微电子集成电路 第9章 晶体管版图设计
- 格式:ppt
- 大小:3.52 MB
- 文档页数:14
VDMOS功率晶体管的版图设计系专业姓名班级学号指导教师职称指导教师职称设计时间2012.9.15-2013.1.4摘要VDMOS 是微电子技术和电力电子技术融和起来的新一代功率半导体器件。
因具有开关速度快、输入阻抗高、负温度系数、低驱动功率、制造工艺简单等一系列优点,在电力电子领域得到了广泛的应用。
目前,国际上已形成规模化生产,而我国在VDMOS 设计领域则处于起步阶段。
本文首先阐述了VDMOS 器件的基本结构和工作原理,描述和分析了器件设计中各种电性能参数和结构参数之间的关系。
通过理论上的经典公式来确定VDMOS 的外延参数、单胞尺寸和单胞数量、终端等纵向和横向结构参数的理想值。
根据结构参数,利用L-edit版图绘制软件分别完成了能够用于实际生产的60V、100V、500V VDMOS 器件的版图设计。
在此基础之上确定了器件的制作工艺流程,并对工艺流水中出现的问题进行了分析。
最后,总结全文,提出下一步研究工作的方向。
关键词:,功率半导体器件,版图设计,原胞,击穿电压目录第1章绪论电力电子系统是空间电子系统和核电子系统的心脏,功率电子技术是所有电力电子系统的基础。
VDMOSFET 是功率电子系统的重要元器件,它为电子设备提供所需形式的电源以及为电机设备提供驱动。
几乎大部分电子设备和电机设备都需用到功率VDMOS 器件。
VDMOS 器件具有不能被横向导电器件所替代的优良性能,包括高耐压、低导通电阻、大功率和可靠性等。
半导体功率器件是电力电子系统进行能量控制和转换的基本电子元器件,也称为电力电子开关器件。
它是用来进行高效电能形态变换、功率控制与处理,以及实现能量调节的新技术核心器件。
电力电子技术的不断发展为半导体功率器件开拓了广泛的应用领域,而半导体功率器件的可控制特性决定了电力电子系统的效率、体积和重量。
实践证明,半导体功率器件的发展是电力电子系统技术更新的关键。
通常,半导体功率器件是一种三端子器件,通过施加于控制端子上的控制信号,控制另两个端子处于电压阻断(器件截至)或电流导通(器件导通)状态。
集成电路版图设计习题答案第8章 MOS场效应晶体管【习题答案】1.请画出MOS晶体管的结构示意图。
答:2.请简述MOS晶体管各个版图层的作用。
●答:阱层(Well):阱层定义在衬底上制备阱的区域。
NMOS管制备在P型衬底上,PMOS管制备在N型衬底上。
一块原始的半导体材料,掺入的杂质类型只能有一种,即该衬底不是N型就是P型。
如果不对衬底进行加工处理的话,该衬底只能制备一种MOS晶体管。
CMOS集成电路是把NMOS晶体管和PMOS晶体管制备在同一个硅片衬底上,为了能够制造CMOS集成电路,需要对衬底进行处理,利用掺杂工艺在衬底上形成一个区域,该区域的掺杂类型和衬底的掺杂类型相反,这个区域就称为阱。
●有源区层(Active):有源区层的作用是在衬底上定义制作有源区的区域,该区域包括源区、漏区和沟道。
在衬底上淀积厚氧化层,利用光刻和刻蚀工艺在衬底上开窗口并把厚氧化层除去就可形成有源区,有源区之外的区域是场区。
显然,MOS管必须而且只能制备在有源区内。
●多晶硅层(Poly):多晶硅层的作用是定义制作多晶硅材料的区域。
最早的MOS集成电路制造工艺只能制备一层多晶硅,而现在已经有能够制备两层多晶硅的工艺了。
对于双层多晶硅工艺,第一层多晶硅主要用来制作栅极、导线和多晶硅—多晶硅电容的下极板,第二层多晶硅主要用来制作多晶硅电阻和多晶硅-多晶硅电容的上极板。
双层多晶硅工艺具有多晶硅1和多晶硅2这两个版图层。
●P+注入层和N+注入层(P+implant和N+ implant):P+注入层定义注入P+杂质离子的区域,而N+注入层定义注入N+杂质离子的区域。
由于NMOS晶体管和PMOS晶体管的结构相同,只是源漏区的掺杂类型相反。
同时,有源区层只是定义了源区、漏区和沟道的区域,却没有说明源区和漏区的掺杂类型。
P+注入层和N+注入层说明了注入杂质的类型,也就是说明了有源区的导电类型,实现了NMOS晶体管和PMOS晶体管的区分。
