热泵工作原理
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
热泵工作原理热泵是一种能够将热能从低温环境中提取并传递到高温环境中的设备。
它利用了热力学的基本原理,通过循环工作介质的相变过程,实现了热能的转移。
热泵的工作原理可以分为四个基本步骤:蒸发、压缩、冷凝和膨胀。
1. 蒸发:在蒸发器中,工作介质(通常是制冷剂)吸收低温环境中的热量,并从液态转变为气态。
这个过程中,热泵从低温环境中吸收热量。
2. 压缩:气态的工作介质被压缩机压缩,使其温度和压力升高。
通过压缩,工作介质的份子更加密集,从而提高了其热能。
3. 冷凝:在冷凝器中,高温高压的工作介质释放热量,并从气态转变为液态。
这个过程中,热泵将热量传递给高温环境。
4. 膨胀:在膨胀阀或者节流装置的作用下,工作介质的压力降低,从而使其温度降低。
这个过程中,工作介质变回低温低压状态,准备重新进入蒸发器,循环工作。
通过不断循环上述四个步骤,热泵能够将低温环境中的热量转移到高温环境中,实现热能的传递。
这使得热泵在供暖、制冷和热水供应等领域具有广泛的应用。
热泵的工作原理基于热力学第一定律和第二定律,即能量守恒和热量自然流动的原理。
通过合理设计和控制,热泵能够以较低的能耗实现高效的能量转换。
根据所采用的热泵类型和工作介质的选择,热泵的性能和效率会有所不同。
除了基本的工作原理,热泵还可以根据其工作方式进行分类。
常见的热泵类型包括空气源热泵、水源热泵和地源热泵。
它们分别利用空气、水和地下土壤中的热能来实现热量的转移。
每种类型的热泵都有其适合的环境和应用场景。
总结起来,热泵工作原理是通过循环工作介质的相变过程,将热能从低温环境中提取并传递到高温环境中。
这种能量转移的原理基于热力学的基本定律,通过合理设计和控制,热泵能够实现高效能量转换,为供暖、制冷和热水供应等领域提供可靠的解决方案。
热泵工作原理热泵是一种利用热力学原理将低温热源中的热能转移到高温热源中的设备。
它可以用于供暖、制冷和热水供应等多种应用领域。
热泵的工作原理基于热力学的两个基本原理:热量的传递和热量的流动。
1. 热量的传递热量的传递是指热量从高温物体传递到低温物体的过程。
根据热力学第一定律,能量守恒,热量从高温物体流向低温物体,直至两者达到热平衡。
热泵利用这个原理,通过外部能源的输入,将低温热源中的热能转移到高温热源中。
2. 热量的流动热量的流动是指热量通过传导、对流和辐射等方式从一个物体传递到另一个物体的过程。
热泵利用热量的流动特性,通过工作介质(如制冷剂)的循环流动,将低温热源中的热量吸收并压缩,然后释放到高温热源中。
热泵的工作过程主要包括以下几个步骤:1. 蒸发器蒸发器是热泵的低温侧,它与低温热源接触,吸收低温热源中的热量。
在蒸发器中,制冷剂处于低压状态,通过蒸发吸收低温热源中的热量,同时转化为低温蒸汽。
2. 压缩机压缩机是热泵的核心部件,它将低温蒸汽压缩成高温高压蒸汽。
通过压缩,制冷剂的温度和压力都会升高。
3. 冷凝器冷凝器是热泵的高温侧,它与高温热源接触,释放热量。
在冷凝器中,高温高压蒸汽通过传导和对流的方式,将热量传递给高温热源,同时冷凝成高温液体。
4. 膨胀阀膨胀阀是热泵的控制阀门,它控制制冷剂的流量和压力。
在膨胀阀的作用下,高温液体制冷剂流入蒸发器,降低压力,从而实现制冷剂的蒸发,吸收低温热源的热量。
通过上述步骤的循环运行,热泵可以将低温热源中的热能转移到高温热源中,实现供暖、制冷和热水供应等功能。
热泵的工作原理基于热力学和流体力学的基本原理,它具有以下几个优点:1. 高效节能:热泵利用环境中的热能进行工作,能够将每单位能量转化为多倍的热能输出,具有较高的能量利用率和节能效果。
2. 环保低碳:热泵在工作过程中不产生烟尘、废气和噪音等污染物,对环境友好,符合可持续发展的要求。
