深圳市中考数学二模试卷
- 格式:doc
- 大小:843.50 KB
- 文档页数:17
2024年广东省深圳市宝安区中考数学二模模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在,,四个数中,最小的是()A. B.0 C. D.2.如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.如图,,,,则的度数为()A.B.C.D.5.某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为环,那么成绩为8环的人数是()环数789人数23A.4人B.5人C.6人D.7人6.已知是一元二次方程的一个根,则方程的另外一根为()A. B. C. D.7.如图,在中,弦AB,CD相交于点P,则一定与相等的是()A.B.C.D.8.一艘轮船在静水中的最大航速为,它以最大航速沿河顺流航行80km所用时间和它以最大航速沿河逆流航行60km所用时间相等,设河水的流速为,则可列方程()A. B. C. D.9.如图,将一张矩形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开,则展开图是()A. B. C. D.10.如图是抛物线的部分图象,其顶点坐标为且与x轴的一个交点在点和之间,则下列结论:①;②;③抛物线另一个交点在到之间;④当时,;⑤一元二次方程有两个不相等的实数根其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:本题共5小题,每小题3分,共15分。
11.分解因式______.12.今年春节电影《第二十条》、《热辣滚烫》、《飞驰人生2》、《熊出没逆转时空》在网络上持续引发热议,根据猫眼专业版数据显示,截至2月17日21时,2024年春节档新片总票房突破亿元,创造了新的春节档票房纪录,则其中数据亿用科学记数法表示为______.13.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在,由此可以估计纸箱内红球的个数约是______个.14.新冠疫情期间,同学们都在家里认真的进行了网课学习,小明利用平板电脑学习,如图是他观看网课时的侧面示意图,已知平板宽度即,平板的支撑角,小明坐在距离支架底部30cm处观看即,点E是小明眼睛的位置,垂足为是小明观看平板的视线,F为AB的中点,根据研究发现,当视线与屏幕所成锐角为时即,对眼睛最好,那么请你求出当小明以此视角观看平板时,他的眼睛与桌面的距离DE的长为______结果精确到参考数据:15.如图,正方形ABCD的边长为12,的半径为6,点P是上一个动点,则的最小值为______.三、解答题:本题共7小题,共56分。
2024年广东省深圳市34校中考二模联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某运动项目的比赛规定,胜一场记作“+1”分,平局记作“0”分,如果某队得到“-1”分,则该队在比赛中()A.与对手打成平局B.输给对手C.打赢了对手D.无法确定【答案】B【分析】根据正负数的概念即可得出答案.【详解】解:由题意可知:胜一场记作“+1”分,平局记作“0”分,∴某队得到“-1”分,则球队比赛输给了对手.故选:B.【点睛】本题考查了正数和负数的概念,解题的关键是理解正数和负数的意义.2.花窗是中国古代园林建筑中窗的一种装饰和美化的形式.下列花窗图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵ 是轴对称图形,也是中心对称图形,∴符合题意;∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵不是中心对称图形,∴不符合题意;故选B .【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.3.中国海关总署于2024年1月12日发布消息称:2023年我国汽车出口量为522万辆,同比增加57.4%.数据“522万”用科学记数法表示应为( )A .75.2210⨯B .65.2210⨯C .452210⨯D .70.52210⨯【答案】B【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数;由此进行求解即可得到答案.【详解】解:522万65220000 5.2210==⨯.故选:B .4.下图是深圳市2024年4月7~11日的天气情况,这5天中最低气温(单位:℃)的中位数与众数分别是( )A .19,19B .19,18C .18,19D .20,19【答案】A【分析】本题考查众数和中位数,解答本题的关键是明确题意,利用众数和中位数的知识解答.根据这5天的最低气温,先按照从低到高排列,然后即可得到这组数据的中位数和众数,本题得以解决.【详解】解:这5天中最低气温从低到高排列是:18,19,19,20,23,故这组数据的中位数是19,众数是19,故选:A .5.如图是某款婴儿手推车的平面示意图,若1130335AB CD ∠=︒∠=︒∥,,,则2∠的度数为( )A .75°B .80°C .85°D .90°【答案】C【分析】本题考查了平行线的性质,关键是由平行线的性质推出335ABC ∠=∠=︒,由三角形外角的性质即可求出2∠的度数.由平行线的性质推出,由邻补角的性质得到418013050∠=︒-︒=︒,由三角形外角的性质即可求出2485ABC ∠=∠+∠=︒.【详解】解:如图,∵AB CD ,∴335ABC ∠=∠=︒,∵1130∠=︒,∴418013050∠=︒-︒=︒,∴2485ABC ∠=∠+∠=︒.故选:C .6.下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .()22343218ab ab a b -⋅=-D .()32623ab ab b÷-=-【答案】D【分析】本题主要考查了单项式乘以单项式,单项式除以单项式,同底数幂乘法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、235a a a ⋅=,原式计算错误,不符合题意;B 、a 与22a 不是同类项,不能合并,原式计算错误,不符合题意;C 、()2223422322198a b ab ab ab a b -⋅⋅==,原式计算错误,不符合题意;D 、()32623ab ab b ÷-=-,原式计算正确,符合题意;故选:D .7.如图是一款桌面可调整的学习桌,桌面宽度AB 为60cm ,桌面平放时高度DE 为70cm ,若书写时桌面适宜倾斜角ABC ∠的度数为α,则桌沿(点A )处到地面的高度h 为( )A .()60sin 70cm α+B .(60cos 70)cm α+C .