不能等
- 格式:doc
- 大小:22.50 KB
- 文档页数:3
一元二次不等式恒成立与能成立问题5大题型不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
一、一元二次不等式在实数集上的恒成立1、不等式对任意实数恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a 2、不等式对任意实数恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a 【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数的值域为,则恒成立⇒,即;恒成立⇒,即.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.2、对任意的,恒成立⇒;若存在,有解⇒;若对任意,无解⇒.【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“x ∃∈R ,使()24110x a x +-+≤”是假命题,则实数a 的取值范围是()A .(,3)-∞-B .()5,3-C .(5,)+∞D .(3,5)-【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式0k x->恒成立,则实数k 的取值范围是_____________.【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式()2216(4)10ax a x ----≥的解集为∅,则实数a 的取值范围为_________.【题型2一元二次不等式在某区间上的恒成立问题】【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式2(13)20ax a x +-+≥的解集为A ,设{1,1}B =-,B A ⊆,则实数a 的取值范围为()A .3124a -≤≤B .1342a -≤≤C .14a -≤D .32a ≥【变式2-2】(2022秋·河南·高三期末)已知0a >,b ∈R ,若0x >时,关于x 的不等式()()2250ax x bx -+-≥恒成立,则4b a+的最小值为()A .2B .25C .43D .32【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数()2f x ax x a =++,不等式()5f x <的解集为3—12⎛⎫⎪⎝⎭,.(1)求a 的值;(2)若()f x mx >在(]0,5x ∈上恒成立,求m 的取值范围.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数()f x 满足()21f =-,()11f -=-,且()f x 的最大值是8.(1)试确定该二次函数的解析式;(2)()2f x x k >+在区间[]3,1-上恒成立,试求k 的取值范围.【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式21634x ax x a -≥--对任意[]2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞C .[]8,6-D .(]0,3【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【变式3-3】(2023·全国·高三专题练习)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数()21f x mx mx =--.(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为()A .(),2-∞B .(]13,0,32∞⎛⎫-⋃ ⎪⎝⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .(),1-∞【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式()()224210ax a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【变式4-2】(2023·全国·高三专题练习)若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____.【变式4-3】(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式2620x x a -+->在区间[]0,5内有解,则实数a 的取值范围是().A .()2,+∞B .(),5-∞C .(),3-∞-D .(),2-∞【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是()A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭,C .)3+∞,D .127⎛⎫+∞ ⎪⎝⎭,【变式5-2】(2022·全国·高三专题练习)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为()A .37a ≥B .13a ≥C .12a ≥D .13a ≤【变式5-3】(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.【变式5-4】(2023·全国·高三专题练习)已知命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题,则实数a 的取值范围是______.【变式5-5】(2022·全国·高三专题练习)设()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()()24f x g x mx +=-.若()()220f x x g x -+≥在()0,x ∈+∞上有解,则实数m 的取值范围是______.(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A .m>2B .0m <C .1m <D .m 1≥2.(2022秋·北京大兴·高三统考期中)若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A .1m <B .1m £C .1m >D .1m ≥3.(2022秋·全国·高三校联考阶段练习)设m ∈R ,则“34m >-”是“不等式210x x m -++≥在R 上恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2022秋·宁夏银川·高三校考期中)已知命题p :R x ∀∈,20x x a -+>,若p ⌝是假命题,则实数a 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .11,42⎛⎫ ⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭5.(2022秋·河南·高三校联考阶段练习)设函数()22f x ax ax =-,命题“[]0,1x ∃∈,()3f x a ≤-+”是假命题,则实数a 的取值范围为()A .(),3-∞B .()3,+∞C .24,7⎛⎫+∞ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭6.(2023·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数()21f x mx mx =--,若对于任意的{|13}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为()A .57m <B .507m ≤<C .0m <或507m <<D .0m ≤8.