FBM ; ⑵若DB =9,求BM.第26题图B25.(10分)已知△ABC 的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm和60cm 的细木条各一根,做一个三角形木架与△ABC 相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,求另外两边的长度(单位:cm )26.(10分)如图,在△ABC 中,∠ACB =90°,以BC 上一点O 为圆心,OB 为半径的圆交AB 于点M ,交取于点N , ⑴求证:BA ·BM =BC ·BN ;⑵如果CM 是⊙O 的切线,N 是OC 的中点,当AC =3时,求AB 的值.第27题图F E D C BAC27.(10分)如图,已知△ABC ,延长BC 到D ,使CD =BC ,取AB 的中点F ,连结FD 交AC于点E. ⑴求AE ∶AC 的值;⑵若AB =a ,FB =EC ,求AC 的长.28.(10分)如图,在△ABC 中,AB =10cm ,BC =20cm ,点P 从点A 开始沿AB 边向B点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果点P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似.F第22题图PE DC B A第23题图DC BA P D C第11题图第12题图F EDCBA参考答案:一、 选择题:1.C ;2.B ;3.B ;4.C ;5.A ;6.A ;7.C ;8.C ;9.C ;10.C ;11.D ;12.A ; 二、填空题:13. 1∶;14. 6;15. 25;16.;17. 4cm ;18. 2.4;19. 1∶3;20.;21.(3,2)或(-3,-2);22.;11.解:把图形向右平移1个单位长度,则点C 的坐标 与原点O 重合,与B /的对应点B //的横坐标变为a +1,此时△ABC 以原点O 为位似中心的位似图形是△A //B //C ,则与点B //对应的点的横坐标为-(a +1) 一个单位,则得到B 的横坐标为-(a +1.选择D.12.解:特别的,当BE =0和4时,FC =0.当0<BE <4时,易证: Rt △ABE ∽Rt △ECF ∴= ∴=∴y =x 2+x ∴y 是x 的函数.当x =2时,y 有最大值,最大值是1. 选择A. 22题:解:作PF ⊥AB 于点F设PF =x ,由题意:BE =CD =2, ∴Rt △EFP ∽Rt △EAD. ∴=∴EF =x∴Rt △BFP ∽Rt △BAC ∴=∴=∴x =三、解答题:23.解:⑴∵△PCD 是等边三角形∴∠PCD =∠PDC =60°PC =PD =CD ∴∠PCA =∠PDB =120° ∴当AC 、CD 、DB 满足 CD 2=AC ·BD即 = 时,△ACP ∽△PDB⑵当△ACP ∽△PDB 时由∠A =∠BPD ,∠B =∠APC∴∠PCD =∠A +∠APC =60°=∠A +∠B ∠PDC =∠B +∠BPD =60°∴∠APB =60°+∠APC +∠BPD =60°+60°-∠A +∠60°-∠B =180°-(∠A +∠B )=180°-60°=120° 24.解:⑴∵AB =2CD AE =BEB G第27题图F E D C B APA ∴CD =BE又∵AB ∥CD ∴CD ∥BE 且CD =BE ∴四边形EBCD 是平行四边形 ∴DE ∥BC∴△EDM ∽△FBM ⑵∵△EDM ∽△FBMFB =BC =DE ∴==∴=∴= ∴BM =3.25.解:⑴如果将长度为60cm 木条作为其中一边,把30cm 木条截成两段,其三角形不存在;⑵如果将长度为30cm 的木条作为其中一边,把60cm 的木条截成两边,则:①将30cm 的木条作最长边,于是有 == 三边成比例.此时三角形木架与△ABC 相似;②将30cm 的木条作为第二长的边,于是有 == 三边成比例,此时三角形木架与△ABC 相似;③将30cm 的木条作为最短边,则三边对应不成比例; 因此,另外两边的长度分别为10cm 、25cm 或12cm 、36cm.26.解:⑴证明:连NM∵NB 是⊙O 的直径 ∴NM ⊥BM 在△ACB 和△NMB 中∠ACB =∠NMB =90°∠ABC =∠NBM ∴△ACB ∽△NMB∴= 即 BA ·BM =BC ·BN ⑵连OM ∵CM 是⊙O 的切线 ∴CM ⊥OM ∴△CMO 是直角三角形 ∵CN =ON ∴MN =OC =ON ∵ON =OM ∴△OMN 是等边三角形 ∴∠MON =60°∵OM =OB ∴∠B =30°∴在Rt △ACB 中,AB =6. 