(60tan 70)cm α+D .130cm【答案】A【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AC CB ⊥,然后在Rt ACB △中,利用锐角三角函数的定义求出AC 的长,从而利用线段的和差关系进行计算,即可解答.【详解】解:由题意得:AC CB ⊥,在Rt ACB △中,60cm AB =ABC α∠=,∴sin 60sin AC AB αα=⋅=,∵70cm DE =,∴桌沿(点A )处到地面的高度()60sin 70cm h AC DE α=+=+.故选:A .8.在同一直角坐标系中,一次函数1212(0)2y x y kx b k =+=+<,的图象如图所示,则下列结论错误的是( )A .2y 随x 的增大而减小B .3b >C .当120y y <<时,12x -<<D .方程组24x y kx y b -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩【答案】C9.下图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.设共有银子x 两,共有y 人,则所列方程(组)错误的是( )隔壁听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.《算法统宗》注:明代时1斤=16两,故有“半斤八两”这个成语A .7498y y +=-B .4879x x -+=C .7498y x y x =-⎧⎨=+⎩D .7498y x y x=+⎧⎨-=⎩【答案】D【分析】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.10.如图(a ),A ,B 是⊙O 上两定点,90AOB ∠=︒,圆上一动点P 从点B 出发,沿逆时针方向匀速运动到点A ,运动时间是()s x ,线段AP 的长度是()cm y .图(b )是y 随x 变化的关系图象,其中图象与x 轴交点的横坐标记为m ,则m 的值是( )A .8B .6C .D .143【答案】B【分析】本题考查了动点问题的函数图形,合理分析动点P 的运动时间是解题关键.根据AP 最长时经过的路程所用的运动时间,求出总路程所用的时间是之前的三倍,即可解答.【详解】解:如图,当点P 运动到PA 过圆心O ,即PA 为直径时,AP 最长,由图(b )得,AP 最长时为6,此时2x =,90AOB ∠=︒Q ,90POB ∴∠=︒,∴此时点P 路程为90度的弧,点P 从点B 运动到点A 的弧度为270度,∴运动时间为236⨯=,故选:B .二、填空题11= .12.若关于x 的一元二次方程()222420a x x a a -+-+=有一个根为0,则=a .【答案】0【分析】本题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握一元二次方程解的意义是解本题的关键.把0x =代入一元二次方程()222420a x x a a -+-+=中求出a 的值,再根据一元二次方程的定义判断即可.【详解】解:把0x =代入方程()222420a x x a a -+-+=得:220a a -+=,解得0a =或2a =,∵方程()222420a x x a a -+-+=是关于x 的一元二次方程,∴20a -≠,∴2a ≠.∴a 的值为0.故答案为:0.13.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成如图所示的4张无差别的卡片A ,B ,C ,D .将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是物理变化的概率是 .A 冰化成水B 酒精燃烧C 牛奶变质D衣服晾干共有12种等可能的结果,其中所抽取的2张卡片刚好都是物理变化的结果有:共2种,∴所抽取的2张卡片刚好都是物理变化的概率为14.如图,正比例函数()0y ax a =>的图象与反比例函数()0ky k x=>的图象交于A ,B 两点,过点A 的直线分别与x 轴、y 轴交于C ,D 两点.当2AC AD =,18BCD S =△时,则k =.15.如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为 .三、解答题16.(1)计算:()02120248cos603π-⎛⎫--︒+- ⎪⎝⎭;(2)化简:22211121a a a a -⎛⎫-⋅ ⎪+-+17.在直角坐标系中,将ABC 进行平移变换,变换前后点的坐标的情况如下表:变换前ABC ()1,1A ()4,1B ()4,5C 变换后A B C ''' ()6,3A '()9,3B 'C '(1)平移后点C '的坐标是______,并在直角坐标系中画出A B C ''' ;(2)若(),P m n 是ABC 内一点,通过上述平移变换后,点P 的对应点P '的坐标可表示为______;(3)连接BB ',CC ',则四边形BB C C ''的形状是______,其面积为______.【答案】(1)()9,7,画图见解析(2)()5,2m n ++;(3)平行四边形,20【分析】本题主要考查了坐标与图形变化—平移,平移的性质,平行四边形的性质与判定等等:(1)根据()1,1A ,()6,3A '可得平移方式为向右平移5个单位长度,向上平移2个单位长度,据此求出C '的坐标,再描出A B C '''、、,然后顺次连接A B C '''、、即可;(2)根据(1)所求的平移方式即得到答案;(3)根据平移的性质得到BB CC BB CC ''''=,∥,则四边形BB C C ''的形状是平行四边形,则4520BB C C S ''=⨯=四边形.【详解】(1)解:∵A B C ''' 是ABC 平移得到的()1,1A ,()6,3A ',∴平移方式为向右平移5个单位长度,向上平移2个单位长度,∵()4,5C ,∴()45,52C +'+,即()9,7C ',故答案为:()9,7C '如图所示,A B C ''' 即为所求;(2)解:∵A B C ''' 是ABC 向右平移5个单位长度,向上平移2个单位长度得到的,(),P m n 是ABC 内一点,∴点P 的对应点P '的坐标可表示为()5,2m n ++,故答案为:()5,2m n ++;(3)解:由平移的性质可得BB CC BB CC ''''=,∥,∴四边形BB C C ''的形状是平行四边形,∴4520BB C C S ''=⨯=四边形.故答案为:平行四边形,20.18.某校学生的上学方式分为“A 步行、B 骑车、C 乘公共交通工具、D 乘私家车、E 其它”,该校数学兴趣小组成员在全校随机抽取了若干名学生进行抽样调查,并整理样本数据,得到如下两幅不完整的统计图:(1)本次抽样调查的人数为______人,并补全条形统计图;(2)扇形统计图中“A 步行”上学方式所对的圆心角是______度;(3)若该校共2000名学生,请估计该校“B骑车”上学的人数约是______人;(4)该校数学兴趣小组成员结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生超过全校学生总人数的30%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议.