(2022秋·湖南邵阳·高三统考期中)设函数22()223f x x ax a a =++-+,若对于任意的x R ∈,不等式()()0f f x ≥恒成立,则实数a 的取值范围是()A .32a ≥B .2a ≤C .322a <≤D .32a ≤9.(2022秋·辽宁鞍山·高三校联考期中)设R a ∈,若关于x 的不等式210x ax -+≥在12x ≤≤上有解,则()A .2a ≤B .2a ≥C .52a ≤D .52a ≥10.(2023·全国·高三专题练习)已知命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题,则实数a 的取值范围()A .(],0-∞B .[]0,4C .[4,+∞)D .(],0-∞[)4⋃+∞,11.(2022·全国·高三专题练习)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是()A .{}14a a -≤≤B .{}14a a -<<C .{4a a ≥或}1a ≤-D .{}41a a -≤≤12.(2022·全国·高三专题练习)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为()A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎫-∞-⎪⎝⎭13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x ,使得关于x 的不等式2430ax x a -+-<成立,则实数a 的取值范围是______.14.(2021·全国·高三专题练习)已知函数2,0()20x x x f x x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x 使不等式()24(4)0kx kx ---<成立”是假命题,则实数k 的取值范围是____________.16.(2022秋·江苏连云港·高三校考开学考试)2210,0ax x x -+≥∀>恒成立,则实数a 的取值范围是_________.17.(2021·全国·高三专题练习)若不等式22x mx ->对满足1m ≤的一切实数m 都成立,则x 的取值范围是___________18.(2023·全国·高三专题练习)若不等式22210x t at -+-+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,则实数t 的取值范围是__________.参考答案【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-【答案】A【解析】由不等式210x ax -+>对R x ∀∈恒成立,得Δ0<,即()240a --<,解得22a -<<,从选项可知02a <<是22a -<<的充分不必要条件,故选:A.【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“x ∃∈R ,使()24110x a x +-+≤”是假命题,则实数a 的取值范围是()A .(,3)-∞-B .()5,3-C .(5,)+∞D .(3,5)-【答案】D【解析】因为命题“R x ∃∈,使()24110x a x +-+≤”是假命题,所以,命题“R x ∀∈,()24110x a x +-+>”是真命题,所以,2Δ(1)160a =--<,解得35a -<<,故实数a 的取值范围是(3,5)-.故选:D.【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【答案】1m ≤-或0m >【解析】若命题是真命题:当0m =时,22410mx mx m ++-<,可化为10-<,成立;当0m ≠时,()20Δ16810m m m m <⎧⎨=--<⎩,解得10m -<<综合得当10m -<≤时,关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立是真命题,若命题“关于x 的不等式22410mx mx m ++-<对一切实数x 恒成立”是假命题则1m ≤-或0m >【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式0x kk x->恒成立,则实数k 的取值范围是_____________.【答案】[0,4)0k x->,即0(0)x x k x -+>>,令0t x =>,则20(0)t kt k t -+>>恒成立.所以202000kk k ⎧≤⎪⎨⎪-⨯+≥⎩或()202Δ40k k k ⎧>⎪⎨⎪=--<⎩,解得04k ≤<,故实数k 的取值范围是[0,4).【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式()2216(4)10ax a x ----≥的解集为∅,则实数a 的取值范围为_________.【答案】1245a a ⎧⎫-<≤⎨⎬⎩⎭∣【解析】当4a =时,不等式可化为10-≥,无解,满足题意;当4a =-时,不等式化为810x -≥,解得18x ≥,不符合题意,舍去;当4a ≠±时,要使得不等式()2216(4)10a x a x ----≥的解集为∅,则()()222160,44160,a a a ⎧-<⎪⎨∆=-+-<⎪⎩解得1245a -<<.综上,实数a 的取值范围是1245a a ⎧⎫-<≤⎨⎬⎩⎭∣.【题型2一元二次不等式在某区间上的恒成立问题】【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【答案】2t ≤-【解析】由题设,22b =且32c -=-,可得4,6b c ==,所以22420x x t -+++≤在10x -≤≤上恒成立,而222)4(f x x x t +=-++在(,1)-∞上递增,故只需2(0)0f t +≤=即可,所以2t ≤-.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式2(13)20ax a x +-+≥的解集为A ,设{1,1}B =-,B A ⊆,则实数a 的取值范围为()A .3124a -≤≤B .1342a -≤≤C .14a -≤D .32a ≥【答案】B【解析】由题意,23)(20x a x x ++≥-在{1,1}B =-上恒成立,所以410320a a +≥⎧⎨-≥⎩,可得1342a -≤≤.故选:B【变式2-2】(2022秋·河南·高三期末)已知0a >,b ∈R ,若0x >时,关于x 的不等式()()2250ax x bx -+-≥恒成立,则4b a+的最小值为()A .2B .25C .43D .32【答案】B【解析】设2y ax =-(0x >),25y x bx =+-(0x >),因为0a >,所以当20x a<<时,20y ax =-<;当2x a=时,20y ax =-=;当2x a >时,20y ax =->;由不等式()2(2)50ax x bx -+-≥恒成立,得:22050ax x bx -≤⎧⎨+-≤⎩或22050ax x bx -≥⎧⎨+-≥⎩,即当20x a<≤时,250x bx +-≤恒成立,当2x a≥时,250x bx +-≥恒成立,所以当2x a =时,250y x bx =+-=,则20425b a a +-=,即225a b a =-,则当0a >时,4524555222222a a a b a a a a a+=-+=+≥⨯=当且仅当522a a =,即55a =时等号成立,所以4b a+的最小值为25故选:B.【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数()2f x ax x a =++,不等式()5f x <的解集为3—12⎛⎫⎪⎝⎭,.