3. 多功能应用:热泵可以用于供暖、制冷和热水供应等多种应用领域,具有广泛的适用性。
热泵工作原理热泵是一种利用热力学循环原理将低温热量转移到高温热量的装置。
它通过循环工质在低温和高温之间传递热量,从而实现热能的转换和利用。
下面将详细介绍热泵的工作原理。
1. 压缩机工作原理:热泵中的压缩机是关键组件之一。
它通过压缩工质,使其温度和压力升高。
当工质进入压缩机时,它处于低温低压状态。
压缩机将工质压缩,使其温度和压力升高,从而形成高温高压的气体。
2. 蒸发器工作原理:蒸发器是热泵中的另一个重要组件。
它负责从外部环境中吸收低温热量,使工质蒸发。
当高温高压的工质进入蒸发器时,由于蒸发器内部的压力较低,工质开始蒸发,吸收外部环境的热量,从而降低温度。
3. 冷凝器工作原理:冷凝器也是热泵的重要组成部份。
它通过冷却工质,使其从气体状态转变为液体状态。
当工质从蒸发器中蒸发后,成为高温高压的气体,进入冷凝器。
冷凝器通过传热,将工质的热量传递给外部环境,使其冷却,从而使工质转变为液体状态。
4. 膨胀阀工作原理:膨胀阀是热泵中的一种节流装置,它通过控制工质的流量和压力,实现工质从高温高压状态到低温低压状态的转变。
当液体工质通过膨胀阀进入蒸发器时,由于膨胀阀的节流作用,工质的压力和温度下降,从而形成低温低压的状态。
综上所述,热泵的工作原理可以简化为以下几个步骤:首先,蒸发器从外部环境吸收低温热量,使工质蒸发;其次,压缩机将蒸发后的工质压缩,使其温度和压力升高;然后,冷凝器通过传热,将高温高压的工质冷却,使其转变为液体状态;最后,膨胀阀控制工质的流量和压力,使其从高温高压状态到低温低压状态的转变,从而完成一个完整的热泵循环。
热泵的工作原理可以应用于多个领域,如家庭供暖、空调系统和热水供应等。
它具有高效节能、环保、可靠性高等优点,被广泛应用于各个领域。
请注意,以上内容仅为示例,实际情况可能因不同的热泵类型和应用领域而有所不同。
在实际应用中,建议根据具体的热泵设备和需求,进一步了解和研究热泵的工作原理。
热泵的工作原理热泵是一种利用热能传递原理来完成制冷或供暖的装置。
它可以通过循环工作流体来将热能从一个系统传递到另一个系统,使得低温的系统温度升高,高温的系统温度降低。
下面将详细介绍热泵的工作原理。
1. 环境中的热能采集:热泵最常见的使用场景就是从环境中采集热能,通常是从空气、地下或地下水中采集热能。
这是通过吸收器(蒸发器)来完成的,吸收器中有一种工质(制冷剂)流动。
当制冷剂流过吸收器时,它会吸收环境中的热能并蒸发。
2. 压缩蒸发液体:在吸收器中蒸发后,制冷剂成为气体,然后通过压缩机被压缩为高压蒸汽。
压缩的过程会使得温度升高。
3. 热能释放:高压蒸汽会被输送到释放器(冷凝器),释放器中有一种传热介质(如空气或水)流动。
当高压蒸汽在释放器内流动时,它会放出热能,从而使得传热介质的温度升高。
4. 冷却冷凝液:高压蒸汽在释放热能后会逐渐冷却成为高压液体。
这个过程是通过冷却器(凝汽器)来完成的,冷却器中有一种传热介质(如空气或水)流动。
高压液体在冷却器中流动时,会吸收环境中的热量,冷却并凝结为高压液体。
5. 膨胀到低压液体:经过冷却的高压液体会进入膨胀阀(节流装置),流经膨胀阀后,其压力会降低,从而变成低压液体。
在这个过程中,液体的温度会下降。
6. 循环重复:低压液体再次进入吸收器(蒸发器),循环过程再次开始。
通过循环工作流体的不断流动,热泵可以将热能从一个较低温度的系统中提取,并传递给一个较高温度的系统。
热泵的工作原理基于热力学中的能量平衡原理,通过不断把环境中的热能转移到需要加热的系统中,在冷气季节则是相反的操作,将热能从需要冷却的系统传递到环境中。
这种热能传递的方式,使得热泵能够高效地完成供暖和制冷的任务。
