2004——2012浙江高考数学分类汇编之线性规划
- 格式:doc
- 大小:107.00 KB
- 文档页数:2
专题21 简单线性规划解法理16文16文5目标函数为线性的规划问题解法,数形结合思想 目标函数为线性的规划问题,数形结合思想考点71非线性目标函数的最值问题 考点72线性规划的实际问题 考点69 二元一次不等式(组)平面区域问题1.(2019•新课标Ⅲ,文11)记不等式组⎩⎨⎧≥-≥+026y x y x 表示的平面区域为D .命题:(,)p x y D ∃∈,92≥+y x ;命题:(,)q x y D ∀∈,122≤+y x .下面给出了四个命题 ①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A【解析】作出不等式组⎩⎨⎧≥-≥+026y x y x 表示的平面区域为D .在图形可知,命题:(,)p x y D ∃∈,92≥+y x 是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,122≤+y x .是假命题,则q ⌝真命题,所以①p q ∨真;②p q⌝∨假;③p q ∧⌝真;④p q ⌝∧⌝假,故选A .2.(2014新课标Ⅰ,理9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P 【答案】C【解析】作出可行域如图中阴影部分所示,作出直线0l :20x y +=,平移0l ,由图可知,当直线:2x y z +=过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C .3.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D【解析】若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .4.(2014安徽)不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.【答案】4【解析】如图阴影部分,可知12(22)42ABC S ∆=⨯⨯+=考点70 线性目标函数的最值问题1.(2020浙江3)若实数,x y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是( )A .(],4-∞B .[)4,+∞C .[)5,+∞D .(),-∞+∞【答案】B 【解析】画出可行域如图中阴影部分所示,作出直线20x y +=,平移该直线,易知当直线经过点()2,1A 时,z 取得最小值,min 2214z =+⨯=,再数形结合可得2z x y =+的取值范围是[)4,+∞.2.(2017•新课标Ⅱ文5)设,x y 满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+0303320332y y x y x ,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【答案】A【解析】作出可行域如图所示,2z x y =+ 经过可行域的A 时,目标函数取得最小值, 由32330y x y =-⎧⎨-+=⎩解得(6,3)A --,则2z x y =+ 的最小值是15-,故选A .3.(2017•新课标Ⅰ,文7)设x ,y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z xy =+的最大值为( )A .0B .1C .2D .3【答案】D【解析】作出可行域如图所示,则z x y =+经过可行域的A 时,目标函数取得最大值,由033y x y =⎧⎨+=⎩解得(3,0)A ,所以z x y =+ 的最大值为3,故选D .4.(2017•新课标Ⅲ,文5)设x ,y 满足约束条件326000x y x y +-⎧⎪⎨⎪⎩则z x y =-的取值范围是( )A .[3-,0]B .[3-,2]C .[0,2]D .[0,3]【答案】B【解析】作出可行域如图中阴影部分所示,目标函数z x y =-,经过可行域的A ,B 时,目标函数取得最值,由03260x x y =⎧⎨+-=⎩解得(0,3)A ,由03260y x y =⎧⎨+-=⎩解得(2,0)B ,目标函数的最大值为:2,最小值为:3-,目标函数的取值范围:[3-,2],故选B .5.(2013新课标Ⅱ,文3)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5-(D )3- 【答案】B【解析】由题画出如图所示的可行域,由图可知当直线23z x y =-经过点(3,4)B 时,min 23346z =⨯-⨯=-,故选B .6.(2014新课标Ⅱ,理9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A . 10B . 8C . 3D . 2 【答案】B【解析】作出可行域如图阴影部分,做出目标函数0l :2y x =,∵2y x z =-,∴当2y x z =-在y 轴上的截距最小时,z 有最大值,∴当2y x z =-经过C 点时,z 有最大值.由31070x y x y -+=⎧⎨+-=⎩得:(5,2)C 此时:z 有最大值2528⨯-=,故选B .7.(2014新课标Ⅱ,文9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为A .8B .7C .2D .1 【答案】B【解析】画出可行域如图阴影部分所示, 将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122zy x =-+的纵截距最大,作出直线0:20l x y +=,平移0l ,当直线l :2z x y =+A 点时,z 取到最大值.由10330x y x y --=⎧⎨-+=⎩解得(3,2)A ,所以max z 3227=+⨯=,故选B .8.(2012•新课标,文5)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 (A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) 【答案】A【解析】有题设知2),作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l z x y =-+过B 点时,max z=2,过C 时,min z =1-z x y =-+取值范围为(1-3,2),故选A .9.(2018天津)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥ 则目标函数35z x y =+的最大值为A . 6B .19C .21D .45 【答案】C【解析】不等式组表示的平面区域如图中阴影部分所示,作出直线35y x =-.平移该直线,当经过点C 时,z 取得最大值,由15x y x y -+=⎧⎨+=⎩,得23x y =⎧⎨=⎩,即(2,3)C ,所以max 325321a =⨯+⨯=,故选C .10.(2017天津)设变量,x y 满足约束条件20,220,0,3,x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩≥≥≤≤则目标函数z x y =+的最大值为A .23 B .1 C .32D .3 【答案】D【解析】目标函数为四边形ABCD 及其内部,其中3(0,1),(0,3),(,3)2A B C -,24(,)33D -,所以直线z x y =+过点B 时取最大值3,选D .11.(2017山东)已知x ,y 满足3035030x yx y x -+⎧⎪++⎨⎪+⎩≤≤≥,则2z x y =+的最大值是A .0B .2C .5D .6【答案】C【解析】不等式组表示的可行域如图阴影部分,当目标函数过(3,4)-时取得最大值,即max 3245z =-+⨯=.选C .12.(2017北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩≤≥≤ 则2x y +的最大值为A .1B .3C .5D .9 【答案】D【解析】不等式组可行域如图阴影部分,目标函数2z x y =+过点(3,3)C 时,取得最大值max 3239z =+⨯=,故选D .13.(2017浙江)若x ,y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y =+的取值范围是A .[0,6]B . [0,4]C .[6,)+∞D .[4,)+∞ 【答案】D【解析】如图阴影为可行域,可知在(2,1)A 时,min 4z =,无最大值.所以2z x y =+的取值范围是[4,)+∞.选D .x14.(2016天津)设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为A .4-B .6C .10D .17【答案】B【解析】如图,已知约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩所表示的平面区域为图中所示的三角形区域ABC(包含边界),其中A(0,2),B(3,0),C(l ,3).根据目标函数的几何意义,可知当直线255zy x =-+过点B(3,0)时,z 取得最小值23506⨯+⨯=.15.(2015福建)若变量,x y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥ 则2z x y =-的最小值等于A .52-B .2-C .32- D .2 【答案】A【解析】画出可行域,如图所示,目标函数变形为,当最小时,直线的纵截距最大,故将直线经过可行域,尽可能向上移到过点时,取到最小值,最小值为x2y x z =-z 2y x z =-2y x =1(1,)2B -z,故选A .16.(2013四川)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b-的值是A .48B .30C .24D .16 【答案】C【解析】作出可行域,如图,则在A 点取得最大值16,在B 点取得最小值8-, 则24a b -=,选C .17.