(1)求a 的值;(2)若()f x mx >在(]0,5x ∈上恒成立,求m 的取值范围.【答案】(1)2a =;(2){|5}m m <.【解析】(1)()25f x ax x a =++<的解集为312⎛⎫-⎪⎝⎭,即250ax x a ++-<的解集为312,⎛⎫-⎪⎝⎭,031123512a a a a >⎧⎪⎪-+=-∴⎨⎪-⎪-⨯=⎩,解得2a =;(2)由(Ⅰ)可得()222f x x x =++,()f x mx > 在(]05x ∈,上恒成立,即()22120x m x +-+>恒成立,令()()2212h x x m x =+-+,则()0h x >在(]05,上恒成立,有()104020m h -⎧≤⎪⎨⎪=>⎩或()2105412240m m -⎧<≤⎪⎨⎪--⨯⨯<⎩或()()154552510m h m -⎧>⎪⎨⎪=+->⎩,解得1m £或15m <<或m ∈∅,综上可得m 的范围为{|5}m m <.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数()f x 满足()21f =-,()11f -=-,且()f x 的最大值是8.(1)试确定该二次函数的解析式;(2)()2f x x k >+在区间[]3,1-上恒成立,试求k 的取值范围.【答案】(1)()2447f x x x =-++;(2)k 的取值范围为(),35∞--.【解析】(1)由(2)(1)f f =-,得21122x -==为二次函数的对称轴,因函数()f x 的最大值为8,所以可设()2182f x a x ⎛⎫=-+ ⎪⎝⎭,又因9(2)814f a =+=-,所以4a =-,因此()2447f x x x =-++.(2)由(1)不等式()2f x x k >+,可化为24472x x x k -++>+,所以2427k x x <-++,因为()2f x x k >+在区间[]3,1-上恒成立,所以2427k x x <-++在区间[]3,1-上恒成立,故()2min 427k x x <-++,其中[]3,1x ∈-,又函数22129427444y x x x ⎛⎫=-++=--+ ⎪⎝⎭,又当3x =-时,35y =-,当1x =时,5y =,所以函数2427y x x =-++在[]3,1-上的最小值为-35,所以35k <-,所以k 的取值范围为(),35∞--.【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式21634x ax x a -≥--对任意[]2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞ C .[]8,6-D .(]0,3【答案】A【解析】由题得不等式2(4)3160x a x x ---+≤对任意[]2,4a ∈-成立,所以22(4)(2)3160(4)43160x x x x x x ⎧----+≤⎨---+≤⎩,即2252400x x x x ⎧--+≤⎨-+≤⎩,解之得3x ≥或8x ≤-.故选:A【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立,令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠,当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】(2023·全国·高三专题练习)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦.【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数()21f x mx mx =--.(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.【答案】(1)6,7⎛⎫-∞ ⎪⎝⎭;(2)()1,2-【解析】(1)若对于[]2,2x ∈-,()5f x m <-+恒成立,即260mx mx m -+-<对于[]2,2x ∈-恒成立,即261m x x <-+对于[]2,2x ∈-恒成立.令()226611324h x x x x ==-+⎛⎫-+⎪⎝⎭,[]2,2x ∈-,则()min 66(2)253744h x h =-==+,故67m <,所以m 的取值范围为6,7⎛⎫-∞ ⎪⎝⎭.(2)对于[]2,2m ∈-,()5f x m <-+恒成立,即215mx mx m --<-+恒成立,故()2160m x x -+-<恒成立,令()()216g m m x x =+--,则()()()()222216022160g x x g x x ⎧-=--+-<⎪⎨=-+-<⎪⎩,解得12x -<<,所以x 的取值范围为()1,2-.【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为()A .(),2-∞B .(]13,0,32∞⎛⎫-⋃ ⎪⎝⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .(),1-∞【答案】C【解析】①当0m =时,不等式化为20x <,解得:0x <,符合题意;②当0m >时,()22y mx m x m =--+为开口方向向上的二次函数,只需()222243440m m m m ∆=--=--+>,即203m <<;③当0m <时,()22y mx m x m =--+为开口方向向下的二次函数,则必存在实数x ,使得()220mx m x m --+<成立;综上所述:实数m 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.故选:C.【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式()()224210ax a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】C【解析】根据题意,分两种情况讨论:①当240a -=时,即2a =±,若2a =时,原不等式为410x -≥,解可得:14x ≥,则不等式的解集为1|4x x ⎧⎫≥⎨⎬⎩⎭,不是空集;若2a =-时,原不等式为10-≥,无解,不符合题意;②当240a -≠时,即2a ≠±,若22(4)(2)10a x a x -++-≥的解集是空集,则有22240Δ(2)4(4)0a a a ⎧-<⎨=++-<⎩,解得625a -<<,则当不等式22(4)(2)10a x a x -++-≥的解集不为空集时,有2a <-或65a ≥且2a ≠,综合可得:实数a 的取值范围为6(,2)[,)5-∞-⋃+∞;故选:C .【变式4-2】(2023·全国·高三专题练习)若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____.【答案】(,1)(4,)-∞+∞ 【解答】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解,则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当a<0时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以a<0,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞ .【变式4-3】(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.【答案】(),1∞-【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当a<0时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <,所以01a <<,综上所述:a 的取值范围是(),1∞-,【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式2620x x a -+->在区间[]0,5内有解,则实数a 的取值范围是().A .