需要特别注意的是,热泵的工作需要消耗一定的电力来驱动压缩机和循环泵等设备的运行,因此在使用热泵时需要考虑到其能源消耗和运行成本。
另外,热泵的工作效果也会受到环境温度的影响,对于环境温度较低的地区,热泵的供暖效果可能有所下降。
热泵的工作原理
热泵是一种利用热力学原理来实现空间加热或制冷的装置。
它通过循环传递热量的方式,将低温热量转移至高温区域,实现室内空间的加热;相反地,它也可以将高温区域的热量转移至低温区域,实现室内空间的制冷。
以下是热泵的工作原理:
1. 压缩机:热泵系统中的核心部件之一是压缩机。
通过机械方式,压缩机将制冷剂(也称为工质)的压力提高,使其处于高温高压状态。
2. 蒸发器:制冷剂由压缩机释放后,进入蒸发器。
蒸发器内部有一个外界空气可以流动的环境,制冷剂在这里吸收空气中的热量并蒸发。
这个过程会导致蒸发器内部温度下降。
3. 冷凝器:蒸发后的制冷剂进入冷凝器。
冷凝器是一个热交换器,通过与外部空气接触,使制冷剂释放已吸收的热量,同时发生冷凝过程。
这时,制冷剂的温度升高。
4. 膨胀阀:经过冷凝器的制冷剂进入膨胀阀。
膨胀阀控制制冷剂从高压区域流动到低压区域的速度,并减少制冷剂的压力。
这个过程使制冷剂的温度和压力下降。
通过这个循环过程,热泵能够从低温环境中吸收热量,然后通过压缩、蒸发、冷凝和膨胀阀的作用,将热量传递到高温环境中。
这样,热泵就能够实现室内空间的加热。
同样地,当热泵需要制冷时,它可以反向工作,将室内热量传递到外部环境,从而实现室内空间的制冷。
热泵的工作原理热泵是一种利用热力学原理将低温热能转化为高温热能的设备。
它可以通过提供额外的能量,将低温热源中的热能转移到高温热源中,实现热能的传递和转换。
热泵的工作原理可以简单概括为以下几个步骤:1. 蒸发器(蒸发器):热泵系统中的蒸发器是一个热交换器,它与低温热源接触。
低温热源中的液体(通常是制冷剂)通过蒸发器,吸收低温环境中的热能,同时蒸发成气体。
这个过程中,制冷剂的温度会显著下降。
2. 压缩机:蒸发器中的制冷剂气体被压缩机抽入,压缩机会对气体进行压缩,使其温度和压力都升高。
这个过程需要消耗一定的能量,通常是电能。
压缩机的工作是为了提高制冷剂气体的温度,使其能够传递给高温热源。
3. 冷凝器:压缩机将制冷剂气体推入冷凝器,冷凝器是一个热交换器,它与高温热源接触。
制冷剂气体在冷凝器中会释放热能,温度下降,从而使制冷剂气体冷凝成液体。
4. 膨胀阀(节流阀):冷凝器中的制冷剂液体通过膨胀阀进入蒸发器,膨胀阀的作用是降低制冷剂的压力,使其温度和压力都下降。
这样,制冷剂液体就可以再次吸收低温热源中的热能,循环往复。
通过以上的工作原理,热泵系统可以将低温热源中的热能转移到高温热源中,实现热能的传递和转换。
热泵的最大优势在于它的高效能,它可以通过消耗少量的能量,实现大量的热能转换。
根据热泵的不同应用领域和工作介质的不同,热泵可以分为空气源热泵、地源热泵、水源热泵等。
例如,空气源热泵利用空气中的热能来供暖。
它通过蒸发器中的制冷剂吸收空气中的热能,然后通过压缩机提高制冷剂的温度,再通过冷凝器释放热能给室内。
这样,室内空气就得到了加热。
而在夏季,空气源热泵可以逆转工作,将室内的热量排出,实现制冷效果。
总之,热泵的工作原理是通过蒸发器、压缩机、冷凝器和膨胀阀等组件的配合工作,将低温热源中的热能转移到高温热源中,实现热能的传递和转换。
热泵系统具有高效能的特点,广泛应用于供暖、制冷和热水等领域。
热泵的工作原理热泵是一种能够将低温热能转化为高温热能的设备,它采用了热力学循环原理,通过循环工质的蒸发和冷凝过程,从低温热源中吸收热量,然后通过压缩工质将热量释放到高温热源中。
热泵系统主要由压缩机、蒸发器、冷凝器和节流阀等组成。
下面将详细介绍热泵的工作原理。