27.解:⑴证明:过点C 作CG ∥AB 交DF 于G则 △EAF ∽△ECG △DCG ∽△DBF ∴==又∵AF =BF ∴= ∵BC =CD ∴= ∴= 即=⑵∵AB =a ,BF =AB =a ,又∵FB =EC ,∴EC =a ∵= ,∴AC =3EC =a.28.解:设经过t s 时,△PBQ ∽△ABC ,则 AP =2t ,BQ =4t ,BP =10-2t⑴ 如图①第28题图②QPCBA 当△PBQ ∽△ABC 时,有 =即 =∴t =2.5⑵ 如图②当△QBP ∽△ABC 时,有= 即 = ∴t =1综合以上可知:经过2.5秒或1秒时, △QBP 和△ABC 相似.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版九年级数学第27章相似综合训练一、选择题1. 如图,在平面直角坐标系中,以原点O为中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)2. (2019•雅安)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是A.B.C.D.3. (2020·营口)如图,在△ABC中,DE∥AB,且CDBD=32,则CECA的值为()AEA.35B.23C.45D.324. (2020·重庆A卷)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A (1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.5B.2C.4D.255. (2019•沈阳)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是A.3∶5 B.9∶25C.5∶3 D.25∶96. (2019•巴中)如图ABCD,F为BC中点,延长AD至E,使13DE AD=∶∶,连接EF交DC于点G,则:DEG CFGS S△△=A.2∶3 B.3∶2C.9∶4 D.4∶97. (2020·铜仁)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3 B.2 C.4 D.58. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则ABCDEFGHSS正方形正方形的值是()A.12+B.22+C.52-D.154二、填空题9. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF的顶点都在网格线的交点上,设△ABC的周长为C1,△DEF的周长为C2,则12CC的值等于▲ .ABCD EF10. (2020·绥化)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是______.11.(2020·临沂)如图,在ABC∆中,D,E为边AB的三等分点,////EF DG AC,H为AF与DG的交点.若6AC=,则DH=_________.12. (2020·郴州)在平面直角坐标系中,将AOB∆以点O为位似中心,32为位似比作位似变换,得到11OBA∆.已知)3,2(A,则点1A的坐标是.13. (2019•台州)如图,直线123l l l∥∥,A,B,C分别为直线1l,2l,3l上的动点,连接AB,BC,AC,线段AC交直线2l于点D.设直线1l,2l之间的距离为m,直线2l,3l之间的距离为n,若90ABC∠=︒,4BD=,且32mn=,则m n+的最大值为__________.14. (2019•烟台)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,ABO △与'A'B'O △是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为__________.三、解答题 15. (2020·苏州)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.16.(2020·攀枝花)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC ∆的重心.