第9章集成电路版图设计实例【习题答案】1.版图设计关于数字地和模拟地的考虑事项是什么?答:一般的模拟集成电路中,通常既有数字信号又有模拟信号,数字信号和模拟信号之间容易发生干扰。
在版图设计过程中,还要考虑地噪声对电路的影响。
即在整体版图的设计中,需着重考虑电路噪声问题,按照尽量降低噪声的原则进行电路的整体布局。
首先,在总体版图的布局上,尽量将数字部分远离模拟部分,如果总体电路中模拟部分偏多,则在版图设计中将数字部分放在靠边的位置,而且把模拟部分中最容易被数字干扰的部分放到离数字部分最远的位置,同时在数字部分和模拟部分中间用接地的衬底接触来进行隔离,反之亦然。
其次,采用隔离环设计,对每个单元模块都用一层接地的衬底接触,一层接电源的N阱构成的隔离环来进行隔离。
对于整个模拟部分和数字也分别采用相同的隔离环隔离,数字电路的隔离环可以吸收数字电路的衬底噪声,从而可以减少通过衬底串扰到模拟电路的衬底噪声。
隔离环包的层数越多,理论上吸收衬底噪声效果越好。
但是要避免数字电路的p隔离环紧靠模拟电路的p型隔离环,因为在这种情况下数字地的噪声会串扰到模拟地。
从而使模拟地受到干扰。
最后,除了数字模块之外的其它单元模块尽量将距离缩短,这样一方面能尽量地减少互连线经过别的区域引入噪声,同时也能降低引线过长引起电压信号的衰减。
2.总结自己的版图设计技巧和经验。
3. 共质心MOS管设计时的注意事项是什么?答:低精度要求可采用一维共质心,高精度要求必须采用二维共质心。
共质心设计时需保证MO管的对称性和电流通路的对称性。
4. 静电保护的种类以及版图设计注意事项。
答:常用的二极管式的静电保护分为两种方式,一种是用MOS晶体管连接成二极管形式的静电保护,一种利用CMOS工艺中二极管的静电保护。
在MOS型静电保护版图设计中,主要考虑以下几点:●MOS管要分成多个管,叉指结构,以便形成多支路共同放电。
●因为放电瞬间流经MOS管的电流特别大,构成整个放电通路的任何导线的宽度一定要有足够保证,而且CMOS工艺对于每个接触孔能通过的电流密度还有要求,因此还要保证放电通路导线上孔的数目应尽量多。
VDMOS功率晶体管版图设计VDMOS功率晶体管的版图设计系专业姓名班级学号指导教师职称指导教师职称设计时间2012.9.15-2013.1.4摘要VDMOS 是微电子技术和电力电子技术融和起来的新一代功率半导体器件。
因具有开关速度快、输入阻抗高、负温度系数、低驱动功率、制造工艺简单等一系列优点,在电力电子领域得到了广泛的应用。
目前,国际上已形成规模化生产,而我国在VDMOS 设计领域则处于起步阶段。
本文首先阐述了VDMOS 器件的基本结构和工作原理,描述和分析了器件设计中各种电性能参数和结构参数之间的关系。
通过理论上的经典公式来确定VDMOS 的外延参数、单胞尺寸和单胞数量、终端等纵向和横向结构参数的理想值。
根据结构参数,利用L-edit版图绘制软件分别完成了能够用于实际生产的60V、100V、500V VDMOS 器件的版图设计。
在此基础之上确定了器件的制作工艺流程,并对工艺流水中出现的问题进行了分析。
最后,总结全文,提出下一步研究工作的方向。
关键词:,功率半导体器件,版图设计,原胞,击穿电压目录第1章绪论电力电子系统是空间电子系统和核电子系统的心脏,功率电子技术是所有电力电子系统的基础。
VDMOSFET 是功率电子系统的重要元器件,它为电子设备提供所需形式的电源以及为电机设备提供驱动。
几乎大部分电子设备和电机设备都需用到功率VDMOS 器件。
VDMOS 器件具有不能被横向导电器件所替代的优良性能,包括高耐压、低导通电阻、大功率和可靠性等。
半导体功率器件是电力电子系统进行能量控制和转换的基本电子元器件,也称为电力电子开关器件。
它是用来进行高效电能形态变换、功率控制与处理,以及实现能量调节的新技术核心器件。
电力电子技术的不断发展为半导体功率器件开拓了广泛的应用领域,而半导体功率器件的可控制特性决定了电力电子系统的效率、体积和重量。
实践证明,半导体功率器件的发展是电力电子系统技术更新的关键。
通常,半导体功率器件是一种三端子器件,通过施加于控制端子上的控制信号,控制另两个端子处于电压阻断(器件截至)或电流导通(器件导通)状态。