1. 蒸发器(蒸发过程):热泵系统中的蒸发器是一个热交换器,它将低温热源中的热量吸收到工质中。
当工质进入蒸发器时,它处于低压状态,此时低温热源的热量使工质蒸发成为低温蒸汽。
蒸发过程中,工质吸收了低温热源中的热量,并将其温度提高。
2. 压缩机(压缩过程):蒸发器中的低温蒸汽进入压缩机,压缩机通过增加工质的压力,使其温度升高。
在压缩过程中,工质的温度和压力都会增加,从而使其能够释放更多的热量。
3. 冷凝器(冷凝过程):压缩机排出的高温高压蒸汽进入冷凝器,冷凝器是一个热交换器,它将高温蒸汽中的热量传递给高温热源。
在冷凝过程中,工质的温度逐渐降低,从而使其从蒸气状态转变为液体状态。
4. 节流阀(膨胀过程):冷凝器中的液体工质通过节流阀进入蒸发器,节流阀的作用是降低工质的压力,使其能够再次蒸发。
在膨胀过程中,工质的温度和压力都会下降,从而使其能够吸收更多的热量。
通过以上四个过程的循环,热泵系统能够将低温热源中的热量转移到高温热源中,实现热能的升级。
热泵的工作原理基于热力学循环原理,它利用了工质在不同压力下的相变特性和热量传递特性。
通过循环工质的蒸发和冷凝过程,热泵能够将低温热源中的热量吸收,并通过压缩工质将热量释放到高温热源中。
这种工作原理使得热泵系统能够实现高效的能量转换,从而节约能源和降低能源消耗。
需要注意的是,热泵系统的效率受到环境温度的影响。
在低温环境下,热泵系统需要消耗更多的能量来提供热量,因此效率会相对较低。
而在高温环境下,热泵系统的效率会更高。
因此,在选择和设计热泵系统时,需要考虑到实际应用环境的温度条件,以达到最佳的能源利用效果。
总结起来,热泵的工作原理是通过循环工质的蒸发和冷凝过程,将低温热源中的热量转移到高温热源中。
热泵的工作原理热泵是一种能够将热能从低温源转移到高温源的装置。
它利用热力学原理和制冷循环来实现热能的转移。
热泵的工作原理可以分为四个基本步骤:蒸发、压缩、冷凝和膨胀。
1. 蒸发(蒸发器):热泵系统中的蒸发器是一个热交换器,通过它流过的低温工质(通常是制冷剂)从外部环境中吸收热量。
当低温工质与外界的热源接触时,它会吸收热量并蒸发成气体。
2. 压缩(压缩机):蒸发器中的气体被压缩机吸入,并被压缩成高温高压气体。
在这个过程中,气体的温度和压力都会升高,使其具有更高的热能。
3. 冷凝(冷凝器):压缩机排出的高温高压气体进入冷凝器,通过与外部环境接触,释放热量并冷却成液体。
冷凝器是另一个热交换器,通过它流过的高温高压液体将热量传递给外部环境。
4. 膨胀(膨胀阀):冷凝器中的液体通过膨胀阀进入蒸发器,此时液体的温度和压力都降低。
在蒸发器中,液体再次蒸发成气体,吸收外部环境的热量,并循环回到压缩机,完成一个制冷循环。
热泵的工作原理可以通过制冷循环来解释。
制冷循环是一种热力学循环,通过改变制冷剂的状态(液体或者气体)来实现热能的转移。
在热泵中,制冷剂在蒸发器和冷凝器之间循环流动,通过蒸发和冷凝过程来吸收和释放热量。
热泵的工作原理基于热量的传递,而不是热量的产生。
它可以从环境中的低温源(如地下水、空气、土壤)吸收热量,并将其传递给高温源(如室内空气、热水)。
通过这种方式,热泵可以实现高效的能量转换,从而提供供暖、制冷和热水等多种用途。
热泵的工作原理使其成为一种环保和节能的供暖和制冷解决方案。
相较于传统的电阻加热和空调系统,热泵可以在相同的能量输入下提供更多的热量输出。
此外,热泵还可以利用可再生能源(如太阳能、地热能)作为其低温源,进一步减少对传统能源的依赖。
总结起来,热泵的工作原理是基于热力学和制冷循环的。
通过蒸发、压缩、冷凝和膨胀这四个步骤,热泵可以将热能从低温源转移到高温源,实现供暖、制冷和热水等多种用途。
热泵的工作原理使其成为一种环保、高效和节能的能源利用技术。
热泵的工作原理热泵是一种利用热力学原理将低温热源中的热能转移到高温热源中的装置。