()2,+∞B .(),5-∞C .(),3-∞-D .(),2-∞【答案】D【解析】不等式2620x x a -+->在区间[]0,5内有解,仅需2max (62)x x a -+>即可,令2()62f x x x =-+,因为()f x 的对称轴为6321x -=-=⨯,(0)2f =,(5)3f =-,所以由一元二次函数的图像和性质的得2max (62)2x x -+=,所以2a <,故选:D【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是()A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭,C .)3+∞,D .127⎛⎫+∞⎪⎝⎭,【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+,故问题转化为263xm x <+在(]02,上有解,设26()3x g x x =+,则266()33x g x x x x ==++,(]02x ∈,,对于323x x+,当且仅当3(0,2]x =时取等号,则max ()323g x =3m ,故选:A【变式5-2】(2022·全国·高三专题练习)命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为()A .37a ≥B .13a ≥C .12a ≥D .13a ≤【答案】C【解析】 命题:{|19}p x x x ∃∈≤≤,使2360x ax -+≤为真命题,即{|19}x x x ∃∈≤≤,使2360x ax -+≤成立,即36a x x≥+能成立设36()f x x x=+,则3636()212f x x x x x=+≥⋅=,当且仅当36x x=,即6x =时,取等号,即min ()12f x =,12a ∴≥,故a 的取值范围是12a ≥.故选:C .【变式5-3】(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.【答案】(),3∞-【解析】将原不等式参数分离可得231x x a x ++<+,设()231x x f x x ++=+,已知存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则()max a f x <,令1t x =+,则()()22113133t t t f x t t t tt -+-+==+-+=-,[]1,2t ∈,由对勾函数知()f x 在3⎡⎣上单调递减,在3,2⎤⎦上单调递增,()311131f =+-=,()3522122f =+-=,所以()()max 13f x f ==,即3a <.【变式5-4】(2023·全国·高三专题练习)已知命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题,则实数a 的取值范围是______.【答案】()2,-+∞【解析】因为命题“[1,1]x ∃∈-,20030-++>x x a ”为真命题则[1,1]x ∃∈-,23>-a x x 有解,设2()3f x x x =-,则2239324()⎛⎫-=-- ⎝⎭=⎪f x x x x ,当[1,1]x ∈-时,()f x 单调递减,所以2()4f x -≤≤,所以2a >-.【变式5-5】(2022·全国·高三专题练习)设()f x 为奇函数,()g x 为偶函数,对于任意x R ∈均有()()24f x g x mx +=-.若()()220f x x g x -+≥在()0,x ∈+∞上有解,则实数m 的取值范围是______.【答案】4m ≥【解析】由题设,()()22240f x x g x mx x -+=--≥,即240x mx -+≤在()0,x ∈+∞上有解,对于24y x mx =-+,开口向上且对称轴为2mx =,216m ∆=-,0|4x y ==,∴002m ∆≥⎧⎪⎨>⎪⎩,可得4m ≥.(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A .m>2B .0m <C .1m <D .m 1≥【答案】A【解析】∵命题p 为真命题,∴不等式220x x m -+>在R 上恒成立,∴Δ440m =-<,解得1m >,对于A ,m>2⇒1m >,∴m>2是1m >的充分条件,∴m>2是命题p 为真命题的充分条件,选项A 正确;对于B ,0m <¿1m >,∴0m <不是1m >的充分条件,∴0m <不是命题p 为真命题的充分条件,选项B 不正确;对于C ,1m <¿1m >,∴1m <不是1m >的充分条件,∴1m <不是命题p 为真命题的充分条件,选项C 不正确对于D ,m 1≥¿1m >,∴m 1≥不是1m >的充分条件,∴m 1≥不是命题p 为真命题的充分条件,选项D 不正确.故选:A.2.(2022秋·北京大兴·高三统考期中)若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A .1m <B .1m £C .1m >D .1m ≥【答案】B【解析】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.故选:B.3.(2022秋·全国·高三校联考阶段练习)设m ∈R ,则“34m >-”是“不等式210x x m -++≥在R 上恒成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由不等式210x x m -++≥在R 上恒成立,得()()2Δ1410m =--+≤,解得34m ≥-.所以“34m >-”是“不等式210x x m -++≥在R 上恒成立”的充分不必要条件.故选:A4.(2022秋·宁夏银川·高三校考期中)已知命题p :R x ∀∈,20x x a -+>,若p ⌝是假命题,则实数a 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .11,42⎛⎫ ⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】已知命题:R p x ∀∈,20x x a -+>,若p ⌝是假命题,则不等式20x x a -+>在R 上恒成立,140a ∴∆=-<,解得14a >.因此,实数a 的取值范围是1,4⎛⎫+∞ ⎪⎝⎭.故选:C.5.(2022秋·河南·高三校联考阶段练习)设函数()22f x ax ax =-,命题“[]0,1x ∃∈,()3f x a ≤-+”是假命题,则实数a 的取值范围为()A .(),3-∞B .()3,+∞C .24,7⎛⎫+∞ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭【答案】C【解析】因为命题“[]()0,1,3x f x a ∃∈≤-+”是假命题,所以[]()0,1,3x f x a ∀∈>-+是真命题,又()3f x a >-+可化为223ax ax a ->-+,即()2213a x x -+>,当[]0,1x ∈时,272128x x ⎡⎤+∈⎢⎣-⎥⎦,所以2321m x x >-+在[]0,1x ∈上恒成立,所以2max321m x x ⎛⎫->⎪+⎝⎭其中,[]0,1x ∈,当14x =时221x x -+有最小值为78,此时2321x x -+有最大值为247,所以247m >,故实数m 的取值范围是24,7⎛⎫+∞ ⎪⎝⎭,故选:C6.