模糊聚类和模糊识别法的流动单元分类新方法
- 格式:pdf
- 大小:201.58 KB
- 文档页数:4
模糊聚类方法1. 引言模糊聚类是一种将相似的数据点分组的无监督学习技术。
与传统的硬聚类方法相比,模糊聚类通过为每个数据点分配属于不同簇的隶属度来提供更灵活的聚类结果。
本文将介绍模糊聚类方法的基本原理、常用算法以及在实际应用中的一些注意事项。
2. 模糊聚类的基本原理模糊聚类方法的核心思想是将每个数据点划分为多个簇的一部分,而不是将其硬性地分配到某个具体的簇中。
每个数据点属于不同簇的隶属度之和为1,隶属度越大表示该数据点属于该簇的可能性越高。
通过使用模糊聚类方法,我们可以更好地处理数据的不确定性和噪音,同时提供更丰富的聚类结果。
相比硬聚类方法,模糊聚类能够提供更多的信息,适用于更广泛的应用。
3. 常用的模糊聚类算法3.1 模糊C均值聚类算法(FCM)模糊C均值聚类算法是最常用的模糊聚类算法之一。
它在每次迭代中通过计算数据点到簇中心的欧氏距离来更新隶属度,并通过最小化目标函数来调整簇中心的位置。
FCM算法的优点在于对于噪音和离群值的处理能力较强,且具有较好的收敛性。
然而,它对于初始聚类中心的选择较为敏感,且对于大数据集的计算效率较低。
3.2 模糊子空间聚类算法(FSCM)模糊子空间聚类算法是一种基于子空间的模糊聚类方法。
它在模糊聚类的基础上考虑了数据的高维性和局部结构,通过将数据点投影到子空间中进行聚类。
FSCM算法的特点在于能够处理高维数据和具有相关性的特征,且对于离群值具有较好的鲁棒性。
然而,由于需要对每个子空间进行聚类,计算复杂度较高。
3.3 模糊谱聚类算法(FSPC)模糊谱聚类算法是一种基于图论的模糊聚类方法。
它通过构建数据点之间的相似度图,并通过计算图的拉普拉斯矩阵的特征向量来进行聚类分析。
FSPC算法的优点在于能够处理非凸数据分布和非线性数据结构,且对于图的建模和谱分解具有较好的效果。
然而,算法的计算复杂度较高,且对于参数的选择较为敏感。
4. 模糊聚类的实际应用模糊聚类方法在多个领域中都有广泛的应用。
第二节模糊聚类分析方法模糊聚类分析,是从模糊集的观点来探讨事物的数量分类的一类方法。
近年来,模糊聚类分析方法在地理分区与地理事物分类研究中得到了广泛地应用。
本节,我们将主要介绍基于模糊等价关系与基于最大模糊支撑树的模糊聚类分析方法在地理分区和地理事物分类中的应用。
一、基于模糊等价关系的模糊聚类分析方法基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关上的一个普通等价关系,也就得到了关于U中被分类对象元素的一种分类。
当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类分析方法中的一个关键性的环节。
(一)建立模糊等价关系各个分类对象之间的相似性统计量,建立分类对象集合U上的模糊相似关系1.模糊相似关系的建立关于各分类对象之间相似性统计量r ij的计算,除了采用夹角余弦公式和相似系数计算公式(分别见第二章第三节中(10)和(11)式)以外,还可以采用如下几个计算公式。
(1)数量积法:在(1)式中,M是一个适当选择之正数,一般而言,它应满足:(2)绝对值差数法:在(2)式中,c为适当选择之正数,使0≤r ij<1(i≠j)。
(3)最大最小值法:(4)算术平均最小法:(5)绝对值指数法:(6)指数相似系数法:在(6)式中,s k是第k个指标的方差,即传递性,也就是说它并不是模糊等价关系。
因此,为了聚类,我们必须采用这样下去,就必然会存在一个自然数K,使得:显然,对于第二章中表2-12所描述的九个农业区域,用夹角余弦公式计算所得的相似系数矩阵就是这九个农业区域所构成的分类对象集合上的一个模糊相似关系,经过自乘计算后可以验证:■R=R4R4=R4(二)在不同的截集水平下进行聚类结果:(1)取λ=1,得:各自成为一类。
(2)取λ=0.99,得:G6,G7归并为一类,而G1,G2,G3,G4,G8,G9各自成为一类。
(3)取λ=0.95,得:行与第3行和其它各行均不相同,故G2与G8聚为一类,G4与G9聚为一类,G5、G6、G7聚为一类,而G1和G3各自成为一类。
关于模糊聚类法的研究及在空间信息技术中的应用模糊聚类分析 (3)一、简介 (3)1. 简要介绍 (3)2. 分类方法 (3)1. 综述 (3)2. 系统聚类法 (2)逐步聚类法 (3)2.最优分类 (3)模糊聚类分析1. 简要介绍涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。
聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。
事物之间的界限,有些是确切的,有些则是模糊的。