求证:3AD GD =.GDECBA17. (2020·通辽)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB•P A,求证:AB⊥CD.PDCBOA18.(2020·泰州)如图,在ABC∆中,90C∠=︒,3AC=,4BC=,P为BC边上的动点(与B、C不重合),//PD AB,交AC于点D,连接AP,设CP x=,ADP∆的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.人教版九年级数学第27章相似综合训练-答案一、选择题1. 【答案】C 解析:根据以原点O 为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A 的坐标是(1,2),则点A ′的坐标是(-2,-4).2. 【答案】B【解析】因为111A B C △中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .3. 【答案】A【解析】利用平行截割定理求CECA的值.∵DE ∥AB ,∴CE AE =CD BD =32,∵CE+AE=AC ,∴CE CA =35.4. 【答案】D【解析】∵A (1,2),B (1,1),C (3,1),∴AB=1,BC=2,AC=5.∵△DEF 与△ABC 成位似图形,且相似比为2,∴DF=2AB=2.5. 【答案】C【解析】∵△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,AD =10,A'D'=6,∴△ABC 与△A'B'C'的周长比=AD ∶A ′D ′=10∶6=5∶3.故选C .6. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =, ∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BC x ==, ∵AD BC ∥,∴DEG CFG △∽△, ∴224()()392DEG CFG S DE x S CF x ===△△,故选D .7. 【答案】A 【解析】相似三角形的周长之比等于相似比,所以△FHB 和△EAD的相似比为30∶15=2∶1,所以FH ∶EA=2∶1,即6∶EA=2∶1,解得EA=3.因此本题选A .8. 【答案】C【解析】∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O 为EG ,BD 的交点,∴EG =2x ,FG 2=x .∵四个全等的直角三角形拼成“赵爽弦图”,∴BF =CG =x ,∴BG =x 2+x ,∴BC2=BG2+CG2()2222(21)422x x x =++=+,∴()22422222ABCD EFGHx S S x +==+正方形正方形D .二、填空题9. 【答案】2 【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:2,所以周长比为1:2.故答案为:2.10. 【答案】(-4,-8)或(4,8)【解析】∵△ABC 和△A1B1C1的相似比等于12,∴△A1B1C1和△ABC 的相似比等于2.因此将点A(2,4)的横、纵坐标乘以±2即得点A1的坐标,∴点A1的坐标是(-4,-8)或(4,8).11. 【答案】1【解析】 ∵D 、E 为边AB 的三等分点, ∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.12. 【答案】(,2) 【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).13. 【答案】253【解析】如图,过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =, ∵4BD =,∴4DM y =-,4DN x =-,∵90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒, ∴90EAB ABE ABE CBF ∠+∠=∠+∠=︒, ∴EAB CBF ∠=∠,∴ABE BFC △∽△, ∴AE BEBF CF=,即x m n y =,∴xy mn =,∵ADN CDM ∠=∠,∴CMD AND △△, ∴AN DNCM DM=,即4243m x n y -==-, ∴3102y x =-+,∵23m n =,∴32n m =, ∴5()2m n m +=最大, ∴当m 最大时,5()2m n m +=最大, ∵22333(10)10222mn xy x x x x m ==-+=-+=,∴当1010332()2x =-=⨯-时,250332mn m ==最大, ∴103m =最大, ∴m n +的最大值为51025233⨯=.