故答案为:150;(2)扇形统计图中“A步行”上学方式所对的圆心角是故答案为:36;(3)估计该校“B骑车”上学的人数约是故答案为:680;(4)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).19.为培养学生的阅读能力,深圳市某校八年级购进《朝花夕拾》和《西游记》两种书籍,分别花费了14000元和7000元,已知《朝花夕拾》的订购单价是《西游记》的订购单价的1.4倍.并且订购的《朝花夕拾》的数量比《西游记》的数量多300本.(1)求该校八年级订购的两种书籍的单价分别是多少元;(2)该校八年级计划再订购这两种书籍共100本作为备用,其中《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元,请求出再订购这两种书籍的最低总费用的方案及最低费用为多少元?答:《朝花夕拾》的订购单价是14元,《西游记》的订购单价是10元;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据题意得:301410(100)1200m m m ≥⎧⎨+-≤⎩,解得:3050m ≤≤.设该校八年级再次订购这两种书籍共花费为w 元,则1410(100)w m m =+-,即41000w m =+,40> ,w ∴随m 的增大而增大,∴当30m =时,w 取得最小值,最小值为43010001120⨯+=(元),此时1001003070m -=-=(本).答:当再次订购30本《朝花夕拾》,70本《西游记》时,总费用最低,最低费用为1120元.20.如图,以ABC 的边AB 为直径作O 分别交AC ,BC 于点D ,E ,过点E 作EF AC ⊥,垂足为F ,EF 与AB 的延长线交于点G .(1)以下条件:①E 是劣弧BD 的中点:②CF DF =;③AD DF =.请从中选择一个能证明EF 是O 的切线的条件,并写出证明过程:(2)若EF 是是O 的切线,且46AF AB ==,,求BG 的长.【答案】(1)详见解析(2)6BG =∴∠=∠,12,OA OD=,∠+∠=∠+∠A123A∴∠=∠=∠=∠,123∴∥,OE AC,EF AC⊥OE AC∴∥,∴∠=∠=︒,90OEG AFE的切线.∴是OEFDE OE,方法2:证明:连接,,=⊥,CF DF EF AC∴垂直平分线段CD,EF∴=,CE DE四边形ADEB为圆内接四边形,∴∠=∠,1CDE,OB OE=∴∠=∠,12∴∠=∠,C2∴∥,OE ACOEG AFE∴∠=∠=︒,90的切线.∴是OEF∥,(2)由(1)可知OE AC90,∴∠=∠=︒∠=∠,OEG AFE GOE GAF∴△∽△,GOE GAF21.【项目化学习】项目主题:从函数角度重新认识“阻力对物体运动的影响”.项目内容:数学兴趣小组对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究,兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用.实验过程:如图(a )所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动,从黑球运动到点A 处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间x (单位:s )、运动速度v (单位:cm /s )、滑行距离y (单位:cm )的数据.任务一:数据收集记录的数据如下:运动时间/t x0246810L 运动速度()/cm /s v 1098765L 滑行距离/cm y 01936516475L根据表格中的数值分别在图(b )、图(c )中作出v 与x 的函数图象、y 与x 的函数图象:(1)请在图(b)中画出v与x的函数图象:任务二:观察分析(2)数学兴趣小组通过观察所作的函数图象,并结合已学习过的函数知识,发现图(b)中v与x的函数关系为一次函数关系,图(c)中y与x的函数关系为二次函数关系.请你结合表格数据,分别求出v与x的函数关系式和y与x的函数关系式:(不要求写出自变量的取值范围)任务三:问题解决(3)当黑球在水平木板停下来时,求此时黑球的滑行距离:n处有一辆电动小车,以2cm/s的速(4)若黑球到达木板点A处的同时,在点A的前方cm度匀速向右直线运动,若黑球不能撞上小车,则n的取值范围应为______.(2)由(b )中图象可知:v 与x 的函数关系为一次函数关系,∴设v kx c =+,代入(0,10),(2,9)得:1029c k c =⎧⎨+=⎩,解得:1210k c ⎧=-⎪⎨⎪=⎩,v ∴与x 的函数关系为1102v x =-+;设2y ax bx =+代入(2,19),(4,36)得:22.综合与探究.【特例感知】(1)如图(a ),E 是正方形ABCD 外一点,将线段AE 绕点A 顺时针旋转90︒得到AF ,连接DE ,BF .求证:DE BF =;【类比迁移】(2)如图(b ),在菱形ABCD 中,4AB =,=60B ∠︒,P 是AB 的中点,将线段PA ,PD 分别绕点P 顺时针旋转90︒得到PE ,PF ,PF 交BC 于点G ,连接CE ,CF ,求四边形CEGF 的面积;【拓展提升】(3)如图(c ),在平行四边形ABCD 中,12AB =,10AD =,B ∠为锐角且满足4sin 5B =.P 是射线BA 上一动点,点C ,D 同时绕点P 顺时针旋转90︒得到点C ',D ',当BC D ''△为直角三角形时,直接写出BP 的长.线段AE 绕点A 顺时针旋转90︒得到AF ,AE AF ∴=,90EAF ∠=︒,EAF BAD ∴∠=∠,EAF DAF BAD DAF ∴∠-∠=∠-∠,DAE BAF ∴∠=∠,(SAS)ADE ABF ∴ ≌,DE BF ∴=;(2)如图1,连接AC ,作FH PC ⊥,交PC 的延长线于H ,作GQ PC ⊥于Q ,四边形ABCD 是菱形,AB BC ∴=,AB CD ,60B ∠=︒ ,ABC ∴ 是等边三角形,AC BC = ,P 是AB 的中点,CP AB ∴⊥,122AP PB AB ===,PC CD ∴⊥,4sin 60PC =⋅︒=PF PD ∴==90DPF DCP ∠=∠=︒ ,90DPC CPF DPC PDC ∴∠+∠=∠+∠=︒,CPF PDC ∴∠=∠,90H DCP ∠=∠=︒ ,(AAS)PHF DCP ∴△≌△,FH PC ∴==211622PCF S PC FH ∴=⋅=⨯=△,设QG x =,则CQ =,90PQG DCP ∠=∠=︒ ,PQG DCP ∴△∽△,∴PQ QG CD PC =,∴4PQ =PQ ∴,由PQ CQ PC +=得,=,65x ∴=,116622255PEG S PE QG ∴=⋅=⨯⨯=△,624655CEFG S ∴=-=四边形;(3)如图2,以点B 为坐标原点,BC 所在的直线为x 轴,建立坐标系,作PF AD ⊥,交DA 的延长线于点F ,作D G PF '⊥于G ,作CV x ⊥轴,过点P 作PV CV ⊥于V ,作C W PV '⊥于W ,4sin 5B =Q ,∴直线AB 的解析式为43y x =,设4(,)3P m m ,90F G ∠=∠=︒ ,90PDF DPF ∴∠+∠=︒,90DPD '∠=︒ ,90DPF GPD '∴∠+∠=︒,PDF GPD '∴∠=∠,PD D P '= ,(AAS)PDF D PC '∴△≌△,PF GD '∴=,PG DF =,12AB = ,4sin sin 5DCE B ∠==,4481255DE ∴=⨯=,3361255CE =⨯=,364810,55D ⎛⎫∴+ ⎪⎝⎭,即:8648,55D ⎛⎫⎪⎝⎭,865PG DF m ∴==-,48453GD PF m '==-,484486,()5335D m m m m ⎛⎫'∴+--- ⎪⎝⎭,即481786,5335m m ⎛⎫-- ⎪⎝⎭,222248178650260()(388533593BD m m m m '∴=-+-=-+,同理可得:43PW CV m ==,10C W PV m '==-,44,(10)33C m m m m ⎛⎫'∴--- ⎪⎝⎭,即:17,1033m m ⎛⎫-- ⎪⎝⎭,22221750140()(10)1003393BC m m m m '∴=+-=-+,当90BC D ''∠=︒时,12C D CD ''== ,2225014050260121003889393m m m m ∴+-+=-+,185m ∴=,563BP m ∴==,当90BD C ''∠=︒时,2225014050260100388129393m m m m -+=-++,545m ∴=,5183BP m ∴==,当90C BD ''∠=︒时,2225014050260100388129393m m m m -++-+=,m ∴5103BP m ∴==。
2023年广东省深圳市福田区中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)如图,数轴上点A表示的数的相反数是()A.﹣3B.﹣C.2D.32.(3分)如图,是由相同大小的五个小正方体组成的立体模型,它的俯视图是()A.B.C.D.3.(3分)位于深圳市光明中心区科学公园的深圳科技馆占地面积为66000m2.66000用科学记数法可以表示成()A.66×103B.6.6×104C.6.6×103D.0.66×105 4.(3分)不等式组的解集是()A.x>0B.x>2C.x≥﹣1D.x≤﹣15.(3分)下列计算正确的是()A.a2•a6=a12B.a8÷a4=a2C.(﹣2a2)3=﹣8a6D.a3+a4=a76.(3分)观察下列尺规作图痕迹,其中所作线段AD为△ABC的角平分线的是()A.B.C.D.7.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.4 8.(3分)小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若点A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.29.(3分)我国古代数学经典著作《九章算术》中有这样一题,原文是:今有共买物,人出七,盈二;人出六,不足三.问人数、物价各几何?”意思是:今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱,问人数、货物总价各多少?设人数为x人,货物总价为y钱,可列方程组为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,点D在斜边AB上,以BD为直径的⊙O经过边AC上的点E,连接BE,且BE平分∠ABC.若⊙O的半径为3,AD=2,则线段BC 的长为()A.B.8C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)因式分解:x3﹣x=.12.(3分)一个不透明的袋子中只装有2个白球和4个红球,这些球除颜色外都相同,现从袋子中随机摸出一个球,则摸出的球恰好是红球的概率为.13.(3分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路CD与DF的夹角∠CDF=54°.城市规划部门想新修一条道路BF,要求BE=EF,则∠B的度数为.14.(3分)如图,在平面直角坐标系中,将菱形ABCD向右平移一定距离后,顶点C,D 恰好均落在反比例函数y=(k≠0,x>0)的图象上,其中点A(﹣6,6),B(﹣3,2),且AD∥x轴,则k=.15.(3分)如图,正方形ABCD的边长为8,对角线AC,BD相交于点O,点M,N分别在边BC,CD上,且∠MON=90°,连接MN交OC于P,若BM=2,则OP•OC=.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)计算:.17.(7分)先化简,再求值:,其中a=3.18.(8分)“读书让生活更加多彩,阅读让城市更有温度”.近年来,作为深圳中心城区和“首善之区”的福田各学校积极打造“阅读永恒、书香满溢”的爱阅之校.为了解今年福田区15000名初三学生的每天平均课外阅读时间,从中随机抽取若干名学生进行问卷调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组别时间(小时)频数(人数)频率A0≤t<0.5400.1B0.5≤t<1a0.3C1≤t<1.5140bD 1.5≤t<2800.2E2≤t<2.5200.05(1)表中的a=,b=;(2)补全频数分布直方图;(3)结合调查信息,请你估计今年该区初三学生中,每天课外阅读小于1小时的学生约有多少人?19.(8分)为迎接“五一”国际劳动节,某市政府准备购买紫花风和洋红风两种观花树苗,用来美化某大道沿路两侧景观,在购买时发现,紫花风树苗的单价比洋红风树苗的单价高了50%,用1800元购买紫花风树苗的棵数比用1800元购买洋红风树苗的棵数少10棵.(1)问紫花风、洋红风两种树苗的单价各是多少元?(2)现需要购买紫花风、洋红风两种树苗共120棵,且购买的总费用不超过8700元,求至少需要购买多少棵洋红风树苗?20.(8分)如图,已知抛物线y=a(x﹣1)2+h与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,4)(1)求该抛物线的表达式;(2)点E是线段BC的中点,连结AE并延长与抛物线交于点D,求点D的坐标.21.