(2012山东)设变量满足约束条件,则目标函数的取值范围是A .B .C .D .【答案】A【解析】作出可行域,直线,将直线平移至点处有最大值,点处有最小值,即,应选A .152(1)22z =⨯--=-y x ,222441x y x y x y +⎧⎪+⎨⎪--⎩y x z -=3⎥⎦⎤⎢⎣⎡-6,23⎥⎦⎤⎢⎣⎡--1,23[]6,1-⎥⎦⎤⎢⎣⎡-23,603=-y x )0,2()3,21(362z -18.(2011广东)已知平面直角坐标系xOy 上的区域D 由不等式0222x y x y⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z =OM ·OA 的最大值为 A .3 B .4 C .32 D .42 【答案】B【解析】画出区域D 如图所示,而z =OM ·OA =2x y +,所以2y x z =-+,令0l :2y x =-,平移直线0l 过点(2,2)时,z 取得最大值,故max 2224z =⨯+=.19.(2020全国I 文13)若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为__________.【答案】1【解析】解法一:作出不等式组表示的平面区域如图中阴影部分所示,作出直线70x y +=并平移,数形结合可知当平移后的直线经过点(10)A ,时,7z x y =+取得最大值,最大值为1. xy Oy=2x=2yx=2解法二:作出不等式组表示的平面区域如图中阴影部分所示,易得(10)A ,,(01)B -,,3(1)2C -,,当直线7z x y =+过点(10)A ,时,1z =;当直线7z x y =+过点(01)B -,时,7z =-;当直线7z x y =+过点3(1)2C -,时,112z =-.所以z 的最大值为1.20.(2020全国3文13)若x y ,满足约束条件0201x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则32z x y =+的最大值为_____.【答案】7【解析】解法一:作出不等式组表示的平面区域如图中阴影部分所示,画出直线320x y +=,平移该直线,由图可知当平移后的直线经过点(12)A ,时,32z x y =+取得最大值,max 31227z =⨯+⨯=.解法二:易知32z x y =+的最大值在可行域的顶点处取得,只需求出可行域的顶点坐标,分别将各顶点坐标代入32z x y =+,即可求得最大值.联立得020x y x y +=⎧⎨-=⎩,,解得00x y =⎧⎨=⎩,,代入32z x y =+中可得0z =;联立得01x y x +=⎧⎨=⎩,,解得11x y =⎧⎨=-⎩,,代入32z x y =+中可得1z =;联立得120x x y =⎧⎨-=⎩,,解得12x y =⎧⎨=⎩,,代入32z x y =+中可得7z =.通过比较可知,z 的最大值为7.21.(2020全国II 文15)若x ,y 满足约束条件1121x y x y x y +-⎧⎪--⎨⎪-⎩,,,则2z x y =+的最大值是____.【答案】8【解析】解法一:作出可行域如图中阴影部分所示,作出直线20x y +=并平移,由图知,当平移后的直线经过点(23)A ,时,z 取得最大值,max 2238z =+⨯=.解法二:易知可行域是一个封闭区域,因此目标函数的最值在区域的顶点处取得,由11x y x y +=-⎧⎨-=-⎩,,得10x y =-⎧⎨=⎩,,此时1z =-;由121x y x y +=-⎧⎨-=⎩,,得01x y =⎧⎨=-⎩,,此时2z =-;由121x y x y -=-⎧⎨-=⎩,,得23x y =⎧⎨=⎩,,此时8z=.综上所述,2z x y=+的最大值为8.22.(2020全国III 理13)若x ,y 满足约束条件0201x y x y x +⎧⎪-⎨⎪⎩,,,则32z x y =+的最大值为________.【答案】7【解析】 根据约束条件作出可行域,如图中阴影部分所示.结合图形可知,当直线322zy x =-+过点(12)A ,时, z 取得最大值,且max 31227z =⨯+⨯=.23.(2020全国I 理13)若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为____________.【答案】1【解析】解法一:作出可行域,如图中阴影部分所示,由10220x y x y --=⎧⎨+-=⎩,得10x y =⎧⎨=⎩,,故(10)A ,.作出直线70x y +=,数形结合可知,当直线7z x y =+过点A 时,7z x y =+取得最大值,为1.解法二:作出可行域,如图中阴影部分所示,易得(10)A ,,(01)B -,,312C ⎛⎫- ⎪⎝⎭,,当直线7z x y =+过点A 时,1z =;当直线7z x y =+过点B 时,7z =-;当直线7z x y =+过点C 时,311722z =-=-.所以7z x y =+的最大值为1.24.(2020上海7)已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为 . 【答案】1-【解析】首先画出可行域,和初始目标函数2y x =,当直线2y x =平移至点()1,1A 时,取得最大值,max 1211z =-⨯=-,故答案为:1-.25.(2019•新课标Ⅱ,文13)若变量x ,y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩,则3z x y =-的最大值是 .【答案】9【解析】作出可行域如图中阴影部分所示,化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z=-过A 时,直线在y 轴上的截距最小,由⎩⎨⎧=-+=-+030632yx yx 解得(3,0)A ,所以z 有最大值为9.26.(2018•新课标Ⅰ,理13(文14))若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为 .【答案】6【解析】作出可行域如图中阴影部分所示,由32z x y =+得3122y x z =-+,平移直线3122y x z =-+,由图象知当直线3122y x z =-+经过点(2,0)A 时,直线的截距最大,此时z 最大,最大值为326z =⨯=.27.(2018•新课标Ⅱ,理14(文14))若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则z x y =+的最大值为 .【答案】9【解析】作出可行域如图中阴影部分所示,化目标函数z x y =+为y x z=-+,由图可知,当直线y x z=-+过A 时,z 取得最大值,由5230x x y =⎧⎨-+=⎩,解得(5,4)A ,目标函数有最大值,为9z =.28.(2018•新课标Ⅲ,文15)若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,则13z x y =+的最大值是 .【答案】3【解析】作出可行域如图中阴影部分所示,13z x y =+变形为33y x z =-+,作出目标函数对应的直线,由图知,当直线33y x z =-+过A 时,直线的纵截距最小,z 最大,由2240x x y =⎧⎨-+=⎩解得(2,3)A ,所以z 最大值为12333+⨯=.29.(2017•新课标Ⅰ,理14)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】5-【解析】由x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥+≤+01212y x y x y x 作出可行域如图,由图可知,目标函数的最优解为A ,联立2121x y x y +=⎧⎨+=-⎩,解得(1,1)A -,32z x y ∴=-的最小值为31215-⨯-⨯=-.30.(2017•新课标Ⅲ,理13)若x ,y 满足约束条件0200x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则34z x y =-的最小值为 .【答案】1-【解析】由34z x y =-,得344z y x =-,作出不等式对应的可行域(阴影部分),平移直线344zy x =-,由平移可知当直线344z y x =-,经过点(1,1)B 时,直线344zy x =-的截距最大,此时z 取得最小值,将B 的坐标代入34341z x y =-=-=-,即目标函数34z x y =-的最小值为1-.31.(2016•新课标Ⅱ,文14)若x ,y 满足约束条件103030x y x y x -+⎧⎪+-⎨⎪-⎩,则2z x y=-的最小值为 .【答案】5-【解答】作出可行域如图,由310xx y=⎧⎨-+=⎩,解得(3,4)B,由图可知,当直线1122y x z=-过(3,4)B时,直线在y轴上的截距最大,z有最小值为:3245-⨯=-.32.(2016•新课标Ⅲ,理13)若x,y满足约束条件1020220x yx yx y-+⎧⎪-⎨⎪+-⎩,则z x y=+的最大值为.【答案】3 2【解析】不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由20220x yx y-=⎧⎨+-=⎩得1 (1,)2D,所以z x y=+的最大值为13122+=.33.(2016•新课标Ⅲ,文13)设x,y满足约束条件2102101x yx yx-+⎧⎪--⎨⎪⎩,则235z x y=+-的最小值为.【答案】10-【解析】作出可行域如图阴影部分所示,联立210210x y x y -+=⎧⎨--=⎩,解得11x y =-⎧⎨=-⎩,即(1,1)A --,化目标函数235z x y =+-为25333zy x =-++,由图可知,当直线25333z y x =-++过A 时,直线在y 轴上的截距最小,z 有最小值为2(1)3(1)510⨯-+⨯--=-.34.(2015新课标Ⅰ,文15)若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.35.