故答案为:253.14. 【答案】(32)-,【解析】如图,连接B'B 并延长,A'A 并延长,B'B 与A'A 的交点即为位似中心P点,由图可知B'、B 、P 在一条直线上,则P 点横坐标为–3, 由图可得ABO △和'A'B'O △的位似比为3162''OB O B ==,2BB '=, 所以12PB PB PB'PB BB'==+,解得PB =2, 所以P 点纵坐标为2,即P 点坐标为(32)-,.故答案为:(32)-,.三、解答题15. 【答案】解: 证明:(1)∵四边形ABCD 是矩形,∴90B ∠=︒,AD BC .∴AEB DAF ∠=∠,∵DF AE ⊥,∴90DFA ∠=︒.∴B DFA ∠=∠,∴ABE DFA ∆∆∽.解:(2)∵ABE DFA ∆∆∽,∴AB AEDF AD =. ∵4BC =,E 是BC 的中点,∴114222BE BC ==⨯=.∴在Rt ABE ∆中,222262210AE AB BE =+=+=.又∵4AD BC ==,∴6104DF=,∴105DF =.16. 【答案】证明:连接DE ,∵点G 是△ABC 的重心,∴点E 和点D 分别是AB 和BC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥AC 且DE=12AC ,∴△DEG ∽△ACG , ∴2AG AC DG ED ==, ∴2AG GD =∴AD=3DG , 即AD=3GD .17. 【答案】解:如图,连结AC ,BD .∵∠A =∠D ,∠C =∠B ,∴△ACP ∽△DBP ,∴AP DP =CPBP,∴PC •PD =PB •P A ,∵PC 2=PB •P A ,∴PC =PD ,即AB 平分CD ,∵CD 是弦(不是直径),AB 是直径,∴AB ⊥CD .BA18. 【答案】解: (1)∵DP ∥AB ∴△DCP ∽△ACB ∴CD CP AC CB =∴34CD x =∴34CD x =∴AD =3-34x(2)∵△DCP ∽△ACB,且相似比为x :4. ∴S △DCP :S △ACB =x 2:16∴S △ABC =13462⨯⨯=∴S △DCP =238x∴S △APB =13(4)22PB AC x ⨯⨯=-∴S =S △ABC -S △ABP -S △CDP22336(6)283382x x x x=---=-+当2x ≥ 时,S 随x 增大而减少.一天,毕达哥拉斯应邀到朋友家做客。
第二十七章 相似 测试题基础知识(满分100分,时间90分钟)一、精心选一选(每小题3分,共24分)1.如图有三个三角形,其中相似的是( )A .(1)和(2)B .(2)和(4)C .(1)和(3)D .三个都相似 2.下列说法:①所有的等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为600的两个直角三角形相似.其中正确的说法是( )A .①②④B .①③C .②④D .②③④ 3.如图,D 、E 分别是AB 、AC 上的一点,在下列条件中:①∠ADE=∠B ;②ABAEAC AD =;③ACADBC DE =.能判断△ADE 与△ACB相似的为()A .①②B .①③C .①②③D .①4.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=5m ,点P 到CD 的距离为3m ,则点P 到AB 的距离是( )A .65m B .76m C .310 m D .56m 5.如图,慢慢将电线杆竖起,如果所用力F 的方向始终竖直向上,在电线杆竖起过程中所用力的大小将( )A .变大B .变小C .不变D .无法确定6.如图,平行四边形ABCD 中,E 是AB 延长线上一点,连结DE ,交AC 于点G ,交BC 于点F ,那么图中相似三角形(不含全等形)共有( )对A .6B .5C .4D .3(1)(2) (3)(第1题图)(第3题图)(第4题图)(第5题图)7.如图,1A 、2A 、1B 、2B 、1C 、2C 分别是△ABC 的边BC 、CA 、AB 的三等分点,若△ABC 的周长为L ,则六边形1A 2A 1B 2B 1C 2C 的周长为( )A .L 31B .L 32C .L 2D .L358.