(2023·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞,故选:A7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数()21f x mx mx =--,若对于任意的{|13}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为()A .57m <B .507m ≤<C .0m <或507m <<D .0m ≤【答案】A【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,对称轴为12x =.当0m =时,50-<恒成立,当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <.当0m >时,有()g x 开口向上且在[]1,3上单调递增∴在[]1,3上()()max 3750g x g m ==-<,∴507m <<综上,实数m 的取值范围为57m <,故选:A.8.(2022秋·湖南邵阳·高三统考期中)设函数22()223f x x ax a a =++-+,若对于任意的x R ∈,不等式()()0f f x ≥恒成立,则实数a 的取值范围是()A .32a ≥B .2a ≤C .322a <≤D .32a ≤【答案】B【解析】∵222()223()23f x x ax a a x a a =++-+=+-+,即开口向上且[)()23,f x a ∈-++∞,由()()0f f x ≥恒成立,即()0f x ≥在[)23,a -++∞上恒成立,∴当230a -+≥时,即32a ≤,由二次函数的性质,()0f x ≥显然成立;当32a >时,()y f x =有两个零点,则只需满足23(23)0a a f a -≤-+⎧⎨-+≥⎩,解得2a ≤,故322a <≤;综上,a 的取值范围是2a ≤.故选:B9.(2022秋·辽宁鞍山·高三校联考期中)设R a ∈,若关于x 的不等式210x ax -+≥在12x ≤≤上有解,则()A .2a ≤B .2a ≥C .52a ≤D .52a ≥【答案】C【解析】由210x ax -+≥在12x ≤≤上有解,得21x a x+≥在12x ≤≤上有解,则2max1x a x ⎛⎫+≤ ⎪⎝⎭,由于211x x x x +=+,而1+x x在12x ≤≤单调递增,故当2x =时,1+x x 取最大值为52,故52a ≤,故选:C10.(2023·全国·高三专题练习)已知命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题,则实数a 的取值范围()A .(],0-∞B .[]0,4C .[4,+∞)D .(],0-∞[)4⋃+∞,【答案】D【解析】由题意,命题“0x ∃∈R ,()20014204x a x +-+≤”是真命题故221(2)44404a a a ∆=--⨯⨯=-≥,解得4a ≥或0a ≤.则实数a 的取值范围是(],0-∞[)4⋃+∞,故选:D.11.(2022·全国·高三专题练习)已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是()A .{}14a a -≤≤B .{}14a a -<<C .{4a a ≥或}1a ≤-D .{}41a a -≤≤【答案】A【解析】因为关于x 的不等式2243x x a a -+≥-在R 上有解,即22430x x a a -+-≤在R 上有解,只需2243y x x a a =-+-的图象与x 轴有公共点,所以()()224430a a ∆=--⨯-≥,即2340a a --≤,所以()()410a a -+≤,解得:14a -≤≤,所以实数a 的取值范围是{}14a a -≤≤,故选:A.12.(2022·全国·高三专题练习)若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为()A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎫-∞-⎪⎝⎭【答案】A【解析】关于x 的不等式220x ax +->在区间[1,5]上有解,22ax x ∴>-在[1x ∈,5]上有解,即2a x x>-在[1x ∈,5]上成立;设函数2()f x x x=-,[1x ∈,5],()f x ∴在[1x ∈,5]上是单调减函数,又()1211f =-=,()2235555f =-=-所以()f x 的值域为23[5-,1],要2a x x>-在[1x ∈,5]上有解,则235a >-,即实数a 的取值范围为23,5⎛⎫-+∞ ⎪⎝⎭.故选:A .13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x ,使得关于x 的不等式2430ax x a -+-<成立,则实数a 的取值范围是______.【答案】4a <【解析】3a <时,若0x =,则不等式为30a -<,不等式成立,满足题意,3a ≥时,在在x 使得不等式2430ax x a -+-<成立,则164(3)0a a ∆=-->,∴34a ≤<.综上,4a <.14.(2021·全国·高三专题练习)已知函数2,0()20x x x f x x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________.【答案】(,3][1,)-∞-⋃-+∞【解析】由题意,当0x =时,不等式()1f x ax ≤-可化为01≤-显然不成立;当0x <时,不等式()1f x ax ≤-可化为21x x ax -+≤,所以11a x x≤+-,又当0x <时,11()2x x x x ⎡⎤⎛⎫+=--+-≤- ⎪⎢⎥⎝⎭⎣⎦,当且仅当1x x -=-,即=1x -时,等号成立;当0x >时,不等式()1f x ax ≤-可化为21x ax ≤,即21111a x x x ⎫≥=-≥-⎪⎭;因为存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,所以,只需213a ≤--=-或1a ≥-.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x 使不等式()24(4)0kx kx ---<成立”是假命题,则实数k 的取值范围是____________.【答案】[1,4]【解析】设不等式()24(4)0kx k x ---<的解集为A ,当0k =时,不等式()24(4)0kx k x ---<化为>4x ,存在整数x 使不等式成立,所以此时不满足题意,所以0k ≠;当0k >时,原不等式化为4[()](4)0x k x k-+-<,因为4424k k kk+≥⋅,当且仅当4,k k =即2k =时取等号,所以4{|4}A x x k k =<<+,要使命题:“存在整数x 使不等式()24(4)0kx k x ---<成立”是假命题,则需445k k ≤+≤,解得14k ≤≤;当0k <时,原不等式化为4[()](4)0x k x k-+->,而()44424k k k k k k ⎛⎫⎛⎫+=--+≤--⋅=- ⎪ ⎪--⎝⎭⎝⎭,当且仅当4,k k -=-即2k =-时取等号,所以()4,4,A k k ⎛⎫=-∞+⋃+∞ ⎪⎝⎭,所以存在整数x 使不等式()24(4)0kx kx ---<成立,所以0k <不合题意.综上可知,实数k 的取值范围是[1,4].16.(2022秋·江苏连云港·高三校考开学考试)2210,0ax x x -+≥∀>恒成立,则实数a 的取值范围是_________.【答案】[1)+∞,【解析】由2210,0axx x -+≥∀>恒成立,可得,221a x x ≥-对0x ∀>恒成立,令221y x x =-,则2111y x ⎛⎫=-- ⎪⎝⎭,10x ⎛⎫> ⎪⎝⎭,当11x=时,max 1y =,所以max 1a y ≥=.17.