(2016•新课标Ⅲ,理14)若x ,y 满足约束条件1020220x y x y x y -+⎧⎪-⎨⎪+-⎩,则z x y =+的最大值为 .【答案】32【解析】作出可行域如图阴影部分,当直线经过D 点时,z 最大,由20220x y x y -=⎧⎨+-=⎩得1(1,)2D ,所以z x y=+的最大值为13122+=.36.(2015新课标Ⅱ,文14)若x ,y 满足约束条件 ,则z =2x +y 的最大值为 .【答案】837.(2013新课标Ⅰ,文14)设x ,y 满足约束条件1310x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为______.【答案】3【解析】作出可行域如图中阴影部分所示,作出直线l :20x y -=,平移直线l ,由题知当直线l 过A点时2z x y =-取最大值,由3x x y =⎧⎨-=⎩解得A (3,3),∴max z =233⨯-=3.38.(2012课标,理13)设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为 .【答案】[-3,3]【解析】作出可行域如图中阴影部分所示,作出直线0l :2x y -=0,平移直线0l ,有图像知,:l 2z x y =-,过A (1,2)点时min z =-3,过B(3,0)时,max z =3,故2z xy =-的取值范围为[-3,3].50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩39.(2011•新课标,理13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 . 【答案】-6【解析】作出可行域与目标函数,由图知,目标函数过A 点时,2z x y =+取最小值,解239x y x y +=⎧⎨-=⎩得A(4,-5),min 42(5)z =+⨯-=-6.40.(2018北京)若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________. 【答案】3【解析】作出不等式组21y xx y⎧⎨+⎩≤≤,所表示的平面区域如图中阴影部分所示,令2z y x =-,作出直线20y x -=,平移该直线,当直线过点(1,2)A 时,2y x -取得最小值,最小值为2213⨯-=.41.(2018浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则3z x y =+的最小值是__,最大值是__.yxOy=12x y=x+1y=2x A【答案】−2;8【解析】作出可行域如图中阴影部分所示,其中(4,2)B -,(2,2)A .设3z x y =+,将直线:3l z x y =+进行平移,观察直线在y 轴上的截距变化,可得当l 经过点B 时,目标函数z 达到最小值,()4,22z F ∴=-=-最小值,可得当l 经过点A 时,目标函数z 达到最最大值,()2,28z F ==最大值.考点71非线性目标函数的最值问题1.(2016年山东)若变量x ,y 满足则22x y +的最大值是A .4B .9C .10D .12【答案】C【解析】作出不等式组所表示的平面区域如图中阴影部分所示,设(,)P x y 为平面区域内任意一点,则22x y +表示2||OP .显然,当点P 与点A 合时,2||OP ,即22x y +取得最大值,由2239x y x y +=⎧⎨-=⎩,解得31x y =⎧⎨=-⎩,故(3,1)A -.所以22x y +的最大值为223(1)10+-=.故选C .2.(2016浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩,中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB = A . B .4C .D .6 【答案】C2,239,0,x y x yx y=9【解析】作出不等式组所表示的平面区域如图中阴影部分所示,过点,C D 分别作直线20x y +-=的垂线,垂足分别为,A B ,则四边形ABDC 为矩形;又(2,2)C -,(1,1)D -,所以||||AB CD ===C .3.(2014福建)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为 A .5 B .29 C .37D .49 【答案】C【解析】平面区域Ω为如图所示的阴影部分的△ABD ,因圆心(,)C a b ∈Ω,且圆C 与x 轴相切,所以点C 在如图所示的线段MN 上,线段MN 的方程为1y =(-2≤x ≤6),由图形得,当点C 在点(6,1)N 处时,22a b +取得最大值226137+=,故选C .4.(2015新课标Ⅰ,理15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.5. (2016江苏)已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 .【答案】4[,13]5【解析】不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示,因为原点到直线220x y +-=22min 4()5x y +=,又当(,)x y 取点(2,3)时,22x y +取得最大值13,故22x y +的取值范围是4[,13]5.考点72 线性规划的实际问题1.(2015陕西)某企业生产甲、乙两种产品均需用,A B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为A . D .18万元 【答案】D【解析】设该企业每天生产甲、乙两种产品分别为、吨,则利润,由题意可列,x y 34z x y =+32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩其表示如图阴影部分区域,当直线过点时,取得最大值,所以,故选D .2.(2016•新课标Ⅰ,理16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B的利润之和的最大值为元. 【答案】216000【解析】设A 、B 两种产品分别是x 件和y 件,获利为z 元,由题意,得,1.50.51500.39053600x N y Nx y x y x y ∈∈⎧⎪+⎪⎨+⎪⎪+⎩,2100900z x y =+,作出可行域如图中阴影部分所示,由题意可得0.39053600x y x y +=⎧⎨+=⎩,解得:60100x y =⎧⎨=⎩,(60,100)A ,由图知,2100900z x y =+经过A 时,目标函数取得最大值:210060900100216000⨯+⨯=元.考点73 含参数的线性归化问题340x y z +-=(2,3)A z max 324318z =⨯+⨯=1.(2014新课标I ,文11)设,x y ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3 【答案】B【解析】当a >0时,作出可行域如图1中阴影部分所示,作出直线0l :0x ay +=,平移直线0l ,由图知,l :z x ay =+过点A 时,z x ay =+取最小值;当a <0时,作出可行域如图2中阴影部分所示,作出直线0l :0x ay +=,平移直线0l ,由图知,z x ay=+无最小值;由1x y a x y +=⎧⎨-=-⎩解得A (12a -,12a +),故1(1)22a a a -++=7,解得a =-5(舍)或a =3,故选 B .2.(2013新课标Ⅱ,理9)已知a >0,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a= A .14 B .12C .1D .2 【答案】B【解析】作出可行域如图中阴影部分所示,作出直线2z x y =+,由题知当直线2z x y =+过A 点时,z 取最小值1,由211x y x +=⎧⎨=⎩解得A (1,-1),因A (1,-1)在(3)y a x =-上,∴a=12,故选B .3.(2015山东)已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥,若z ax y =+的最大值为4,则a =A .3B .2C .-2D .-3 【答案】B【解析】作出不等式组对应的平面区域如图中阴影部分所示,则(2,0)A ,(1,1)B ,若z ax y =+过A 时取得最大值为4,则24a =,解得2a =,此时,目标函数为2z x y =+,即2y x z =-+,平移直线2y x z =-+,当直线经过(2,0)A 时,截距最大,此时z 最大为4,满足条件, 若z ax y =+过B 时取得最大值为4,则14a +=,解得3a =,此时,目标函数为3z x y =+,即3y x z =-+,平移直线3y x z =-+,当直线经过(2,0)A 时,截距最大,此时z 最大为6,不满足条件,故2a =,故选B .4.(2014安徽)满足约束条件,若取得最大值的最优解不唯一...,则实数的值为( ) A .B .C .2或1D . 【答案】D【解析】解法一 由题中条件画出可行域,y x ,⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ax y z -=a 121-或212或12-或可知三交点(0,2)A ,(2,0)B ,(2,2)C --,则2A z =,2B z a =-,22C z a =-,要使目标函数取得最大值的最优解不唯一,只要A B C z z z =>或A C B z z z =>或B C A z z z =>,解得1a =-或2a =.解法二 目标函数z y ax =-可化为y ax z =+,令0l :y ax =,平移0l ,则当0l AB ∥ 或0l AC ∥时符合题意,故1a =-或2a =.5.(2014北京)若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为A .2B .