如图,每个正方形均由边长为1的小正方形组成,则下列图中的三角形(阴影部分)与△ABC 相似的是( )二、细心填一填(每小题3分,共24分)9.已知△ABC ∽△DEF ,且△ABC 的三边长分别为2、14、2,△DEF 的边长为1、7,则第三边长为 .10.如图,△ADB ∽△ABC ,∠D=450,∠A=750,则∠CBD= .11.铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0.5米时,长臂的端点应升高 .12.若梯形ABCD 的两底之比为AD:BC=1:2,对角线AC 、BD 交于点O ,且△AOD 的面积为2cm 2,则△ABC 的面积为 .13.若△ABC ∽△111C B A ,相似比为32,△111C B A ∽222C B A ∆相似比为45,则△ABC ∽222C B A ∆,相似比为 .(第6题图)(第7题图)(第8题图)ABCD(第10题图)(第11题图)(第12题图)14.在梯形ABCD中,AB∥CD,AB=60,CD=15,E、F分别是AD、BC上一点,且EF∥AB,若梯形DEFC∽梯形EABF,那么EF=.15.某同学要测量校园内一根旗杆的高度,他测得1m长的竹杆竖直放置时影长为1.5m.在同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面的影长为21m,留在墙上的影高为2m,旗杆的高度为.16.如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与△ABC相似,则AE的长为.三、用心想一想(本大题共52分)17.(8分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为”格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(—1,—1) .(1)把△ABC向左平移8格后得到△111CBA,画出△111CBA的图形并写出点1B的坐标;(2)把△ABC绕点C按顺时针方向旋转900后得到CBA22∆,画出CBA22∆的图形并写出点2B的坐标;(3)把△ABC以点A为位似中心放大,使放大后对应边的比为1:2,画出33CAB∆的图形.18.(8分)如图,用三个全等的菱形ABGH,BCFG,CDEF拼成平行四边形ADEH,连接AE与BG,CF分别交于P、Q,AB=6,求线段BP的长?19.(12分)如图,∠BAC的平分线AE交BC于点D,交△ABC的外接圆于点E.求证:BE2=ED·EA20.(12分)如图,△ABC是一块锐交三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,要使正方形的一边在BC上,其余两个顶点分别在AB、AC上,(第16题图)(第17题图)这个正方形的边长是多少?21.(12分)汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F 碰头,设计墙角F 到楼梯的竖直距离FG 为1.75m .他量得客厅高AB=2.8m ,楼梯洞口宽AF=2m ,阁楼阳台宽EF=3m .请你帮助汪老师解决下列问题:(1)要使墙角F 到楼梯的竖直距离FG 为1.75m ,楼梯底端C 到墙角D 的距离CD 是多少米?(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶要小于20cm ,每个台阶宽要大于20cm ,问汪老师应该将楼梯建几个台阶?为什么?能力提高(满分20分,时间20分钟)22.(4分)已知E 、F 、G 、H 是四边形ABCD 各边的中点,若四边形ABCD 的面积为12,则四边形EFGH 的面积为( )A .9B .6C .4D .323. (4分)如图,在5×的方格中,作格点△ABC 与△OAB 相似(相似比不为1),则点C 的坐标为 .24. (12分)如图,AB ∥CD ,AD 、BC 相交于点E ,过E 作BF ∥AB 交BD 于F ,试证:EFCD AB 111=+.第21期第3版《章节同步测试题》参考答案基础知识(第18题图)(第21题图)(第22题图)(第23题图)(第24题图)一、精心选一选 1~8 ACADC BBA 二、细心填一填9.2;10.150;11.8m ;12.12 cm 2;13.5:6;14.30;15.16m ;16.9或16.三、用心想一想17.解:(1)△111C B A 见下图,1B 的坐标为(―9,―1); (2)C B A 22∆见下图,2B 的坐标为(5,5); (3)33C AB ∆见下图.18.