(2021·全国·高三专题练习)若不等式22x mx ->对满足1m ≤的一切实数m 都成立,则x 的取值范围是___________【答案】<2x -或2x >【解析】因为22x mx ->,所以220mx x -+<令()22f m mx x =-+,即()0f m <在1m ≤恒成立,即11m -≤≤时()0f m <恒成立,所以()()1010f f ⎧<⎪⎨-<⎪⎩,即222020x x x x ⎧-+<⎨--+<⎩,解220x x -+<得2x >或1x <-;解220x x --+<得1x >或<2x -,所以原不等式组的解集为()(),22,x ∈-∞-⋃+∞18.(2023·全国·高三专题练习)若不等式22210x t at -+-+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,则实数t 的取值范围是__________.【答案】(,2]{0}[2,)-∞-+∞U U 【解析】由题意得2221t at x -+≥对任意[1,1]x ∈-及[1,1]a ∈-恒成立,所以2211t at -+≥对任意[1,1]a ∈-恒成立,即220t at -≥对[1,1]a ∈-恒成立,令22()22g a t at ta t =-=-+,则()g a 是关于a 的一次函数,所以只需(1)0(1)0g g ≥⎧⎨-≥⎩,即222020t t t t ⎧-≥⎨+≥⎩,解得2t ≥或2t ≤-或0=t ,所以实数t 的取值范围是(,2]{0}[2,)-∞-+∞U U .。
不能等待,要奋斗—观看电影《红孩子》有
感
今天,学校组织观看老电影《红孩子》,是解放前革命战争时期苏区儿童团的孩子们与白匪英勇斗争的故事。
电影中的故事非常感人让我心情起伏跌宕,影片结尾:一队儿童团员们唱着这首歌“准备好了吗?时刻准备着,我们是共产主义儿童团。
将来的主人,必定是我们,嘀嘀嗒嘀嗒嘀……”,在田野中愈走愈远。
电影结束时,同学们还沉浸在剧情之中,意犹未尽。
看完电影,我的心情也久久不能平静:今天平和舒畅的生活原来是革命先辈们用艰苦的斗争,用生命和鲜血换来的,作为一名小学生---国家将来的主人,我们都应该珍惜今天的幸福生活,勤奋学习各种科学文化知识,用优异的学习成绩来回报革命先烈。
我们不要忘记过去,让它成为我们前进的动力,要想使我们的祖国繁荣富强成为世界上最强大的国家,我们不能等待,要像电影中的孩子们一样去奋斗,长大后用我们的知识和汗水建设中国。
同学们,让我们把握现在,刻苦学习,不断奋斗吧!
第1页共1页。
重难点04 不等式恒成立、能成立问题【题型归纳目录】题型一:“Δ”法解决恒成立问题题型二:数形结合法解决恒成立问题题型三:分离参数法解决恒成立问题题型四:主参换位法解决恒成立问题题型五:利用图象解决能成立问题题型六:转化为函数的最值解决能成立问题【方法技巧与总结】在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理、数学运算等素养.【典型例题】题型一:“Δ”法解决恒成立问题例1.已知关于x 的不等式2680kx kx k -++≥对任意R x ∈恒成立,则k 的取值范围是( ) A .[0,1]B .(0,1]C .∞∞(-,0)(1,+)D .(][),01,∞∞-+例2.已知不等式2440mx mx +-<对任意实数x 恒成立,则m 的取值范围是( )A .{}10m m -<<B .{}10m m -≤≤C .{|1m m ≤-或}0m >D .{}10m m -<≤例3.已知不等式22210x x k -+->对一切实数x 恒成立,则实数k 的取值范围是( ) A.k >B .k <C.k >k <D .k <变式1.已知不等式2620ax x a -++<的解集为{}|12x x <<,且不等式()()225610m m x m x a --+++>对于任意的x ∈R 恒成立,则实数m 的取值范围为 ( )A .1m ≤-或7m >B .1m <-或7m ≥C .1m <-或7m >D . 1m ≤-或7m ≥变式2.已知函数()()2245413y k k x k x =+-+-+的图象都在x 轴的上方,求实数k 的取值范围为( )A .{}119k k <<B .{}119k k ≤<C .{}119k k <≤D .{}119k k ≤≤变式3.已知关于x 的不等式2230kx kx -+>恒成立,则k 的取值范围为( )A .[]0,3B .(]0,3C .[)0,3D .()0,3题型二:数形结合法解决恒成立问题例4.若关于x 的不等式270x ax -+>在()2,7上有实数解,则a 的取值范围是( )A .8a <B .8a ≤C .a <D .112a < 例5.当26x ≤≤时,关于x 的不等式2250mx mx --<恒成立,则m 的取值集合是 . 例6.当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.题型三:分离参数法解决恒成立问题例7.若“()02,∃∈+∞x ,210x x λ-+<”是假命题,则实数λ的取值范围是 .例8.若0x ≥时,关于x 的一元二次不等式230x tx t --+≥恒成立,则实数t 的取值范围是 . 例9.当40x -≤≤时,关于x 的不等式2150x ax a ++-≥恒成立,则a 的取值范围是 . 变式4.已知当0x >时,不等式2160x mx -+>恒成立,则实数m 的取值范围是( )A .(),8∞-B .(],8∞-C .[)8,+∞D .()6,+∞变式5.已知不等式220x a a ---≥恒成立,则实数a 的取值范围是( )A a ≤≤B .12a -≤≤C .a ≤或a ≥D .1a ≤-或2a ≥ 变式6.不等式2220x axy y -+≥,对于任意12x ≤≤及13y ≤≤恒成立,则实数a 的取值范围是( )A .{|a a ≤B .{|a a ≥C .1|3a a ⎧⎫≤⎨⎬⎩⎭D .9|2⎧⎫⎨⎬⎩⎭≤a a 变式7.若存在(]0,2x ∈,使不等式2230ax x a -+<成立,则实数a 的取值范围是( )A .aB .407a ≤≤C .a >D .47a > 题型四:主参换位法解决恒成立问题例10.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.例11.当12m ≤≤时,210mx mx --<恒成立,则实数x 的取值范围是( )A x <<B x <<C x <<D x <<例12.若[]1,1m ∀∈-,()24420x m x m +-+->为真命题,则x 的取值范围为( )A .(,1]-∞B .()1,3C .(,1)(3,)-∞+∞D .[]1,3题型五:利用图象解决能成立问题 例13.当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________. 例14.若关于x 的不等式22860x x a -+-≥在14x ≤≤时有解,则实数a 的取值范围是( )A .6a ≤B .2a ≥-C .6a ≥D .2a ≤-题型六:转化为函数的最值解决能成立问题例15.已知命题“[]01,1x ∃∈-,20030x x a -++>”为真命题,则实数a 的取值范围是( )A .(),2-∞-B .(),4-∞C .()2,-+∞D .()4,+∞例16.若命题“[]22,1,231x ax ax a ∃∈-++>”为假命题,则a 的最大值为( )A .16B .13C .12 D .14例17.已知对一切[2,3]x ∈,[3,6]y ∈,不等式220mx xy y -+≥恒成立,则实数m 的取值范围是( ) A .6m ≤B .60m -≤≤C .0m ≥D .06m ≤≤变式8.若存在04x ≤≤,使得不等式220x x a -+>成立,则实数a 的取值范围为 . 变式9.若关于x 的不等式22840x x a ---≤在14x ≤≤内有解,则实数a 的取值范围为 . 变式10.若 [0,1]x ∃∈ 使得不等式 24x m x ≥+ 成立,则实数m 的取值范围是变式11.已知不等式240ax ax -+>的解集为M .(1)若0a >,且R M =,求实数a 的取值范围.(2)若24ax ax a -+>-对于13x <<有解,求实数a 的取值范围.变式12.已知不等式20ax bx c ++>的解集为{23}xx -<<∣,且对于[]1,5x ∀∈,不等式220bx amx c ++>恒成立,则m 的取值范围为( )A .(,-∞B .(,∞-C .[)13,+∞D .。