-2 C.12D .12- 【答案】D【解析】作出线性约束条件20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,的可行域.当0k >时,如图(1)所示,此时可行域为y 轴上方、直线20x y +-=的右上方、直线20kx y -+=的右下方的区域,显然此时z y x =-无最小值.当1k <-时.z y x =-取得最小值2;当1k =-时,z y x =-取得最小值-2,均不符合题意, 当10k -<<时,如图(2)所示,此时可行域为点A (2,0),B (-2k,0),C (0,2)所围成的三角形区域,当直线z y x =-经过点B (-2k,0)时,有最小值, 即2()4k--=-,所以得12k =-.故选D .6.(2012福建)若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为A .1-B .1C .32D .2 【答案】B【解析】由题意,230y x x y =⎧⎨+-=⎩,可求得交点坐标为(1,2)要使直线y =2x 上存在点(x ,y )满足约束条件30230x y x y x m +-⎧⎪--⎨⎪⎩,如图所示,则,可得m ≤1,∴实数m 的最大值为1,故选B .7.(2011湖南)设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A .(1,12+) B .(12+,+∞) C .(1,3 ) D .(3,+∞)【答案】A【解析】1m >,故直线y mx =与直线1x y +=交于1(,)11m m m ++点,目标函数z x my =+对应的直线与直线y mx =垂直,且在1(,)11m m m ++点,取得最大值,其关系如下图所示,即2121m m +<+,解得11m <+又1m >,解得(1,1m ∈+,故选A .m m 23≥-8.(2014浙江)当实数,满足时,恒成立,则实数的取值范围是________.【答案】3[1,]2【解析】由约束条件作可行域如图,由1240x x y =⎧⎨+-=⎩解得3(1,)2C.由10240x y x y --=⎧⎨+-=⎩解得(2,1)B ,在10x y --=中取0y =得(1,0)A ,要使14ax y +恒成立,则103102402140a a a a -⎧⎪⎪+-⎪⎨⎪-⎪+-⎪⎩,解得:312a ,∴实数a 的取值范围是3[1,]2.9.(2014湖南)若变量满足约束条件,且的最小值为-6, x y 240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩14ax y ≤+≤a ,x y 4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩2z x y =+则 .【答案】-2【解析】作出不等式对应的平面区域如图中阴影部分所示,由2z x y =+,得2y x z =-+,平移直线2y x z =-+,由图象可知当直线2y x z =-+经过点A 时,直线2y x z =-+的截距最小,此时z 最小,目标函数为26x y +=-,由26x y y x +=-⎧⎨=⎩,解得22x y =-⎧⎨=-⎩,即(2,2)A --,点A 也在直线y k =上,2k ∴=-.10.(2013浙江)设z kx y =+,其中实数,x y 满足2242240x x y x y ≥⎧⎪-+≥⎨⎪--<⎩,若z 的最大值为12,则实数k =________ .【答案】2【解析】此不等式表示的平面区域如图所示,其中(2,0)C ,(2,3)A ,(4,4)B . 当0k >时,直线:平移到B 点时目标函数取最大值,即4+4=12k , 所以2k =;当0k <时,直线:平移到A 或B 点时目标函数取最大值, 此时2312k +<或4412k +<,所以不满足题意.所以2k =,所以填2.11.(2011湖南)设在约束条件下,目标函数的最大值为4,则的值为 . 【答案】3【解析】不等式组表示的平面区域如图中阴影所示,把目标函数化为155z y x =-+,显然只有155z y x =-+k =0l y kx =-0l y kx =-1,m >1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩5z x y =+m在y 轴上的截距最大时z 值最大,根据图形,目标函数在点A 处取得最大值,由1y mx x y =⎧⎨+=⎩,得1(,)11mA m m ++,代入目标函数,即15411mm m +=++,解得3m =.。
7.3 简单的线性规划挖命题 【考情探究】2. 考查求目标函数的最值,可行域的面积,已知目标函数值求相应的参数值等 (例如2018浙江,12).3. 预计2020年高考试题中,线性规划的考查必不可少,复习时应高度重视.破考点 【考点集训】考点简单的线性规划1.(2018浙江高考模拟卷,4)设实数x,y 满足A.1B._C.3D.—答案 C大值为15,则实数m _________ ;设min{a,b}=则z=min{x+y+2,2x+y}的取值范围是 ___________ 则3x+y 的最大值为( )且目标函数z=3x+y的最2. (2018浙江“七彩阳光”联盟期中,14)设实数x,y满足不等式组答案-1;[4,9]炼技法【方法集训】方法1目标函数最值问题的求解方法1. (2018浙江嵊州高三期末质检,4)若实数x,y满足约束条件- 则z=2x-y的取值范围是()A.[-4,4]B.[-2,4]C.[- 4,+a)D.[- 2,+a)答案D2. (2018浙江新高考调研卷四(金华一中),14)若实数x,y满足- 则(x,y)构成的区域面积是________ ;2x+y的取值范围是_______ .答案2;[1,7]方法2线性规划中参变量问题的求解方法1. (2018浙江名校协作体,4)若不等式组表示的平面区域经过四个象限,则实数入的取值范围是()A.(- a,2)B.[-1,1]C.[-1,2)D.(1,+ a)答案D2. (2018浙江新高考调研卷一(诸暨中学),4)已知不等式组表示的平面区域为D,若D中的任意一点P(x,y)的坐标均不满足不等式x-2y >3,则实数t的取值范围是()A.(- a, -1)B.(- 1,+ a)C.(-1,0)D.(-1,1)答案B过专题【五年高考】A组自主命题•浙江卷题组考点简单的线性规划1. (2017浙江,4,4分)若x,y满足约束条件- 则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+ a)D.[4,+答案 D2. (2016浙江文,4,5分)若平面区域-- 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A. 一B. _C.一D.-答案 B3. (2016浙江,3,5分)在平面上,过点P作直线I的垂线所得的垂足称为点P在直线I上的投影.由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()A.2 —B.4C.3 一D.6答案 C4. (2018浙江,12,6分)若x,y满足约束条件则z=x+3y的最小值是________ ,最大值是________ .答案-2;85. (2015 浙江,14,4 分)若实数x,y 满足x2+y2< 1,则|2x+y-2|+|6-x-3y| 的最小值是 _________ .答案 36. (2014浙江文,12,4分)若实数x,y满足…则x+y的取值范围是 _________ .答案[1,3]B组统一命题、省(区、市)卷题组考点简单的线性规划1. (2018天津文,2,5分)设变量x,y满足约束条件则目标函数z=3x+5y的最大值为()A.6B.19C.21D.45 答案 C2. (2018课标全国I 文,14,5分)若x,y 满足约束条件_ 则z=3x+2y 的最大值为 _________.答案 63. (2018北京理,12,5分)若x,y 满足x+1 < y < 2x,则2y-x 的最小值是 答案 34. (2017课标全国山理,13,5分)若x,y 满足约束条件_ 则z=3x-4y 的最小值为 _______________.答案-15. (2016课标全国I ,16,5分)某高科技企业生产产品 A 和产品B 需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工 时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料 90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 _____________________________________________________ 元. 答案 216 000C 组教师专用题组考点简单的线性规划A.0B.2C.5D.6 答案 C 4.(2017北京文,4,5分)若x,y 满足为()A.1B.3C.5D.91.(2017课标全国I 文,7,5分)设x,y 满足约束条件A.0B.1C.2D.3 答案 D2. (2017天津理,2,5分)设变量x,y 满足约束条件A. -B.1C.-D.3 答案 D3. (2017山东理,4,5分)已知x,y 满足约束条件 则z=x+y 的最大值为( )则目标函数z=x+y 的最大值为( )则z=x+2y 的最大值是( )则x+2y 的最大值答案D5. (2017山东文,3,5分)已知x,y满足约束条件则z=x+2y的最大值是()A.-3B.-1C.1D.3答案 D6. (2016山东,4,5分)若变量x,y满足- 则x2+y2的最大值是()A.4B.9C.10D.12答案 C7. (2015北京,2,5分)若x,y满足则z=x+2y的最大值为()A.0B.1C.-D.2答案D8. (2015广东,6,5分)若变量x,y满足约束条件A.4B._C.6D._答案B9. (2015湖南,4,5分)若变量x,y满足约束条件则z=3x+2y的最小值为()则z=3x-y的最小值为()A.-7B.-1C.1D.2答案A10.