(9分)【综合与实践】我国海域的岛屿资源相当丰富,总面积达72800多平方公里,有人居住的岛屿达450个.位于北部湾的某小岛,外形酷似橄榄球,如图1所示.如图2所示,现把海岸线近似看作直线m,小岛面对海岸线一侧的外缘近似看作AB,经测量,AB的长可近似为250π海里,它所对的圆心角(∠AOB)的大小可近似为90°.(注:AB在m上的正投影为图中线段CD,点O在m上的正投影落在线段CD上.)(1)求的半径r;(2)因该岛四面环海,淡水资源缺乏,为解决岛上居民饮用淡水难的问题,拟在海岸线上,建造一个淡水补给站,向岛上居民输送淡水.为节约运输成本,要求补给站到小岛外缘AB的距离最近(即,要求补给站与上的任意一点,两点之间的距离取得最小值.);请你依据所学几何知识,在图2中画出补给站位置及最短运输路线.(保留画图痕迹,并做必要标记与注明;不限于尺规作图,不要求证明.)(3)如图3,若测得AC长为600海里,BD长为500海里,试求出(2)中的最小距离.22.(10分)【材料阅读】在等腰三角形中,我们把底边与腰长的比叫做顶角的张率(scop).如图1,在△XYZ中,XY=XZ,顶角X的张率记作scop∠X==.容易知道一个角的大小与这个角的张率也是相互唯一确定的,所以,类比三角函数,我们可按上述方式定义∠α(0°<∠α<180°)的张率,例如,scop60°=1,scop90°=,请根据材料,完成以下问题:如图2,P是线段AB上的一动点(不与点A,B重合),点C,D分别是线段AP,BP的中点,以AC,CD,DB为边分别在AB的同侧作等边三角形△ACE,△CDF,△DBG,连接PE和PG.(1)【理解应用】①若等边三角形△ACE,△CDF,△DBG的边长分别为a,b,c,则a,b,c三者之间的关系为;②scop∠EPG=;(2)【猜想证明】如图3,连接EF,FG,猜想scop∠EFG的值是多少,并说明理由;(3)【拓展延伸】如图4,连接EF,EG,若AB=12,,则△EPG的周长是多少?此时AP的长为多少?(可直接写出上述两个结果)2023年广东省深圳市福田区中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.【分析】根据图示,数轴上点A表示的数是﹣3,据此求出它的相反数即可.【解答】解:根据图示,数轴上点A表示的数是﹣3,∴数轴上点A表示的数的相反数是:﹣(﹣3)=3.故选:D.【点评】此题主要考查了数轴的特征和应用,以及相反数的含义以及求法,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,可得图形如下:.故选:D.【点评】本题考查了简单组合体的三视图,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:66000=6.6×104.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>2,解不等式②得:x≥﹣1,∴原不等式组的解集为:x>2,故选:B.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.5.【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、a2•a6=a8,故A不符合题意;B、a8÷a4=a4,故B不符合题意;C、(﹣2a2)3=﹣8a6,故C符合题意;D、a3与a4不属于同类项,不能合并,故D不符合题意;故选:C.【点评】本题主要考查同底数幂的除法,合并同类项,积的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.6.【分析】根据基本作图的方法对各选项进行判断即可.【解答】解:对于A选项,由作图痕迹可知,AD为∠CAB的平分线,故A选项符合题意;对于B选项,由作图痕迹可知,AD为△ABC中BC边上的高线,故B选项不符合题意;对于C选项,由作图痕迹可知,AD为△ABC的中线,故C选项不符合题意;对于D选项,由作图痕迹可知,AD为△ABC中BC边上的高线,故D选项不符合题意.故选:A.【点评】本题考查作图﹣基本作图、三角形的角平分线、中线和高,熟练掌握基本作图的方法是解答本题的关键.7.【分析】利用众数、中位数及平均数的定义写出答案即可.【解答】解:该同学五项评价得分从小到大排列分别为7,8,8,9,10,出现次数最多的数是8,所以众数为8,位于中间位置的数是8,所以中位数是8,平均数为=8.4.故选:D.【点评】本题考查了统计的知识,掌握众数、中位数及平均数的定义是关键.8.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解;∵点A,B,C三点均在相应的等高线上,且三点在同一直线上,∴==,故选:B.【点评】本题考查的是平行线分线段成比例定理的应用,根据定理列出比例式是解题的关键.9.【分析】根据“今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵今有人合伙购物,每人出七钱,会多二钱,∴y=7x﹣2;∵每人出六钱,又差三钱,∴y=6x+3.∴根据题意可列方程组.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.10.【分析】连接OE,由角平分线的性质,等腰三角形的性质的推出∠OEB=∠CBE,得到OE∥BC,因此△AOE∽△ABC,得到AO:AB=OE:BC代入有关数据,即可求出BC 的长.【解答】解:连接OE,∵BE平分∠ABC,∴∠ABE=∠CBE,∵OE=OB,∴∠OEB=∠ABE,∴∠OEB=∠CBE,∴OE∥BC,∴△AOE∽△ABC,∴AO:AB=OE:BC,∵⊙O的半径为3,AD=2,∴AO=AD+OD=2+3=5,AB=AD+BD=2+6=8,∴5:8=3:BC,∴BC=.故选:C.【点评】本题考查角平分线定义,等腰三角形的性质,相似三角形的判定和性质,关键是掌握相似三角形的判定和性质.二、填空题(本大题共5小题,每小题3分,共15分)11.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】直接由概率公式求解即可.【解答】解:从袋子中随机摸出一个球,恰好是红球的概率是=,故答案为:.【点评】本题考查了概率公式.掌握概率=所求情况数与总情况数之比是解决问题的关键.13.【分析】先根据平行线的性质,由AB∥CD得到∠AEF=∠CDF=54°,根据等腰三角形的性质得出∠B=∠F,再根据三角形外角性质计算∠B的度数.【解答】解:∵AB∥CD,∴∠AEF=∠CDF=54°,∵BE=EF,∴∠B=∠F,∵∠AEF=∠B+∠F,∴∠B=∠AEF=×54°=27°.故答案为:27°.【点评】本题考查了等腰三角形的性质、平行线的性质,熟记等腰三角形的性质、平行线的性质是解题的关键.14.