它可以实现供暖、制冷以及热水供应等多种功能,是一种高效节能的热能转换设备。
热泵的工作原理主要包括蒸发、压缩、冷凝和膨胀四个过程。
下面将详细介绍每个过程的工作原理。
1. 蒸发过程:热泵中的工质(通常是制冷剂)在低温热源中蒸发吸收热量。
当制冷剂处于低压状态时,它会吸收低温热源中的热量,从而将低温热源中的热能转化为制冷剂的蒸发潜热。
2. 压缩过程:经过蒸发过程后,制冷剂成为低温低压的气体。
这时,热泵中的压缩机开始工作,将制冷剂压缩成高温高压的气体。
在这个过程中,制冷剂的温度和压力都会升高,从而使其具备足够的热能。
3. 冷凝过程:高温高压的制冷剂通过冷凝器,与高温热源进行热交换。
在冷凝器中,制冷剂释放出热量,使其温度降低并转化为液体状态。
这个过程中,制冷剂释放的热量被传递给高温热源,从而实现了热能的转移。
4. 膨胀过程:经过冷凝过程后,制冷剂成为低温低压的液体。
这时,制冷剂通过膨胀阀进入蒸发器,压力迅速降低,使得制冷剂变成低温低压的蒸发态。
在蒸发器中,制冷剂再次吸收低温热源中的热量,循环回到蒸发过程,循环往复。
通过以上四个过程的循环运行,热泵能够将低温热源中的热能转移到高温热源中,实现供暖、制冷或热水供应等功能。
而且,热泵的工作过程中不需要燃烧燃料,只需要消耗少量的电能,因此具有高效节能的特点。
热泵的工作原理基于热力学定律,通过改变制冷剂的压力和温度,实现热能的转移。
同时,热泵还可以根据需要进行制冷和制热的切换,具有很高的灵活性和适应性。
总结起来,热泵的工作原理是通过蒸发、压缩、冷凝和膨胀四个过程,将低温热源中的热能转移到高温热源中。
热泵具有高效节能、无排放、灵活性强等优点,是一种环保、可持续发展的能源利用方式。
热泵的工作原理
热泵是一种能够将低温热源中的热量转移到高温热源的设备,它在供暖、制冷和热水供应等领域有着广泛的应用。
热泵的工作原理主要包括蒸发、压缩、冷凝和膨胀四个过程,下面我们来详细介绍一下热泵的工作原理。
首先是蒸发过程。
热泵中的制冷剂在低温下吸收外界的热量,使得制冷剂蒸发成为低温低压的蒸汽。
这个过程类似于水在沸腾时变成水蒸气的过程,只不过热泵中使用的是特定的制冷剂。
接着是压缩过程。
制冷剂的蒸汽被压缩机压缩成高温高压的气体。
在这个过程中,制冷剂吸收了外界的热量,使得其温度和压力都升高。
然后是冷凝过程。
高温高压的制冷剂通过冷凝器散发热量,使得其变成高压液体。
这个过程类似于水蒸气在冷凝时变成液态水的过程,只不过热泵中的制冷剂是特定的物质。
最后是膨胀过程。
高压液体的制冷剂通过膨胀阀膨胀成低温低压的液体。
在这个过程中,制冷剂吸收了部分外界的热量,使得其
温度和压力都降低。
通过这四个过程的循环,热泵能够将低温热源中的热量转移到
高温热源,实现供暖、制冷和热水供应的功能。
这种工作原理类似
于空调,但是热泵不仅可以制冷,还可以供暖和热水供应,具有更
加广泛的应用。
总的来说,热泵的工作原理是通过制冷剂在蒸发、压缩、冷凝
和膨胀四个过程中循环流动,实现低温热源向高温热源的热量转移。
这种工作原理使得热泵成为一种高效节能的供热、制冷和热水供应
设备,对于节能减排和环保都具有重要意义。
随着科技的不断进步,热泵技术也在不断创新和完善,相信在未来会有更加广泛的应用前景。
在自然界中,水总由高处流向低处,热量也总是从高温传向低温。
但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温传递到高温。
所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。
一台压缩式热泵装置,主要有蒸发器、压缩机、冷凝器和膨胀阀四部分组成,通过让工质不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。