(2015山东,6,5 分)已知x,y满足约束条件若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案B11.(2015陕西,10,5分)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案D12.(201 5天津,2,5分)设变量x,y满足约束条件- 贝阳标函数z=x+6y的最大值为()A.3B.4C.18D.40答案C13.(201 5福建,5,5分)若变量x,y满足约束条件- 则z=2x-y的最小值等于()A.- -B.-2C.-_D.2答案A14.(201 4广东,3,5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m_n=()A.5B.C.7D.8答案B15.(2014北京,6,5分)若x,y 满足-且z=y-x的最小值为-4,则k的值为()A.2B.C._D.-_答案D16.(2014安徽,5,5分)x,y满足约束条件--若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.-或-1B.2 或-C.2 或1D.2 或-1答案D17.(2014天津,2,5分)设变量x,y满足约束条件.•- 贝阳标函数z=x+2y的最小值为()A.2B.3C.4D.5答案B18.(2014山东,9,5分)已知x,y满足约束条件--当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2 时,a 2+b的最小值为()A.5B.C. _D.2答案B19. (2018课标全国H 理,14,5分)若x,y 满足约束条件 -则z=x+y 的最大值为答案 920. (2018课标全国山文,15,5分)若变量x,y 满足约束条件 - 则z=x+-y 的最大值是 ________ . 答案 - 27.(2017天津文,16,13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:是 ________ . 答案 321. (2016课标全国山,13,5分)若x,y 满足约束条件答案-22. (2015课标1,15,5分)若x,y 满足约束条件 -答案 323. (2014湖南,14,5分)若变量x,y 满足约束条件答案-224. (2014福建,11,4分)若变量x,y 满足约束条件答案125. (2014大纲全国,14,5分)设x 、y 满足约束条件答案 526. (2014浙江,13,4分)当实数x,y 满足 _ _则z=x+y 的最大值为贝卜的最大值为 _________且z=2x+y 的最小值为-6,贝U k=则z=3x+y 的最小值为 ________则z=x+4y 的最大值为 ________时,1 < ax+y < 4恒成立,则实数a 的取值范围已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播岀的甲、乙两套连续剧的次数.⑴用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;⑵问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解析本小题主要考查用二元线性规划的基础知识和基本方法解决简单实际问题的能力,以及抽象概括能力和运算求解能力.(1)由已知,x,y满足的数学关系式为该二元一次不等式组所表示的平面区域为图1中的阴影部分的整点图1⑵设总收视人次为z万,则目标函数为z=60x+25y.考虑z=60x+25y,将它变形为y=-—x+—,这是斜率为-一,随z变化的一族平行直线•一为直线在y轴上的截距,当一取得最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=60x+25y经过可行域上解方程组得点M的坐标为(6,3).的点M时,截距一最大,即z最大.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多2.(2019届镇海中学期中考试,4)若变量x,y 满足线性约束条件 则z=x+y 的最大值是( ) 方法技巧 解线性规划应用题的步骤:(1)转化一一设元,写岀约束条件和目标函数,从而将实际问题转化为 线性规划问题;(2)求解一一解这个纯数学的线性规划问题;(3)作答一一将数学问题的答案还原为实际问题 的答案. 28.(2014陕西,18,12分)在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2), 点P(x,y)在A ABC 三边围成 的区域(含边界)上. (1)若++=0,求 | |;⑵设=m +n (m,nR),用x,y 表示m-n,并求m-n 的最大值.解析(1)解法一:' + + =0, 又+ + =(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y).解得 x=2,y=2,即 =(2,2),故 | |=2 ". 解法二 :… + + —-.• =0, 则(-)+(- )+( - )=0,=_(+ +)=(2,2),•••||=2 _=m +n,「•(x,y)=(m+2n,2m+n).两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t 过点B(2,3)时,t 取得最大值1,故m-n 的最大值为1.评析 本题考查了向量线性坐标运算,简单的线性规划等知识;考查运算求解,数形结合、转化与化归的思想 意识到利用线性规划求解问题是解题的关键.【三年模拟】—、选择题(每小题4分,共40分)1.(2019届浙江名校协作体高三联考,7)若变量x,y 满足约束条件 -则z=2x-y( )A. 有最小值-3,无最大值B. 有最大值-1,无最小值C. 有最小值-3,最大值-1D. 无最小值,也无最大值 答案 AA.1B._C.2D.3 答案C3. (2018浙江稽阳联谊学校高三联考(4月),4)在平面直角坐标系中,不等式组为Q ,P(x,y)为Q内(含边界)的点,当2x+y的最大值为8时,Q的面积为()A.12 B.8 C.4 D.6答案 D4. (2018浙江新高考调研卷二(镇海中学),5)已知实数x,y满足不等式组_ 12,则实数a=()A, B.1 C._ D._答案 C5. (2018浙江嘉兴教学测试(4月),4)在平面直角坐标系xOy中,M为不等式组域上一动点,则直线0M斜率的最小值为()A.2B.1C.--D.--答案C6. (2018浙江宁波模拟(5月),6)已知实数x,y满足不等式组- 则|x-y|A.0B.2C.4D.8答案C7. (2018浙江台州高三期末质检,7)已知实数x,y满足不等式组- 则(x-1)A.[1,5]B.[ 一,5]C.[5,25]D.[5,26]答案D(m>0)表示的区域若y-3x的最大值为表示的平面区的最大值为()2 2+(y+2)的取值范围是())2.(2019届镇海中学期中考试,4)若变量x,y满足线性约束条件则z=x+y的最大值是()8. (2018浙江温州一模,5)设实数x,y满足条件若z=2x「y-2,则(A.z的最小值为—B.z的最小值为-3C.z的最大值为33D.z的最大值为6答案A二、填空题(单空题4分,多空题6分,共10分)9. (2019届浙江“超级全能生” 9月联考,14)若实数x,y满足- 则一的最大值为_______ ,若方程2x+y+a=0有解,则实数a的取值范围为答案3;- -< a< 010. (2019届浙江温州九校联考,12)已知点P(x,y)在不等式组表示的平面区域D上运动,若区域D表示一个三角形,则a的取值范围是_________ ,若a=2,则z=x-2y的最大值是___________ .答案a<10;- 3。
简单的线性规划-基础知识(1)二元一次不等式表示的平面区域设直线Ax By C 0,若A 0,则直线Ax By C 0左侧的区域为不等式Ax By C 0表示的区域,右侧为不等式Ax By C 0表示的区域;若A 0,则相反;也可从系数 B 的角度去分析,此法可快速确定平面区域虚线练习快速确定下列不等式表示的平面区域:2x 3y 6 0, 2x y 4, x 2, y 4(2)二元一次不等式组表示的平面区域即不等式组内所有不等式所表示平面区域的交集,技巧是逐个取交集二题型总结第一类求线性目标函数的最值此类型为最基本的题型,目标函数为 z ax by 型的,解法a i(1) 图解法;化为y x z ,若b 0,z 与该直线在y 轴上的截距成正比,b 0则b b成反比,从图像上观察直线的截距大小情况即可;(2) 边界点法:目标函数的最值必在可行域的顶点处取得,因此只需求出可行域的顶点, 将其坐标依次带入目标函数中计算,比较大小即可x 4y 3例:画出不等式3x 2y 2令 3x 2y 20,令 x 0, y 1,y 0,2 x3画出直线3x2y 2 0,因为3 0,故直线右侧为不等式 3x 2y 2 0表示的平面注意:若不等式为",则直线画成实线,意为包括直线上的点,否则画0表示的平面区域区域例、设x,y满足约束条件3x 5y 25,求z 5x 2y的最值x 122解:可行域是如图所示中ABC的区域,得A(5,2),B(1,1),C(1, )5作出直线L o:5x+10y=0,再将直线L o平移当L经过点B时,y轴截距最小,即z达到最小值,得z min7当L经过点A时,y轴截距最大,即z达到最大值,得z max29所以最大值是29,最小值是7针对练习x y > 0,1、若x, y满足约束条件x y 3> 0,则z 2x y的最大值为____________________ .0 < x < 3,x y 8,2、若变量x,y满足约束条件2y x 4,且z=5y-x的最大值为a,最小值为b,则x 0,y 0,a-b的值是____________ . (24)3、已知正三角形ABC的顶点A(1,1),B(1,3), 顶点C在第一象限,若点(x,y)在厶ABC内部,则z=-x+y的取值范围是()A(A)(1- 32) (B)(0,2)(C)( .3-1,2) (D)(0,1 +3y 4.若实数x , y满足不等式组2xmy 0,0,且x0,y的最大值为9,则实数m C(A) 2(B) 1(C) (D) 2x5.若x, y满足约束条件x2x 1,目标函数z2ax 2y仅在点(1, 0)处取得最小值,则a的取值范围是om B(A) ( 1, 2 ) (B) (4 , 2 )(C) (4,0] (D) (2,4)6.函数f (x) ln x,2xx1,,D是由x轴和曲线yf (x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z x 2y在D上的最大值为7.已知 Y ABCD 的三个顶点为 A (-1, 2), B (3, 4), C (4, -2),点(x, ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是 B (A )( -14, 16)( B ) (-14 , 20) ( C ) (-12, 18)( D ) (-12, 20)第二类求可行域的面积x a,实数a 的值为 _________x 0一4 3、若不等式组x 3 v 4所表示的平面区域被直线y kx分为面积相等的两部3关键是准确画出可行域,根据其形状来计算面积, 基本方法是利用三角形面积,或切割为三角形x y 20,例不等式组 x y 20,表示的平面区域的面积是x 2(A)4 2(B)4(C)22(D)2解:可行域是 A(0.2),B(2,4),C(2,0)构成的三角形,易得面积为4针对练习x y1 0 1、不等式组 y 1 0表示的平面区域的面积为。