解:∵用三个全等的菱形ABGH ,BCFG ,CDEF 拼成平行四边形ADEH ,∴BC=CD=DE=AB=6,∴AD=3AB=18.∵BP ∥DE ,∴△ABP ∽△ADE ,∴ADABDE BP =,∴BP=DE AD AB •=186×6=2. 19.证明:∵∠1=∠2;∠2=∠3,∴∠1=∠3;又∵∠E=∠E ,∴△ABE ∽△BDE ,∴DEBEBE AE =,∴BE 2=ED ·EA . 20.解:设这个正方形的边长为EF=EG=KD=xmm ,则AK=AD -KD=80—x ,∵EF ∥BC ,∴△AEF ∽△ABC ,∴BC EF AD AK =即1208080xx =—,解之得x=48.所以这个正方形的边长为48mm .21.解:(1)根据题意,有AF ∥BC ,∴∠ACB=∠GAF .又∠ABC=∠AFG=900,∴△ABC ∽△GFA .∴FGAB AF BC =得BC=3.2(m ),CD=(2+3)-3.2=1.8(m ). (2)设楼梯应建n 个台阶,则⎩⎨⎧<>2.32.08.22.0n n 解得14<n <16.楼梯应建15个台阶.(第17题图)(第19题图)能力提高22.B .23.(3,2)或(4,0).24.解:∵AB ∥EF , ∴△DEF ∽△DAB , ∴BDDFAB EF =. ∵EF ∥CD ,∴△BEF ∽△BCD , ∴BDBFCB EF =. ∵1=+=+=+BD BF DF BD BF BD DF CD EF AB EF . ∴1=+CDEF AB EF . 两边同除以EF ,得EFCD AB 111=+.第21期第3版 实战达标章节同步测试题基础知识一、精心选一选 1~8 ACADC BBA提示:1.本题所有的三角形均可把第三个未知角计算出来,若是有两个角相等,则该两个三角形便相似.依此可知选A .2.本提着重考查对相似三角形判定方法的掌握程度.任意的两个等腰三角形的对应角不一定相等,因此①不正确;有一个底角相等的两个等腰三角形,则另一个底角也对应相等,满足有两个角相等判定相似的方法,可知两三角形相似,②正确;有一个角相等的等腰三角形,因不知道是顶角相等还是底角相等,所以无法确定是否相似,③不正确;有一个角为600的两个直角三角形,满足一个角是600,另一角是直角,因此该两个三角形相似,④正确.故本题应选C .3.要使此两个三角形相似,可根据相似三角形的识别方法寻找一个条件即可.①∠ADE=∠B ,和已有条件∠A=∠A ,可以得到△ADE 与△ABC 相似;②ABAEAC AD =,和已有条件∠A=∠A ,满足两边对应成比例且夹角相等,两三角形相似的判定方法,故②也可推出两三角形相似.③不能推出两三角形相似,故选A .4.设P 到AB 的距离为xm ,∵AB ∥CD ,∴△PAB ∽△PCD ,∴的距离到的距离到CD P AB P CD AB =,即352x =,解得x=56.故选D .5.根据杠杆原理:动力×动力臂=阻力×阻力臂,则有:F ×OA=G ×OB ,∵OA=2OB ,∴F=21G ,又电线杆的重量G 不变,所以动力F 的大小在竖起过程中也不变. 6.本题图中共有5对相似三角形:△BFE ∽△AED ;△AEG ∽△CDG ;△AGD ∽△CGF ;△EBF ∽△DCF ;△AED ∽△DFC .7.因为2B 、1C 分别是△ABC 的边CA 、AB 的三等分点,所以△A 2B 1C ∽△ABC ,故2B 1C =21A A =BC 31,同理,21C A =21B B =AC 31,2121C C A B ==AB 31;因此六边形212121C C B B A A 的周长=12C B +21A A +21C A +21B B +21A B +21C C =BC 32+AC 32+AB 32=32(BC+AC+AB )=32L . 8.找的三角形要与△ABC 相似,则对应角必须相等.观察图形可知∠ABC=1350,在所有的选项中,只有A 出现了1350的角与之对应相等,故选A . 二、细心填一填9.2;10.150;11.8m ;12.12 cm 2;13.5:6;14.30;15.16m ;16.9或16.提示:9.设第三条边的长为x ,∵△ABC ∽△DEF ,∴12=714=x 2,可以解得x=2. 10.∵△ADB ∽△ABC ,∴∠ABC=∠D=450,又∠A=750,∴∠ABD=1800―750―450=600,故∠CBD=∠ABD -∠ABC=600-450=150.11.