【分析】根据点A、B的坐标可得点C的坐标,根据平移方法可得平移后点C和D的坐标分别为(2+m,2)、(﹣1+m,6),根据反比例函数图象上点的坐标特点可得k=(2+m)×2=(﹣1+m)×6,解方程即可求出m的值,进而求得k的值.【解答】解:∵四边形ABCD是菱形,AD∥x轴,∴BC=AD=AB=CD,∵A(﹣6,6),B(﹣3,2),∴AB==5,∴BC=AD=AB=CD=5,∴C(2,2),D(﹣1,6).将菱形ABCD向右平移m个单位长度,则平移后点C和D的坐标分别为(2+m,2)、(﹣1+m,6),∵平移后的点C,D恰好同时落在反比例函数y=(k≠0,x>0)的图象上,∴k=(2+m)×2=(﹣1+m)×6,解得m=2.5,∴k=(2+m)×2=9,故答案为:9.【点评】此题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化﹣平移,待定系数法求反比例函数的解析式,关键是掌握反比例函数图象上的点横纵坐标之积等于k.15.【分析】过点O作OE⊥BC于点E,根据正方形的性质可得OB=OC=OD,∠BOC=∠COD=90°,∠OBC=∠OCB=∠OCD=45°,再根据同角的余角相等可得∠BOM=∠CON,以此即可通过ASA证明△OBM≌△OCN,得到BM=CN=2,OM=ON,进而得到∠OMP=∠OCM=45°,易证明△OMP∽△OCM,根据相似三角形的性质可得,即OP•OC=OM2,由等腰直角三角形的性质可得OE=BE=4,则ME=2,最后根据勾股定理即可求解.【解答】解:如图,过点O作OE⊥BC于点E,∵四边形ABCD为边长为8的正方形,∴OB=OC=OD,BC=8,BD⊥AC,∴∠BOC=∠COD=90°,∠OBC=∠OCB=∠OCD=45°,∵∠BOC=∠BOM+∠COM=90°,又∵∠MON=∠COM+∠CON=90°,∴∠BOM=∠CON,在△OBM和△OCN中,,∴△OBM≌△OCN(ASA),∴BM=CN=2,OM=ON,∴△MON为等腰直角三角形,∴∠OMN=∠ONM=45°,∴∠OMP=∠OCM=45°,∵∠POM=∠MOC,∴△OMP∽△OCM,∴,∴OP•OC=OM2,∵∠BOC=90°,OB=OC,OE⊥BC,∴OE=BE==4,∴ME=BE﹣BM=2,在Rt△OME中,OM2=OE2+ME2,∴OM2=42+22=20,∴OP•OC=20.故答案为:20.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、相似三角形的判定与性质,正确寻找出全等三角形和相似三角形是解题关键.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.【分析】首先计算零指数幂、负整数指数幂、开平方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=4﹣2﹣1+6×=4﹣2﹣1+2=3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.17.【分析】先计算分式的除法,再算减法,然后把a的值代入化简后的式子进行计算,即可解答.【解答】解:=•﹣=﹣==,当a=3时,原式==.【点评】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.18.【分析】(1)先根据A组人数及其对应频率求出样本容量,再根据频率=频数÷样本容量求解可得a、b的值;(2)根据所求a的值补全图形即可;(3)总人数乘以样本中A、B这组频率之和即可.【解答】解:(1)∵样本容量为40÷0.1=400,∴a=400×0.3=120,b=140÷400=0.35,故答案为:120,0.35;(2)补全图形如下:(3)15000×(0.1+0.3)=6000(人),答:估计今年该区初三学生中,每天课外阅读小于1小时的学生约有6000人.【点评】本题主要考查了频数分布表,频数分布直方图,用样本估计总体.解题的关键是读懂统计图,能从频数分布表,扇形统计图中得到准确的信息.19.【分析】(1)设洋红风树苗的单价是x元,则紫花风树苗的单价是(1+50%)x元,由题意:用1800元购买紫花风树苗的棵数比用1800元购买洋红风树苗的棵数少10棵.列出分式方程,解方程即可;(2)设需要购买m棵洋红风树苗,则购买(120﹣m)棵紫花风树苗,由题意:购买的总费用不超过8700元,列出一元一次不等式,解不等式即可.【解答】解:(1)设洋红风树苗的单价是x元,则紫花风树苗的单价是(1+50%)x元,由题意得:﹣=10,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+50%)x=1.5x=1.5×60=90,答:紫花风树苗的单价是90元,洋红风树苗的单价是60元;(2)设需要购买m棵洋红风树苗,则购买(120﹣m)棵紫花风树苗,由题意得:60m+90(120﹣m)≤8700,解得:m≥70,答:至少需要购买70棵洋红风树苗.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.20.【分析】(1)把A,C坐标代入解析式,用待定系数法求函数解析式即可;(2)令y=0,解方程求出B的坐标,再根据中点坐标公式求出E的坐标,用待定系数法求出AE的解析式,再联立直线AE和抛物线解析式,解方程组求出D的坐标.【解答】解:(1)∵抛物线y=a(x﹣1)2+h与x轴交于点A(﹣2,0),与y轴交于点C(0,4),∴,解得,∴该抛物线的表达式为y=﹣(x﹣1)2+=﹣x2+x+4;(2)令y=0,则﹣x2+x+4=0,解得x1=﹣2,x2=4,∴B(4,0),∵E是BC的中点,E(2,2),设直线AE的解析式为y=mx+n,则,解得,∴直线AE的解析式为y=x+1,联立方程组,解得或,∴D(3,).【点评】本题考查抛物线与x轴的交点,中点坐标公式,直线和抛物线的交点等知识,关键是求出抛物线解析式.21.【分析】(1)根据弧长公式代入计算即可;(2)先找出圆心O,作OE⊥m于点E,交圆弧AB于点F,则图中点E即为所建补给站,线段EF表示最短运输路线;(3)作AT⊥OE于点T,作BU⊥OE于点U,利用AAS证明△ATO≌△OUB,得AT=OU,OT=BU,设线段OT长为x海里,则线段AT=(100+x)海里,利用勾股定理列方程进而解决问题.【解答】解:(1)∵圆弧AB的长为250π海里,它所对的圆心角为90°,圆的半径为r,∴250π=,∴r=500海里;(2)如图所示,图中点E表示所建补给站;简要作法:先找出圆心O,作OE⊥m于点E,交圆弧AB于点F,则图中点E即为所建补给站,线段EF表示最短运输路线;(3)如图,作AT⊥OE于点T,作BU⊥OE于点U,∵∠AOB=90°,∴∠OAT+∠AOT=∠BOU+∠AOT=90°,∴∠OAT=∠BOU,又∵OA=OB,∴△ATO≌△OUB(AAS),∴AT=OU,OT=BU,∵AC=ET=600海里,BD=UE=500海里,∴UT=100海里,设线段OT长为x海里,则线段AT=(100+x)海里,则x2+(100+x)2=5002,解得x=300,或x=﹣400(舍去),∴OT=300海里,∴OE=OT+AC=900海里,∴FE=OE﹣r=900﹣500=400(海里),∴(2)中的最小距离为400海里.