7.3 简单的线性规划挖命题【考情探究】分析解读 1.线性规划是高考命题的热点.2.考查求目标函数的最值,可行域的面积,已知目标函数值求相应的参数值等(例如2018浙江,12).3.预计2020年高考试题中,线性规划的考查必不可少,复习时应高度重视.破考点【考点集训】考点简单的线性规划则3x+y的最大值为( )1.(2018浙江高考模拟卷,4)设实数x,y满足--A.1B.C.3D.2.(2018浙江“七彩阳光”联盟期中,14)设实数x,y满足不等式组---且目标函数z=3x+y的最大值为15,则实数m= ;设min{a,b}=则z=min{x+y+2,2x+y}的取值范围是.答案-1;[4,9]炼技法【方法集训】方法1 目标函数最值问题的求解方法1.(2018浙江嵊州高三期末质检,4)若实数x,y满足约束条件--则z=2x-y的取值范围是( ) A.[-4,4] B.[-2,4]C.[-4,+∞)D.[-2,+∞)答案D2.(2018浙江新高考调研卷四(金华一中),14)若实数x,y满足----则(x,y)构成的区域面积是;2x+y的取值范围是.答案2;[1,7]方法2 线性规划中参变量问题的求解方法1.(2018浙江名校协作体,4)若不等式组--表示的平面区域经过四个象限,则实数λ的取值范围是( )A.(-∞,2)B.[-1,1]C.[-1,2)D.(1,+∞)2.(2018浙江新高考调研卷一(诸暨中学),4)已知不等式组-表示的平面区域为D,若D中的任意一点P(x,y)的坐标均不满足不等式x-2y≥3,则实数t的取值范围是( )A.(-∞,-1)B.(-1,+∞)C.(-1,0)D.(-1,1)答案B过专题【五年高考】A组自主命题·浙江卷题组考点简单的线性规划1.(2017浙江,4,4分)若x,y满足约束条件--则z=x+2y的取值范围是( ) A.[0,6] B.[0,4] C.[6,+∞) D.[4,+∞)答案D2.(2016浙江文,4,5分)若平面区域----夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.B. C. D.答案B3.(2016浙江,3,5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域--中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=( )A.2B.4C.3D.6答案C4.(2018浙江,12,6分)若x,y满足约束条件-则z=x+3y的最小值是,最大值是.答案-2;85.(2015浙江,14,4分)若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是. 答案 36.(2014浙江文,12,4分)若实数x,y满足---则x+y的取值范围是.答案[1,3]B组统一命题、省(区、市)卷题组考点简单的线性规划1.(2018天津文,2,5分)设变量x,y满足约束条件--则目标函数z=3x+5y的最大值为( )A.6B.19C.21D.45 答案C2.(2018课标全国Ⅰ文,14,5分)若x,y满足约束条件---则z=3x+2y的最大值为.答案 63.(2018北京理,12,5分)若x,y满足x+1≤y≤2x,则2y-x的最小值是. 答案 34.(2017课标全国Ⅲ理,13,5分)若x,y满足约束条件--则z=3x-4y的最小值为.答案-15.(2016课标全国Ⅰ,16,5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.答案216 000C组教师专用题组考点简单的线性规划1.(2017课标全国Ⅰ文,7,5分)设x,y满足约束条件-则z=x+y的最大值为( )A.0B.1C.2D.3答案D2.(2017天津理,2,5分)设变量x,y满足约束条件-则目标函数z=x+y的最大值为( )A. B.1 C. D.3 答案D3.(2017山东理,4,5分)已知x,y满足约束条件-则z=x+2y的最大值是( )A.0B.2C.5D.6答案C4.(2017北京文,4,5分)若x,y满足则x+2y的最大值为( )A.1B.3C.5D.9 答案D5.(2017山东文,3,5分)已知x,y满足约束条件-则z=x+2y的最大值是( )A.-3B.-1C.1D.3答案D6.(2016山东,4,5分)若变量x,y满足-则x2+y2的最大值是( )A.4B.9C.10D.12答案C7.(2015北京,2,5分)若x,y满足-则z=x+2y的最大值为( )A.0B.1C.D.2答案D8.(2015广东,6,5分)若变量x,y满足约束条件则z=3x+2y的最小值为( )A.4B.C.6D.答案B9.(2015湖南,4,5分)若变量x,y满足约束条件--则z=3x-y的最小值为( )A.-7B.-1C.1D.2 答案A10.(2015山东,6,5分)已知x,y满足约束条件-若z=ax+y的最大值为4,则a=( )A.3B.2C.-2D.-3 答案B11.(2015陕西,10,5分)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B.16万元C.17万元D.18万元答案D12.(2015天津,2,5分)设变量x,y满足约束条件--则目标函数z=x+6y的最大值为( )A.3B.4C.18D.40答案C13.(2015福建,5,5分)若变量x,y满足约束条件--则z=2x-y的最小值等于( )A.-B.-2C.-D.2答案A14.(2014广东,3,5分)若变量x,y满足约束条件-,且z=2x+y的最大值和最小值分别为m和n,则m-n=( )A.5B.6C.7D.8答案B15.(2014北京,6,5分)若x,y满足--且z=y-x的最小值为-4,则k的值为( )A.2B.-2C.D.-答案D16.(2014安徽,5,5分)x,y满足约束条件----若z=y-ax取得最大值的最优解不唯一···,则实数a的值为( )A.或-1B.2或C.2或1D.2或-1 答案D17.(2014天津,2,5分)设变量x,y满足约束条件---则目标函数z=x+2y的最小值为( )A.2B.3C.4D.5 答案B18.(2014山东,9,5分)已知x,y满足约束条件----当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为( ) A.5 B.4 C. D.2答案B19.(2018课标全国Ⅱ理,14,5分)若x,y满足约束条件---则z=x+y的最大值为.答案920.(2018课标全国Ⅲ文,15,5分)若变量x,y满足约束条件--则z=x+y的最大值是. 答案 321.(2016课标全国Ⅲ,13,5分)若x,y满足约束条件---则z=x+y的最大值为.答案22.(2015课标Ⅰ,15,5分)若x,y满足约束条件---则的最大值为.答案 323.(2014湖南,14,5分)若变量x,y满足约束条件且z=2x+y的最小值为-6,则k= . 答案-224.(2014福建,11,4分)若变量x,y满足约束条件--则z=3x+y的最小值为.答案 125.(2014大纲全国,14,5分)设x、y满足约束条件--则z=x+4y的最大值为. 答案 526.(2014浙江,13,4分)当实数x,y满足---时,1≤ax+y≤4恒成立,则实数a的取值范围是.答案27.(2017天津文,16,13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解析本小题主要考查用二元线性规划的基础知识和基本方法解决简单实际问题的能力,以及抽象概括能力和运算求解能力.(1)由已知,x,y满足的数学关系式为即-该二元一次不等式组所表示的平面区域为图1中的阴影部分的整点:图1(2)设总收视人次为z万,则目标函数为z=60x+25y.考虑z=60x+25y,将它变形为y=-x+,这是斜率为-,随z变化的一族平行直线.为直线在y轴上的截距,当取得最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=60x+25y经过可行域上的点M时,截距最大,即z最大.图2解方程组得点M的坐标为(6,3).-所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.方法技巧解线性规划应用题的步骤:(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题;(2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.28.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m+n(m,n R),用x,y表示m-n,并求m-n的最大值.