例如人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。
当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。
模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。
通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。
模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。
2. 分类方法1综述数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阑值也会产生不同的分类结果•“如何确定这些分类的有效性”便成为模糊聚类和模糊。
识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想•但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法•用固定的显著性水平,在不同分类的F—统计量和F检验临界值的差中选最大者,即为有效分类•但是,当显著性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类•此方法人为干预较多,当这个规定数不同时,也会得到不同的结果•另外这两种方法也未比较不同模糊相似矩阵的分类结果2•系统聚类法系统聚类法是基于模糊等价关系的模糊聚类分析法。
模糊聚类算法的原理和实现方法模糊聚类算法是一种数据分类和聚类方法,它在实际问题中有着广泛的应用。
本文将介绍模糊聚类算法的原理和实现方法,包括模糊C均值(FCM)算法和模糊神经网络(FNN)算法。
一、模糊聚类算法的原理模糊聚类算法是基于模糊理论的一种聚类方法,它的原理是通过对数据进行模糊分割,将每个数据点对应到多个聚类中心上,从而得到每个数据点属于各个聚类的置信度。
模糊聚类算法的原理可以用数学公式进行描述。
设有n个数据样本点X={x1, x2, ..., xn},以及m个聚类中心V={v1, v2, ..., vm}。
对于每个数据样本点xi,令uij为其属于第j个聚类中心的置信度,其中j=1,2,..., m,满足0≤uij≤1,且∑uij=1。
根据模糊理论,uij的取值表示了xi属于第j个聚类中心的隶属度。
为了达到聚类的目的,我们需要对聚类中心进行调整,使得目标函数最小化。
目标函数的定义如下:J = ∑∑(uij)^m * d(xi,vj)^2其中,m为模糊度参数,d(xi,vj)为数据点xi与聚类中心vj之间的距离,常用的距离度量方法有欧氏距离和曼哈顿距离。
通过不断调整聚类中心的位置,最小化目标函数J,即可得到模糊聚类的结果。
二、模糊C均值(FCM)算法的实现方法模糊C均值算法是模糊聚类算法中最经典的一种方法。
其具体实现过程如下:1. 初始化聚类中心:随机选取m个数据点作为初始聚类中心。
2. 计算隶属度矩阵:根据当前聚类中心,计算每个数据点属于各个聚类中心的隶属度。
3. 更新聚类中心:根据隶属度矩阵,更新聚类中心的位置。
4. 判断是否收敛:判断聚类中心的变化是否小于设定的阈值,如果是则停止迭代,否则返回第2步。
5. 输出聚类结果:将每个数据点分配到最终确定的聚类中心,得到最终的聚类结果。
三、模糊神经网络(FNN)算法的实现方法模糊神经网络算法是一种基于模糊理论和神经网络的聚类方法。
其实现过程和传统的神经网络类似,主要包括以下几个步骤:1. 网络结构设计:确定模糊神经网络的层数和每层神经元的个数。
模糊聚类算法(FCM)伴随着模糊集理论的形成、发展和深化,RusPini率先提出模糊划分的概念。
以此为起点和基础,模糊聚类理论和⽅法迅速蓬勃发展起来。
针对不同的应⽤,⼈们提出了很多模糊聚类算法,⽐较典型的有基于相似性关系和模糊关系的⽅法、基于模糊等价关系的传递闭包⽅法、基于模糊图论的最⼤⽀撑树⽅法,以及基于数据集的凸分解、动态规划和难以辨别关系等⽅法。
然⽽,上述⽅法均不能适⽤于⼤数据量的情况,难以满⾜实时性要求较⾼的场合,因此实际应⽤并不⼴泛。
模糊聚类分析按照聚类过程的不同⼤致可以分为三⼤类:(1)基于模糊关系的分类法:其中包括谱系聚类算法(⼜称系统聚类法)、基于等价关系的聚类算法、基于相似关系的聚类算法和图论聚类算法等等。
它是研究⽐较早的⼀种⽅法,但是由于它不能适⽤于⼤数据量的情况,所以在实际中的应⽤并不⼴泛。
(2)基于⽬标函数的模糊聚类算法:该⽅法把聚类分析归结成⼀个带约束的⾮线性规划问题,通过优化求解获得数据集的最优模糊划分和聚类。
该⽅法设计简单、解决问题的范围⼴,还可以转化为优化问题⽽借助经典数学的⾮线性规划理论求解,并易于计算机实现。