【点评】本题是圆的综合题,主要考查了弧长公式,全等三角形的判定与性质,点与直线的距离,勾股定理等知识,作辅助线构造全等三角形是解题的关键.22.【分析】(1)①利用中点的定义,证明CD=AC+BD,可得结论;②证明∠EPG=120°,可得结论;(2)猜想:scop∠EPG=.如图3中,连接PF.证明∠EFG=2∠CFD=120°,可得结论;(3)证明EP+PG=(a+c)=AB=6,可得EG+EP+PG=2+6.如图4中,过点F作FH⊥CE交CE的延长线于点H.求出AP的值,再利用对称性解决问题即可.【解答】解:(1)①∵点C,D分别是线段AP,BP的中点,∴AC=CP,BD=PD,∵AC=a,BD=c,∴CD=CP+PD=a+c,即b=a+c,故答案为:b=a+c;②由题意得,EC=CP,∠ECP=120°,∴∠EPC=×(180°﹣120°)=30°,同理,∠GPD=30°,∴∠EPG=180°﹣30°﹣30°=120°,∴scop∠EPG=scop120°=.故答案为:b=a+c,;(2)猜想:scop∠EPG=.理由:如图3中,连接PF.∵点C是AP的中点,△ACE,△CDF都是等边三角形,∴CP=CE,∠ECF=∠PCF=60°,∵CF=CF,∴△ECF≌△PCF(SAS),∴∠EFC=∠PFC,同理可得,∠GFD=∠PFD,∴∠EFG=2∠CFD=120°,∴scop∠EPG=scop120°=;(3)∵△ECF≌△PCF,∴EF=PF,同理可证:GF=PF,∴EF=GF,∵∠EFG=120°,EF=2,∴EG=EF=2,∵点C,D分别是线段AP,BP的中点,等边三角形△ACE,△CDF,△DBG的边长分别为a,b,c,∴PC=AC=CE=a,PD=BD=DG=c,∠ECP=∠PDG=120°,∴EP=PC=a,PG=PD=c,∴EP+PG=(a+c)=AB=6,∴EG+EP+PG=2+6.如图4中,过点F作FH⊥CE交CE的延长线于点H.∵CF=CD=b=AB=6,∠ECF=60°,∴FH=CF•sin60°=3,CH=CF•cos60°=3,在Rt△EFH中,HE===1,∴CE=CH﹣HE=3﹣1=2,∴AP=2CE=4,由对称性可知,AP=12﹣4=8,综上所述,AP的值为4或8.【点评】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题。
2024年广东省深圳市盐田区中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一1.(3分)代数式﹣3x的意义可以是()A.﹣3与x的和B.﹣3与x的差C.﹣3与x的积D.﹣3与x的商2.(3分)《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A.武汉地铁B.重庆地铁C.成都地铁D.深圳地铁3.(3分)小梅沙海滨公园预计将于今年五一期间开放.园区占地面积约20.53万平方米,用水面积约100万平方米,开放后将成为滨海休息、沙滩活动及婚庆产业、活动赛事的重要承载空间.20.53万用科学记数法表示为()A.2.053×103B.2.053×104C.2.053×105D.2.053×1064.(3分)计算(3a2)3的结果是()A.6a5B.9a6C.27a5D.27a65.(3分)已知不等式组的解集是﹣1<x<0,则(a+b)2024的值为()A.﹣1B.1C.0D.20246.(3分)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A.80和81B.81和80C.80和85D.85和807.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°8.(3分)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,则可列方程为()A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x+1)=x﹣4.5D.(x﹣1)=x+4.59.(3分)一次函数y=kx+b的图象与与反比例函数的图象交于A(a,2),B(2,﹣1),则不等式的解集是()A.﹣1<x<0或x>2B.x<﹣1或x>1C.x<﹣2或0<x<2D.x<﹣1或0<x<210.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,12),其对称轴在y轴右侧,则该二次函数有()A.最大值B.最小值C.最大值8D.最小值8二、填空题:本大题共5小题,每小题3分,共15分。
2023-2024深圳罗湖区九年级(下)二模数学试卷参考答案(2024.05)一、选择题(每题3分,共30分)题号12345678910答案DBBACBBDCC二、填空题(每题3分,共15分)题号1112131415答案折线3.4211x >-5-三、解答题(共55分)16.解:02sin 45(1)1π︒-)2112=⨯-+……………………………2分11=-+-……………………………4分=……………………………5分17.解:232224a a a a a a ⎛⎫-÷ ⎪---⎝⎭()()22322a a a a a a -+-=⨯-……………………………2分()()22222a a a a a-+=⨯-……………………………4分2a =+,……………………………5分当1a =时,原式2123a =+=+=.……………………………7分18.(1)40;15.……………………………6分(2)依题意得:20030%60⨯=(双),答:建议购买35号运动鞋60双.……………………………8分19.(1)证明:∵∠=∠P C ,PBC C ∠=∠,∴∠=∠P PBC ,∴CB PD ∥;……………………………3分(2)解:如图所示,连接CO ,……………………………4分设OC OB x ==,则()8OE OB BE x =-=-,在Rt COE △中:由勾股定理得222CE CO OE =-,……………………………5分在Rt CBE △中:由勾股定理得222CE BC BE =-,……………………………6分∴()22228128x x --=-,……………………………7分解得9x =∴⊙的半径为9.……………………………8分20.