解析(1)解法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴--解得x=2,y=2,即=(2,2),故||=2.解法二:∵++=0,则(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)∵=m+n,∴(x,y)=(m+2n,2m+n),∴两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.评析本题考查了向量线性坐标运算,简单的线性规划等知识;考查运算求解,数形结合、转化与化归的思想;意识到利用线性规划求解问题是解题的关键.【三年模拟】一、选择题(每小题4分,共40分)1.(2019届浙江名校协作体高三联考,7)若变量x,y满足约束条件--则z=2x-y( )A.有最小值-3,无最大值B.有最大值-1,无最小值C.有最小值-3,最大值-1D.无最小值,也无最大值答案A2.(2019届镇海中学期中考试,4)若变量x,y满足线性约束条件则z=x+y的最大值是( )A.1B.C.2D.3答案C3.(2018浙江稽阳联谊学校高三联考(4月),4)在平面直角坐标系中,不等式组-(m>0)表示的区域为Ω,P(x,y)为Ω内(含边界)的点,当2x+y的最大值为8时,Ω的面积为( )A.12B.8C.4D.6答案D4.(2018浙江新高考调研卷二(镇海中学),5)已知实数x,y满足不等式组--若y-3x的最大值为12,则实数a=( ) A. B.1 C. D.答案C5.(2018浙江嘉兴教学测试(4月),4)在平面直角坐标系xOy中,M为不等式组----表示的平面区域上一动点,则直线OM斜率的最小值为( ) A.2 B.1 C.- D.-答案C6.(2018浙江宁波模拟(5月),6)已知实数x,y满足不等式组----则|x-y|的最大值为( )A.0B.2C.4D.8答案C7.(2018浙江台州高三期末质检,7)已知实数x,y满足不等式组--则(x-1)2+(y+2)2的取值范围是( ) A.[1,5] B.[,5]C.[5,25]D.[5,26]答案D8.(2018浙江温州一模,5)设实数x,y满足条件----若z=2x2-y-2,则( )A.z的最小值为-B.z的最小值为-3C.z的最大值为33D.z的最大值为6答案A二、填空题(单空题4分,多空题6分,共10分)9.(2019届浙江“超级全能生”9月联考,14)若实数x,y满足--则的最大值为,若方程2x+y+a=0有解,则实数a的取值范围为.答案3;-≤a≤0-10.(2019届浙江温州九校联考,12)已知点P(x,y)在不等式组表示的平面区域D上运动,若区域-D表示一个三角形,则a的取值范围是,若a=2,则z=x-2y的最大值是.答案a<10;-3。
3.3.2 简单的线性规划问题第1课时 线性规划的有关概念及图解法学习目标 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.1.可行域内每一个点都满足约束条件.(√)2.可行解有无限多个,最优解只有一个.(×)3.不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)类型一 最优解问题命题角度1 问题存在唯一最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示,求2x +3y 的最大值.考点 线性目标最优解 题点 求线性目标函数的最值解 设区域内任一点P (x ,y ),z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤(1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围. 考点 线性目标最优解 题点 求线性目标函数的最值解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一组平行直线.-13z 是直线在y 轴上的截距, 当直线截距最大时,z 的值最小, 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大, 即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小, 即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 命题角度2 问题的最优解有多个例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.考点 线性规划中的参数问题 题点 无数个最优解问题解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练2 给出平面可行域(如图阴影部分所示),若使目标函数z =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35C.4D.53考点 线性规划中的参数问题 题点 无数个最优解问题 答案 B解析 由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.类型二 生活中的线性规划问题例3 营养专家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 将已知数据列成下表:考点 实际生活中的线性规划问题 题点 线性规划在实际问题中的应用解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,则⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,如图阴影部分所示,把目标函数z =28x +21y 变形为y =-43x +z21,它表示斜率为-43,且随z 变化的一族平行直线,z21是直线在y 轴上的截距,当截距最小时,z 的值最小.由图可知,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6,得M 点的坐标为⎝⎛⎭⎫17,47. 所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 17 kg ,食物B 47 kg.反思与感悟 (1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb 越小,z 就越大.(2)求解的最优解,和目标函数与边界函数的斜率大小有关.跟踪训练3 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.考点 生活实际中的线性规划问题题点 线性规划在实际问题中的应用 答案 4,1解析 设甲、乙两种货物应各托运的箱数为x ,y ,则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52考点 线性目标最优解 题点 求线性目标函数的最值答案 C解析 画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A.6B.7C.8D.23 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A.-3B.3C.-1D.1 考点 线性规划中的参数问题 题点 无数个最优解问题答案 A解析 -1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C.[-1,6]D.⎣⎡⎦⎤-6,32 考点 线性目标最优解 题点 求目标函数的取值范围 答案 A解析 作出不等式表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6. 5.给出平面区域如图阴影部分所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为________.考点 线性规划中的参数问题 题点 无数个最优解问题 答案 35解析 将z =ax +y 变形,得y =-ax +z .当它与直线AC 重合时,z 取最大值的点有无穷多个. ∵k AC =-35,∴-a =-35,即a =35.1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、选择题1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值为( ) A.-6 B.-2 C.0 D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分(含边界)所示,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.715考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 画出可行域如图阴影部分(含边界)所示,令z =x +y ,则y =-x +z .当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 可行域如图阴影部分(含边界)所示,令z =0,得直线l 0:y -2x =0,平移直线l 0知, 当直线l 0过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0,得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A.3,-11B.-3,-11C.11,-3D.11,3考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 作出可行域如图阴影部分(含边界)所示,由图可知z =3x -4y 经过点A 时,z 有最小值,经过点B 时,z 有最大值.易求得A (3,5),B (5,3).∴z max =3×5-4×3=3,z min =3×3-4×5=-11. 