热泵在工作时,把环境介质中贮存的能量QA在蒸发器中加以吸收;它本身消耗一部分能量,即压缩机耗电QB;通过工质循环系统在冷凝器中进行放热QC,QC=QA+QB,由此可以看出,热泵输出的能量为压缩机做的功QB和热泵从环境中吸收的热量QA;因此,采用热泵技术可以节约大量的电能。
热泵发展趋势
从科学利用热能的角度来说,使用电力、燃气、燃油等高品位的能源,来加热仅四五十度温升的生活用热水是极不合算的,这样的加热过程即使是达到100%的效率,表面看是没有热能的损失,但实际上已经伴随着巨大的熵增损失,是一种极大的能源浪费。
从热力学第二定律的意义上讲,传热的温差越大,能量的损失就越大,即热能除了有“热量”方面度量以外,还有“品位”方面的度量,人们应该尽可能使用较低品位的热能,这才是科学的和合理的。
现有的热水器实质上都是能量转换装置,它把电能、燃料的化学能或太阳能转换为热能,其系统“效率”不可能超过100 % ,例如燃气热水器,因为有高温废气的排放、不完全燃烧、强制排烟及换热效率方面的损失,实际的制热系数仅在0.5—0.7之间。
在很久以前,科学家就提出了热泵的工作原理,为人类科学的使用低温热能指出了方向,目前热泵技术在世界上也已经有了许多方面的应用,国内的应用主要在冷热双效空调产品中,即以室外空气为热源对室内空气进行加热,以达到节能的目的,其系统致热系数已经能高达4倍。
热泵的名称很形象的比喻它的原理:即热泵不是热能的转换设备而是热量的搬运设备,它是一台“泵”,这个泵所搬运的介质不是水、气或油,而是“热”。
也因为这样,它的“效率”不受能量转换效率(100%为其极限)的制约。
热泵制热的效率,受到逆向卡诺循环效率的制约,其理论上的最高效率为:(工作温度+ 273.15)/ 高、低温差,从这里可以看出,只要有效的降低工作温差,就可以提高制热效率。
例如高低工作温差在20 度时,系统的理论制热系数就可以达到15倍以上。
制热四个过程原理
(1)压缩过程
蒸发后的运行工质被吸入压缩机,通过压缩机的压缩功能,将工质压缩成高压高温气体,使其对于较低温度的自来水易于放热、液化。
(2)冷凝过程
从压缩机排出的高压高温工质被常温的自来水吸收热量而变成的液态工质。
(3)节流过程
把液化后的工质送入热泵主机蒸发器之前,利用毛细管的压力差,使工质在保温水箱的冷凝器内冷凝降压,将它变成即使在低温下也易于蒸发的状态。
(4)蒸发过程
液态工质从周围空气中吸收热量而不断蒸发汽化,被吸收热量后的空气变为“冷气”。
热泵制热原理
热泵热水器是空调器的演变产品,在制冷系统中装上电磁四通阀(又称换向阀),通过四通阀的切换方向,改变制冷剂的流动方向,空调器就能制热。
压缩机排出的高温高压蒸汽状的制冷剂流向保温水箱里的冷凝器,将热量传给通过水箱的自来水,然后通过毛细管节流降压,在室外热泵主组的蒸发器中蒸发吸热,用工质吸收室外空气中的热量。
热泵热水器就是这样吸收室外空气中的热量,向保温水箱内自来水传递,它比单纯用电加热器制热更能省电、快速、安全,且室外热能潜力无限大。
热泵制热时,如果热泵主机换热器的温度太低,则冷凝水会在热泵主机换热器上结霜,影响制热效果,此时必须进入化霜工况运行,热泵主机换热器放热化霜,等结霜化去后重新开始制热。
热泵的概念及工
作原理
顾名思义,热泵就是可以把热量由低温热源输送到高温热源的机械设备。
比如在冬季,室外的
空气、地面水、地下水等等就是低温热源,而室内空气就是高温热源。
热泵式空调就是可以把
室外环境的热量输送到室内环境里。
要搞清楚热泵的工作原理,首先要懂得制冷系统的工作原理。
制冷系统(压缩式制冷)一般由
四部分组成:压缩机、冷凝器、节流阀、蒸发器。
其工作过程为:低温低压的液态制冷剂(例
如氟利昂),首先在蒸发器里从低温热源(例如冷冻水)吸热并气化。
然后压缩机抽取蒸发器