根据相似三角形的性质,∵长臂:短臂=16:1,∴长臂的端点升高的高度:短臂的端点下降的高度也应为16:1,已知短臂下降0.5米,则长臂升高16×0.5=8米.12.∵梯形ABCD 的两底之比为AD:BC=1:2,∴△AOD 的的面积:△COB 的面积=1:4,有知△AOD 的面积为2cm 2,∴△COB 的面积为8 cm 2.如图,△AOD 的面积=21OA ·h ;△OCD 的面积=21OC ·h ;∵AD:BC=1:2,∴OA :OC=1:2,故△OCD 的面积=2×△AOD 的面积=4 cm 2.则△ABC 的面积=△OCD 的面积+△COB 的面积=△OAB 的面积+△COB 的面积=4+8=12 cm 2.13.本题中,△111C B A 是联系△ABC 与222C B A ∆的桥梁,所以△111C B A 是解决本题的关键.设△111C B A 的边11B A 的长为x ,∵△ABC ∽△111C B A ,相似比为32,∴11B A 的对应边AB=32,同理得222C B A ∆中11B A 的对应边22B A =54;故△ABC 与222C B A ∆的相似比=AB :22B A =32:54=5:6.(第12题图)14.∵梯形DEFC ∽梯形EABF ,∴ABEFEF CD =,即EF 2=CD ·AB ,∵AB=60,CD=15,∴EF=30.15.如图,过D 作DE ∥BC,交AB 于点E ,则DE=21m .根据太阳光线平行照射原理可得△AED ∽△PQR .所以ED QR AE PQ =,所以215.11=AE .得AE=14.所以AB=AE+2=16(m )即旗杆的高度为16m .16.要使A 、D 、E 三点组成的三角形与△ABC 相似,有两种情况:①当△AED ∽△ABC 时,AC AD AB AE =,又AB=24,AC=18,AD=12,∴AE=16;②当△ADE ∽△ABC 时,ABAD AC AE =,又AB=24,AC=18,AD=12,∴AE=9. 三、用心想一想17.解:(1)△111C B A 见下图,1B 的坐标为(―9,―1); (2)C B A 22∆见下图,2B 的坐标为(5,5); (3)33C AB ∆见下图.18.解:∵用三个全等的菱形ABGH ,BCFG ,CDEF 拼成平行四边形ADEH ,∴BC=CD=DE=AB=6,∴AD=3AB=18.∵BP ∥DE ,∴△ABP ∽△ADE ,∴ADABDE BP =,∴BP=DE AD AB •=186×6=2. 19.证明:∵∠1=∠2;∠2=∠3,∴∠1=∠3;又∵∠E=∠E ,∴△ABE ∽△BDE ,∴(第14题图)(第15题图)(第17题图)(第19题图)DEBEBE AE =,∴BE 2=ED ·EA . 20.解:设这个正方形的边长为EF=EG=KD=xmm ,则AK=AD -KD=80—x ,∵EF ∥BC ,∴△AEF ∽△ABC ,∴BC EF AD AK =即1208080xx =—,解之得x=48.所以这个正方形的边长为48mm .21.解:(1)根据题意,有AF ∥BC ,∴∠ACB=∠GAF .又∠ABC=∠AFG=900,∴△ABC ∽△GFA .∴FGABAF BC =得BC=3.2(m ),CD=(2+3)-3.2=1.8(m ). (2)设楼梯应建n 个台阶,则⎩⎨⎧<>2.32.08.22.0n n 解得14<n <16.楼梯应建15个台阶.能力提高22.B .解:∵F 、G 是四边形ABCD 边BC 、CD 的中点,∴△CGF 的面积=41△BCD 的面积;同理,△AEH 的面积=41△ABD 的面积;故△CGF 的面积+△AEH 的面积=41△BCD 的面积+41△ABD 的面积=41(△BCD 的面积+△ABD 的面积)=41四边形ABCD 的面积.同理:△DGH 的面积+△BEF 的面积=41四边形ABCD 的面积.所以,△CGF 的面积+△AEH 的面积+△DGH 的面积+△BEF 的面积=41四边形ABCD 的面积+41四边形ABCD 的面积=21四边形ABCD 的面积. 因此,四边形EFGH 的面积=21四边形ABCD 的面积=1221⨯=6.23.(3,2)或(4,0).做题方法见图. 24.解:∵AB ∥EF , ∴△DEF ∽△DAB , ∴BDDFAB EF =. ∵EF ∥CD ,∴△BEF ∽△BCD , ∴BDBFCB EF =. ∵1=+=+=+BD BF DF BD BF BD DF CD EF AB EF . ∴1=+CDEF AB EF . 两边同除以EF ,得EFCD AB 111=+. (第23题图)。