5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2 考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.6.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A.1B.2C.3D.4考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,解得a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.7.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A.3 B.4 C.3 2 D.4 2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分(含边界)所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,当目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.8.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7 D.8 考点 线性目标最优解 题点 求线性目标函数的最值 答案 C解析 作出线段AB ,如图所示,作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值,为2×4-1=7. 二、填空题9.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________.(答案用区间表示) 考点 线性目标最优解 题点 求线性目标函数的最值 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分(含边界)所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值, z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值, z max =2×1+3×2=8. 所以z ∈[3,8].10.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,z =2x -y 的最小值是________.考点 线性目标最优解 题点 求线性目标函数的最值 答案 -7解析 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界.三条直线中x +3y =12与3x +y =12交于点A (3,3), x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.11.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为________元. 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用 答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N ,y ∈N .目标函数为z =200x +300y .作出其可行域(图略),易知当x =4,y =5时,z =200x +300y 有最小值2 300. 三、解答题12.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,求z =x +y 的取值范围.考点 线性目标最优解 题点 求线性目标函数的最值解 作出约束条件表示的可行域,如图所示,z =x +y 表示直线y =-x +z 过可行域时,在y 轴上的截距,当目标函数平移至过可行域内的A 点时,z 有最小值.联立⎩⎪⎨⎪⎧2x +y =4,x -2y =2,解得A (2,0).z min =2,z 无最大值.∴x +y ∈[2,+∞).13.某运输公司接受了向抗洪救灾地区每天送至少180 t 支援物资的任务.该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低? 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用解 设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.由表可知x ,y 满足线性约束条件⎩⎪⎨⎪⎧x +y ≤10,24x +30y ≥180,0≤x ≤8,0≤y ≤4,x ,y ∈N ,且目标函数z =320x +504y .作出可行域,如图阴影部分(含边界)所示.可知当直线z =320x +504y 过A (7.5,0)时,z 最小,但A (7.5,0)不是整点,继续向上平移直线z =320x +504y ,可知点(8,0)是最优解.这时z min =320×8+504×0=2 560(元),即用8辆A 型车,成本费最低.所以公司每天调出A 型卡车8辆时,花费成本最低. 四、探究与拓展14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B. 2C.322 D. 5考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 画出不等式组所表示的平面区域如图(阴影部分)所示,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,得A (1,2), 由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得B (2,1).由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两条直线为满足条件的距离最小的一对直线,即|AB |=(1-2)2+(2-1)2= 2.故选B.15.已知变量x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0.若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.考点 线性规划中的参数问题 题点 线性规划中的参数问题 解 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-12,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >12.。
高考数学线性规划常见题型及解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型及解决方法总结如下:一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 B.1 C.-5 D.-6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线0:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想及运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是 线30x y -=,并向解析:作出不等式组表示的区域,如图阴影部分所示,作直上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得Bmax min 133206,3322z z ∴=⨯-==⨯-=-,33-62z x y ⎡⎤∴=-⎢⎥⎣⎦的取值范围是,探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围三、求约束条件中参数的取值;例题:(2012福建文10)若直线2xy =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为 ( )解析:在同一直角坐标系中函数2xy =的图像及30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
2004——2012年普通高等学校招生全国统一考试
数学(理科)浙江卷——线性规划
选择填空:
(2004)设z =x -y , 式中变量x 和y 满足条件30
20x y x y +-≥⎧⎨-≥⎩, 则z 的最小值为( )
(A)1 (B)-1 (C)3 (D)-3
(2005)7.设集合A ={(x ,y )|x ,y ,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是(
)
(2006)在平面直角坐标系中,不等式组⎪⎩
⎪⎨⎧≤≥+-≥-+2,02,
02x y x y x 表示的平面区域的面积是
(A)21
(B)23
(C)81
(D)89
(2007)设m 为实数,若{}
22250()
30()250x y x y x x y x y m x y ⎧
⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m 的取值范围是 .
(2008)(17)若0,0≥≥b a ,且当⎪⎩
⎪⎨⎧≤+≥≥1,0,
0y x y x 时,恒有1≤+by ax ,则以a ,b
为坐标点P (a ,b )所形成的平面区域的面积等于____________。
(2009)13.若实数,x y 满足不等式组2,
24,
0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则23x y +的最小值是
____________。
.
(2010)(7)若实数x,y满足不等式组
330,
230,
10,
x y
x y
x m y
+-≥
⎧
⎪
--≤
⎨
⎪-+≥
⎩
且x y
+的最大值为9,则实数m=
(A)2
-(B)1
-(C)1 (D)2
(2011)(5)设实数,x y满足不等式组
250
270,
x y
x y
x
+-
⎧
⎪
+-
⎨
⎪
⎩
>
>
≥,y≥0,
若,x y为整数,则34
x y
+的最小值是
(A)14 (B)16 (C)17 (D)19。