里气化后的制冷剂气体并压缩到冷凝器内,此时制冷剂气体变成高温高压气体。
该高温高压气
体在冷凝器内被高温热源(例如冷却水)冷却凝结成液体,变成高温高压液体制冷剂。
再经节
流阀截流成低温低压液态制冷剂。
如此就完成一个制冷循环。
对于一台分体式热泵空调来说,夏天制冷时就是把冷凝器放在室外,而把蒸发器放在室内。
运
行时就把室内的热量输送到了室外。
而冬季则把蒸发器放在室外,把冷凝器放在室内,这样就
把室外的热量输送到了室内。
当然我们不会换季时去拆装设备了,而是通过体格转换阀使蒸发
器和冷凝器换位的。
热泵空调里面有一个四通换向阀。
在制冷工况下,室内热交换器就是蒸发器,室外热交换器(夏
天往外呼呼出热风的那个东西)就是冷凝器。
冬季供热的时候,四通换向阀切换,改变冷媒的
流向,此时,室内热交换器就是冷凝器,室外热交换器(冬天往外呼呼出冷风的那个东西)就
是蒸发器。
由于冬季往外出冷风,换热器要结霜,所以等结霜到一定程度时,四通换向阀再切
换,空调变成夏季制冷工况,室外热交换器得到热量,化霜,化霜完毕后,四通阀再切换到制
热状态。
除霜时,为了防止向室内吹冷风,故室内机的风机停止运转
源热泵工作原理及其系统构成
“热泵”这一术语是借鉴“水泵”一词得来。
在自然环境中,水往低处流动,热向低温位传递。
水泵将水从低处泵送到高处利用。
而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。
在我国《暖通空调术语标准(gb50155-92)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”;在《新国际制冷词典(new international dictionary of refrigeration)》中,对“热泵”的解释是“以冷凝器放出的热量来供热的制冷系统”。
可见,热泵在本质上是与制冷机相同的,只是运行工况不同。
其工作原理是,由电能驱动压缩机,使工质(如r22)循环运动反复发生物理相变过程,分别在蒸发器中气化吸热、在冷凝器中液化放热,使热量不断得到交换传递,并通过阀门切换使机组实现制热(或制冷)功能。
在此过程中,热泵的压缩机需要一定量的高位电能驱动,其蒸发器吸收的是低位热能,但热泵输出的热量是可利用的高位热能,在数量上是其所消耗的高位热能和所吸收低位热能的总和。
热泵输出功率与输入功率之比称为热泵性能系数,即cop值(coefficient of performance )。
热泵有多种,以水作为热源和供热介质的热泵称为水源热泵。
水源热泵性能系数(即cop值)高于空气源热泵,系统运行性能稳定。
水源热泵工程是一项系统工程,一般由水源系统、水源热泵机房系统和末端散热系统三部分组成。
其中,水源系统包括水源、取水构筑物、输水管网和水处理设备等。
2、水源热泵对水源系统的要求
水源系统的水量、水温、水质和供水稳定性是影响水源热泵系统运行效果的重要因素。
应用水源热泵时,对水源系统的原则要求是:水量充足,水温适度,水质适宜,供水稳定。
具体说,水源的水量,应当充足够用,能满足用户制热负荷或制冷负荷的需要。
如水量不足,机组的制热量和制冷量将随之减少,达不到用户要求。
水源的水温应适度,适合机组运行工况要求。
例如,清华同方ghp型水源中央空调系统在制热运行工况时,水源水温应为12—22℃;在制冷运行工况时,水源水温应为18—30℃。
水源的水质,应适宜于系统机组、管道和阀门的材质,不至于产生严重的腐蚀损坏。
水源系统供水保证率要高,供水功能具有长期可靠性,能保证水源热泵中央空调系统长期和稳定运行。
3、水源
原则上讲,凡是水量、水温能够满足用户制热负荷或制冷复荷的需要,水质对机组设备不产生腐蚀损坏的任何水源都可作为水源热泵系统利用的水源,既可以是再生水源,也可以是自然水源。