第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
孝顺父母的文章:孝顺父母不能等孝顺父母的文章:孝顺父母不能等等待就是一种遗憾,遗憾是不能补救的,不能补就的生命是无法挽回的。
因为,生命也有它的保鲜期!一、孝敬父母不能等:有人说,等我有钱了,我要大把大把的塞给爸爸妈妈,让老人家坐在钱堆上随便花;等我有时间了,带着爸爸妈妈,游完国内,游国外,让爸爸妈妈在有生之年潇洒个痛快!我说,那是不可能的,等待你把钱挣到手了,爸爸妈妈的牙还能啃得动青包米吗?等你有时间了,想带着爸爸妈妈去周游世界,他们还能上得去飞机吗?等你有……爸爸妈妈还……当我们静下心来好好的想一想时,对爸爸妈妈的孝心,其实不就是在我们平时的“滋润”中完成的吗?父亲节的时候,你给咱爸买条鱼,工作再忙,你也要亲自给送去啊,咱爸会乐得嘴都合不上的;母亲节的时候,你给咱吗买一双袜子,亲自给咱妈穿上,她眼睛里也会含着泪的。
天下第一情是父母之情啊,因为爸爸妈妈太容易满足了!就是爸爸妈妈真的有一天要乘鹤西去了,我们流的眼泪里也没有遗憾可言了!《常回家看看》让我们再听一遍吧,那就是爸爸妈妈对我们温暖的渴求啊。
其实,对爸爸妈妈的孝心,我们这样去做了一点也不难,你说是吧?天地重孝孝当先,一个孝字全家安,为人需当孝父母。
二、孝敬父母如敬天:你应该感到庆幸,你还有父母可以去孝顺!可是你并不珍惜!其实,我只是想,老人已年近八旬,究竟还能有多少个春秋?别让日后自己徒增遗憾,落泪以视悲哀!常言道“为国尽忠,在家尽孝。
”“孝尽父母的事情永远不能等”!孝心不是用钱能够得到全部表达的。
他要那么多的钱干什么?他吃不了多少,穿衣也用不了多少,更不是在这种时候你还自鸣得意的认为老人是欠了你的,甚至为此而和老人怄气!他所缺的应该是与儿孙其乐融融的相处!他们所缺的是在他难于动身时的一个代步,在他口渴时的一杯茶水,在他寂寞时候的陪伴,儿女在外都忙能每周按时聚在一起,在他生病时的一次次问候……这些都是老人内心所渴望的!三、感恩父母养育情“感恩”你知道这两个字怎么写却不能认识到它的真正含义,从你呱呱落地的那一刻起,你的生命就倾注了父母无尽的爱与祝福,为你撑起了一片爱的天空,或许,父母不能给我们奢华的生活,但是,他们给予了一个人一生中不可替代的——生命!感恩父母,哪怕是一件微不足道的事,只要能让他们感到欣慰,这就够了。
不要等待的正能量句子
1. 机会不会自己来敲门,你必须主动去追逐它。
2. 成功来自于付出努力和坚持不懈,而不是等待奇迹的出现。
3. 生活没有捷径可走,只有坚定的前行和充满激情的付出。
4. 不要等待,去努力争取你想要的,因为只有放手去追求,才能实现梦想。
5. 等待只会浪费时间,积极行动才能带来积极结果。
6. 运气往往青睐那些积极主动的人,不要等待运气的到来,去创造属于自己的运气。
7. 时光如箭,不要等待逝去,要勇敢地去抓住每一个机会。
8. 生活的舞台不会为你而停下脚步,而是在你迈出步伐时才开始运转。
9. 梦想只有在行动中才能实现,不要等待完美的时机,勇敢去追求自己的梦想。
10. 时间不等人,不要浪费光阴,珍惜当下,努力去创造美好的未来。
11. 成功需要自己去争取,不要等待别人来帮助你。
12. 不要等待别人承认你的价值,要自己证明自己的能力。
13. 只有勇敢去面对恐惧,才能超越自己的极限。
14. 不要等待别人给你机会,要自己创造机会,展示自己的才华。
15. 勇往直前,不要停滞不前,只有不断进取才能迎接更好的明天。
深化改革不能“等、靠、要”作者:于刃刚来源:《领导之友》2014年第04期党的十八届三中全会强调实现中华民族伟大复兴的中国梦,必须在新的历史起点上全面深化改革。
现在面临的改革或是剩下的“硬骨头”,或是改革开放后积累的新问题,改革难度很大,因此,我们必须敢于担当,勇于探索,充分发挥主观能动性,大胆实践,迎难而上,而绝不能“等、靠、要”。
“等、靠、要”可能不犯错误,但要承担历史责任。
回顾河北省改革开放的历史,不能不承认,由于种种原因,在相当一部分干部的头脑中确实存在一种“等、靠、要”的惯性思维——等中央的具体部署,靠周边发达地区的带动,要国家的特殊政策支持。
遇到新事物,首先要看中央有没有明确的文件规定,有了中央文件还要看其他省份有没有行动,其他省份有了行动再来研究本地落实文件精神的阻力与障碍。
这样做对干部自身来说在政治上会比较保险,但其结果是由于缺乏大胆探索和创新精神,往往会拖延经济的发展,“跨越”也只能成为一种在短时期内鼓舞人心的口号。
早在20多年前,河北就提出了“两环开放带动战略”,这一战略与后来提出的城市化、科教兴冀、可持续发展共同形成了河北省的“四大主体战略”。
应当说,“两环开放带动战略”与其他三个战略相比,确实最能体现河北的特点,在当时也具有前瞻性,因为其他三个战略既是国家战略,也是其他同类省份的发展战略。
当年我也曾为“两环开放带动战略”呼吁,并且写了几篇文章,但回头看,“两环开放带动战略”却暗含着“等、靠、要”的思维。
环京津、环渤海确实体现了河北的区位特点,但我们对京津、对海外开放就必然会带来被别人“带动”加快发展的结果吗?实践证明,被动地靠周边发达地区的带动加快发展是“靠”不住的。
即便是你对人家开放,在现行分灶吃饭的财政体制下,人家又有多大的意愿来带动你?就算别人愿意带动你,当他自己还处在忙于发展的阶段时,他又有多大能力来带动你?所以,在这一战略提出几年之后,人们就开始质疑:河北环京津到底是优势还是劣势?是大树底下好乘凉还是大树底下不长草?随后人们又发现,从区域经济学角度看,当时京津还处于增长极的极化阶段,对周边的生产要素仍在吸纳。
孝敬不能等经典语录孝顺父母不能等的经典句子孝敬不能等经典语录孝顺父母不能等的经典句子在学习、工作乃至生活中,大家都听说过或者使用过一些比较经典的语录吧,语录是指一个人言论的记录或摘录。
什么样的语录才经典呢?下面是小编为大家收集的孝敬不能等经典语录孝顺父母不能等的经典句子,希望对大家有所帮助。
一、多想永远依在您的怀里,不想走出您的手心,可是,鸟儿有了翅膀,就会有想要飞的欲望,我不断的想飞,然而飞不出的是您深深的牵挂,无论我走到哪里,您永远都是我心灵的港湾。
二、学会感恩,孝敬父母。
还有一种表达方式,就是从你的所作所为上来孝敬父母。
第一,你应该至少学会孝敬孝顺父母,就算不能寄些钱来孝顺父母,那也要从感情和精神上来孝顺父母。
三、俗话说,父是天,母是地。
是啊!是你们给我们充足的营养;是你们给我们充足水分;是你们给我们充足的阳光;给我们充足的氧气。
那就是我们伟大的父母。
四、谢谢父母给我的一却,我让你们操心了!我长大了,我会好好的和她一起生活,一起孝敬你们,不会在让你们操心了!我爱你们,爸爸妈妈!五、然而,表达是必要的,形式却不必是一束鲜花,也许是其他的小礼物,也许是一盆洗脚水,甚至电话中一声亲切的问候,而效果却是一样的,那就是换来母亲的欣慰和感动——其实天下所有的母亲都是那么容易被感动,她们对自己儿女要求得真的很少。
六、父亲和儿子的感情是截然不同的:父亲爱的是儿子本人,儿子爱的则是对父亲的回忆。
七、在子女面前,父母要善于隐藏他们的一切快乐烦恼和恐惧。
八、问世间什么样的爱是永恒不变的?那无疑是父爱和母爱,这份爱从我们出生的那一刻起,就一直伴随着我们,然而,我们的到来,也给父母带来了莫大的负担,父母却把这份负担当成幸福,用心爱我们,用生命爱我们,我们哭,他们伤心,我们笑,他们高兴,我们健康快乐,他们会露出无比幸福的微笑。
九、母亲您好似一杯茶,寒夜里饮您的温馨,孤独中饮您的清醇,流泪时饮你的淡薄,一生一世饮您的点点滴滴的关爱,是您丝丝的柔情。
人生不能等待的句子
1、人生守候不了等待,因为等待的东西已经变质一品句子网。
就算再守候,那也只能是浪费。
2、不能再等待下去了,否则只会让自己更加紧张。
3、人生如戏,悲欢离合,也许永远等待不到那个完美的结局。
4、有些人经不起等待,别让等待成为我们终身的遗憾。
5、别再等待,时光已在流逝,梦想就在前,放手一搏,让你无可匹敌!