因此,随着计算机的应⽤和发展,基于⽬标函数的模糊聚类算法成为新的研究热点。
(3)基于神经⽹络的模糊聚类算法:它是兴起⽐较晚的⼀种算法,主要是采⽤竞争学习算法来指导⽹络的聚类过程。
在介绍算法之前,先介绍下模糊集合的知识。
HCM聚类算法⾸先说明⾪属度函数的概念。
⾪属度函数是表⽰⼀个对象x ⾪属于集合A 的程度的函数,通常记做µA(x),其⾃变量范围是所有可能属于集合A 的对象(即集合A 所在空间中的所有点),取值范围是[0,1],即0<=µA(x),µA(x)<=1。
µA(x)=1 表⽰x 完全⾪属于集合A,相当于传统集合概念上的x∈A。
⼀个定义在空间X={x}上的⾪属度函数就定义了⼀个模糊集合A,或者叫定义在论域X={x}上的模糊⼦集A’。
流动单元的划分方法1.定义流动单元是横向上和纵向上连续的,具有相似的渗透率、孔隙度和层理特征的储集带。
流动单元定义的提出为砂岩的储集层的划分及作图提出了比较量化的定义,同时为油藏动态的数值模拟提供了一个比较理想的基础。
并且,流动单元是一个相对的概念,从宏观到微观的不同级次上的,影响流体流动的岩石特征和流体本身渗流特征相似的储集岩体,都可以称之为流动单元。
随着开发阶段的深入,根据油田实际地质开发条件的需要,流动单元的级次应该不断细化,一般分为以下4个级次:1)标志层法:用区域上稳定发育的泥岩或夹层进行划分,把泥岩或夹层纵向上分隔开的每一个层都称之为一个流动单元;2)沉积相法:用沉积相进行划分,把某几个相带或某几个相带的组合称之为流动单元;3)成因相法:把在沉积相带研究基础上进一步细分出的成因相或岩相作为流动单元;4)渗流单元划分:具有特定的影响流体流动的岩石物理特征,是一个成因砂体或砂体内部的次级要素,其外界与成因砂体和次级要素的边界相一致,不能穿相。
渗流单元分析的目的是建立符合油藏精细数值模拟所需的三维地质模型。
2.描述储层流动单元的参数分类描述储层流动单元的参数主要有以下几类:沉积特征参数、储层宏观参数、储层微观孔隙结构参数、流体物性参数和综合参数。
表1-1 描述储层流动单元分类参数类型典型代表沉积特征参数层理构造、粒度中值、泥质含量、砂岩厚度、砂岩有效厚度、净毛比、夹层厚度储层宏观参数孔隙度、渗透率、渗透率变异系数、渗透率突进系数、渗透率极差系数、垂直渗透率与水平渗透率之比储层微观孔隙结构参数孔隙结构类型、孔隙半径、平均渗流半径、流动带指数流体物性参数含油饱和度、原油粘度、原油密度、体积系数、胶质沥青质含量综合参数流动系数、存储系数流动单元参数的选取要紧密的和油藏地质和油藏工程,以及生产区的研究目的联系起来,选取流动单元参数尤其重要,一般,这些参数主要有孔隙度、渗透率、粒度中值、泥质含量、地层系数、饱和度、传导系数、存储系数、孔喉半径、孔喉比等。
模糊聚类方法模糊聚类是一种基于模糊集合理论的聚类算法,它在数据分析和模式识别中得到广泛应用。
与传统的硬聚类方法相比,模糊聚类能够更好地处理数据中的不确定性和模糊性,能够给出每个数据点属于不同聚类的概率,从而更全面地描述数据的特征。
一、模糊聚类的基本原理模糊聚类的基本原理是根据数据点之间的相似性将它们分成不同的聚类。
与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类,且给出每个数据点属于不同聚类的权重。
通过引入隶属度函数,模糊聚类能够更好地处理数据的模糊性,给出更丰富的聚类结果。
二、模糊聚类的算法步骤模糊聚类的算法步骤一般包括以下几个方面:1. 初始化隶属度矩阵:隶属度矩阵用于描述每个数据点属于每个聚类的概率,一般通过随机初始化或者根据先验信息进行初始化。
2. 计算聚类中心:根据隶属度矩阵计算每个聚类的中心点,一般采用加权平均的方式计算。
3. 更新隶属度矩阵:根据当前的聚类中心,更新隶属度矩阵,使得每个数据点更准确地属于不同聚类。
4. 判断停止条件:根据一定的准则(如隶属度矩阵的变化程度或者目标函数的收敛性)判断是否达到停止条件,如果未达到,则返回第2步继续迭代。
5. 输出聚类结果:根据最终的隶属度矩阵,确定每个数据点最可能属于的聚类,输出聚类结果。
三、模糊聚类的优势相比传统的硬聚类方法,模糊聚类具有以下优势:1. 能够更好地处理数据的模糊性和不确定性。
在现实世界的数据中,往往存在一些边界模糊或者属于多个类别的情况,传统的硬聚类无法很好地处理这种情况,而模糊聚类能够给出每个数据点属于不同聚类的概率。
2. 能够更全面地描述数据的特征。
传统的硬聚类方法只能将数据点划分为一个聚类,而模糊聚类能够给出每个数据点属于不同聚类的权重,从而更全面地描述数据的特征。
3. 能够适应不同的聚类形状和大小。
传统的硬聚类方法通常假设聚类的形状是凸的,并且假设聚类的大小相等,但在实际应用中,聚类的形状和大小往往是不确定的,而模糊聚类能够更好地适应不同的聚类形状和大小。