6、人生短暂,时间不能荒废,真爱不容等待。
7、有些事情是不能等的,如对梦想的追求。
不要等到夕阳西下,才发现自己的梦想未曾实现,而青春已不再。
8、不要因所谓的等待限制住了前进的步伐。
你没有在等任何人,你在走自己的人生之路。
不要因寻找合适的人而为浪荡找借口。
谁都不能让你安定,唯有你自己才是能人自己安定的那个人。
小品孝心不能等待时间:现代。
地点:海南某农村。
人物:阿海,男,45岁,在北京开公司。
阿公,男,70岁,农民,老年痴呆症,阿海的父亲。
阿婆,女,68岁,农村妇女,阿海的母亲。
【舞台上有一方桌和一个长条凳子。
【幕启:阿海提着包裹边看边上。
阿海向四周看看:北京创业五年没回家,时刻想念爸和妈,家乡变化可真大呀,走进村子……还能找到自己家(笑一笑),别人家都盖高楼大厦,只有我家没有变化,(用手一指)前面这三间茅草房,比我爷爷岁数都大,到家了。
对了,我得把衣服好好弄弄,给他们老两口子一个惊喜。
【阿海转身弄衣服,阿婆挎一篮鸡蛋边说边上。
阿婆:六十四个鸡蛋能卖三十二块钱,买两袋咸盐还能存三十元……阿婆掏出存折看看,笑一笑自语的:又多三十元……这时阿海看见阿婆,急忙小心的从后面跑过来抱住阿婆,阿婆摸着阿海的手,激动的喊道:阿海……阿海大声的:妈——妈——阿婆急忙把存折放到衣兜里,回过头仔细看阿海:儿子,我不是做梦吧?阿海:妈,我真是阿海。
阿婆高兴的:你真回来了?阿海:对呀。
阿婆:快让妈看看……儿子,你长胖了。
阿海帮阿婆捋了一下头发:妈,你的白头发又多了。
阿婆拉着阿海:走,进屋坐,妈给你砍椰子喝。
阿海边走边说:妈,我爸呢?他身体怎么样?阿婆突然停住:你爸他……身体……挺好的……阿海:妈,怎么不走了?阿婆支支吾吾的:阿海呀,那个……这样……我看坐这里挺好,通风、凉快,你爸他……他也不在家。
阿海边坐下边说:我爸又去田里干工了?阿婆急忙的:对……对呀。
阿海:他总是闲不住。
阿婆边坐下边说:儿子,你回来怎么不提前打给电话呀?阿海:妈,我是想给你个惊喜。
阿婆:这次也是回海口办事吧?是不是马上就要走了。
阿海:妈,上几次回海口办事公司太忙了,都没能回家看看您二老,这一晃五年没回家了。
阿婆:妈知道你忙,你一个人在外面打拼不容易,我理解。
阿海:那时候公司刚起步,现在走向正轨了,我这次专门回来接你们去北京养老的。
阿婆惊讶的:啊!阿海:妈,怎么了?阿婆:这……这也太突然了。
时光好似白驹过隙,眨眼的功夫,大学生活已经过了大半。
这就是时间,在不知不觉中流走。
它让幼稚的孩子变得成熟;让壮年人垂垂老矣;也让老年人逝去……时不我待,感恩之心不能等,成才之机不能等,励志之时不能等。
现在,才是我们必须百分之百利用好,珍惜好的时间,因为过去和未来都不现实,都不是我们凡夫俗子所能掌控的。
“树欲静而风不止,子欲孝而亲不在。
”我想,这大概就是一横老师说的:“孝心不能等,感恩不能等!”在短暂而又漫长的人生中,很多时候,在不可预知的灾难面前,我们无所适从。
但有一点我们肯定能够做到——珍惜现在所拥有的一切。
现在,我能够吃饱穿暖地度过每一天;我能够舒舒服服、安安心心地在大学校园里上完每一堂课;我能够开开心心、有所收获地度过人生的每一个阶段……我要自豪地呐喊:“我真的很幸福!”是的,我很幸福。
能够出生在一个繁荣发展的国度,茁壮成长在党的怀抱,这难道不幸运,不幸福吗?在父母的养育中,老师的教育下,能够进入神圣的大学殿堂,这难道不够自豪?看着西部那些不能上学的孩子,他们食不果腹、衣不蔽体,上学就更是他们几辈子都奢望的事情了。
和他们相比,我知足了。
“饱汉不知饿汉饥。
”或许,我可以买几件贵一点的衣服;又或许,我可以吃点美味的佳肴;但我不可以忘记感恩。
感恩社会的安定,感恩父母无微不至的关怀,感恩老师谆谆的教导……“感恩的心,感谢命运,花开花落,我一样会珍惜。
”自古至今,懂得感恩,一直是我们中华民族的传统美德。
在经济腾飞的今天,一些人慢慢变得冷漠无情。
或许是因为能够感动他们的事太少。
更或许是因为他们缺少一颗感恩的
心。
“羔羊常怀跪乳恩,乌鸦能报含食情。
”因为感恩,世间万物生生不息;“谁言寸草心,报得三春晖。
”因为感恩,人间处处是真情。
“落红不是无情物,化作春泥更护花。
”因为感恩,大地春暖花开……感恩,充实着我们的生活,美化着我们的心灵家园。
感恩不能等,时时怀有一颗感恩之心,处处体现感恩之情,这样的生活,才是有意义的,有价值的。
“大江歌罢掉头东,邃密群科济世穷。
面壁十年图破壁,难酬蹈海亦英雄。
”这就是敬爱的周总理年少时立下的壮志,结果他实现了拯救中华于危难之中的志向。
巾帼英雄秋瑾说过:“水激石则鸣,人激志则宏。
”人生的道路上,追求是我们前进的动力机,向往给了我们力量。
只要肯放手追求,敢“不破楼兰誓不还”地励志,我们一定能够成功。
正如张雨生所唱:“我不在乎别人怎么说,我从来没有忘记我,对自己的承诺对爱的执著。
我知道我的未来不是梦,我认真的过每一分钟,我的未来不是梦,我的心跟着希望在动。
”其实,社会就是一个大舞台,生活就是表演。
人生就是一部有一辈子那么久的电视剧,主角和导演都是自己,每年就是一个片段。
在每一个片段中,我们变换着不同的角色,拥有着不同的志向,不同的目标。
人生是奋斗,也是享受,享受着每一顿自己制作的筵席,其中的酸甜苦辣,悲欢离合,只有自己能体会。
励志不能等,再等就“心灰意冷”了。
从现在开始,立下我们的壮志,开始导演我们的喜剧。
拉开生活的帷幕,试镜吧!敬请期待又一段喜剧的上映吧!
“海浪为劈风斩浪的航船饯行,为随波逐流的轻舟送葬。
”社会就是这样的残酷,现实就是这样的无情。
在竞争如此激烈的今天,找一份好的工作谈何容易。
买一栋别墅,谈何容易……在人世间,唯一轻松而又收获巨大的工作只有一样,那就是乞讨。
唯一便宜而又方便的地方,那就是公厕。
唯有成才,你才能够取得理想中的东西,实现自己的梦想。
成功不会像坦途一样匍匐在你我的脚下,唯有征服,征服这条坎坷的山路。
“万般皆下品,惟有读书高。
读书破万卷,下笔如有神。
”唯有读书,才是我们成功的正道。
唯有践行真理,才是我们执着的追求。
我爸常说:“立志相伴嫦娥住,头里先把字装饱。
”这就是亘古不变的道理。
成才不能等,大浪淘沙,逆水行舟,在茫茫的社会大海中,唯有成为不破不沉的方舟,才能到达成功的彼岸,驶入安全的港湾。
不能等。
作为大学生的我们,最大的资本就是年轻,最富有的就是时间,而我们最珍贵的也是年轻,最浪费不起的就是时间。
只要能收获甜蜜,你我愿化为荆棘丛中忙碌的蜜蜂。
从现在开始!解下缆绳,以志向为航标,让理想永远在前面,带上感恩的心,扬帆起航吧!相信理想的彼岸就是快乐,就是心灵的避风港。