(1)解:设A 种纪念品的每件进价为x 元,则B 种纪念品的每件进价为()5+x 元,根据题意有900=1200r5……………………………2分解得15x =,经检验,15x =是原分式方程的解,……………………………3分∴520x +=,∴A 种纪念品的每件进价为15元,则B 种纪念品的每件进价为20元;………………4分(2)解:设A 种纪念品购进a 件,根据题意:()()()181525205001700a a -+--≥,……………………………7分解得≤400,∴A 种纪念品最多购进400件.……………………………8分21.(1)解:由运动员的竖直高度()m y 与水平距离()m x 满足二次函数的关系,设二次函数的关系为20y a x bx c =++,代入()0,10,()1,10,()1.5,6.25,得001010936.2542c a b c a b c ⎧⎪=⎪++=⎨⎪⎪++=⎩,解得05510a b c =-⎧⎪=⎨⎪=⎩,∴y 关于x 的关系式为25510y x x =-++;……………………………2分(2)2;……………………………3分(3)解:①运动员甲不能成功完成此动作,理由如下:由运动员的竖直高度()m y 与水平距离()m x 满足二次函数的关系为25510y x x =-++,整理得2145524y x ⎛⎫=--+⎪⎝⎭,得运动员甲起跳后达到最高点B 到水面的高度k 为45m 4,即454k =,把0h =代入24554h t =-+,得245504t -+=,……………………………5分解得1 1.5x =,2 1.5x =-(不合题意,舍去),∵1.5<1.6,∴运动员甲不能成功完成此动作;……………………………6分②由运动员甲进行第二次跳水训练,竖直高度()m y 与水平距离()m x 的关系为()2100y ax ax a =-+<,得顶点为11,1024a ⎛⎫- ⎪⎝⎭,得1104k a =-,得215104h t a =-+-,……………………………7分把0h =代入215104h t a =-+-,得21220t a =-,由运动员甲在达到最高点后至少需要1.6s 的时间才能完成极具难度的270C 动作,得1.6t ≥,……………………………8分则221.6t ≥,即212 1.620a -≥,解得565a ≤-.故答案为:565a ≤-.……………………………9分22.解:(1)33……………………………2分(2)如图所示,延长C 到G 使得BG DF =,连接AG ,∵四边形ABCD 是正方形,∴90AB AD D ABG BAD ====︒,∠∠∠,∴△C ≌△A SAS ,……………………………3分∴AG AF DAF BAG ==,∠∠,∵45EAF ∠=︒,∴45BAE DAF BAD EAF ∠+∠=∠-∠=︒,∴45BAG BAE ∠+∠=︒,∴45EAF EAG ∠∠==︒,又∵AE AE =,∴△A ≌△A SAS ,……………………………4分∴5EG EF ==,AEF AEG S S =△△,又∵6AB =,∴1152AEF AEG S S AB EG ==⋅=△△;……………………………6分(3)把ADF △绕点A 顺时针旋转90︒△C ,∴903AG AF FAG ==︒,∠,∵60EAF ∠=︒,∴30EAG ∠=︒,过点E 作EM AG ⊥于M ,作EN AF ⊥于N ,则四边形AMEN 是矩形,∴ME AN =,∴tan 3NE ME AN EAN ==∠,∴112132AGEAEFAG ME S S AF NE ⋅==⋅△△,∴3AEF AEG S S =△△,∴当AEG △的面积最小时,AEF △的面积最小;……………………………7分如图所示,作AEG △的外接圆,圆心为O ,连接OA OG OE ,,,过点O 作OH EG ⊥于H ,设OG OA OE r ===,∴260GOE GAE ==︒∠∠,∴30GOH EOH ==︒∠∠,∴2OH GE GH r ====,,∵1222AGES GE AB GE r =⋅==△,∴当r 最小时,AEG △的面积最小,……………………………8分∵OA OH AB +≥,∴4r +≥,∴16r ≥-……………………………9分∴当A 、O 、H 三点共线时,r有最小值,最小值为(16-∴△A最小值=3△A最小值=3×2×16−8396−483(平方米)∴存在一个面积最小的AEF △,其最小值为(96-…………10分。
2023年广东省深圳市中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示的立体图形由3个相同的正方体组成,则它的俯视图为()A .B .C .D .2.陕北大红枣是驰名中外的陕西特产,目前陕北地区红枣的种植面积约有420000亩,数据420000用科学记数法可以表示为()A .4.2×104B .42×104C .4.2×105D .0.42×1053.下列算正确的是()A .3362a a a +=B .()326a a =C .623a a a ÷=D .()222a b a b +=+4.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为()A .145︒B .155︒C .165︒D .175︒5.如图,O 的弦AB 、CD 交于点E ,若45A ∠=︒,85AED ∠=︒,则B ∠的度数是()A→C→D向点D匀速运动,连接PQ,当点P到达终点D时,停止运动,设△APQ 的面积为S,运动时间为t秒,则S与t函数关系的图象大致为()A.B.C.D.二、填空题15.如图,有一张长方形纸片ABCD边AD落在边AB上,点D落在点三、解答题22.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =4.线段EF 是由线段BC 平移得到,B ,C 的对应点分别是E ,F .CD 是△ABC 的中线,连接CF ,BF ,CE ,若BE =DB .(1)求证:四边形CDBF 是菱形;(2)求△ACE 的面积.23.如图,AB 是O 的直径,C 是弧BD 的中点,CE AB ⊥于点E ,BD 交CE 于点F .(1)求证:CF BF =;(2)若2CD =,4AC =,求O 的半径及CE 的长.24.已知二次函数23y ax bx a =+-经过点(1,0)A -,(0,3)C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)在对称轴右侧的抛物线上是否存在点P ,使得PDC △为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.25.如图1,点E 是正方形ABCD 外的一点,以DE 为边构造正方DEFG ,点M 是△ADE 边AE 上的动点,点N 是△CDG 的边CG 上的动点.(1)证明:△ADE≌△CDG;(2)如图(1):当DM和DN分别是△ADE和△CDG的中线时,试猜想DM和DN的数量关系和位置关系,并说明理由;(3)类比猜想:①在(2)问中,当DM、DN分别是△ADE和△CDG的高(如图2),其他条件不变时,问题(2)的结论是否仍然成立?(只写出结论,不要求证明)②在(2)问中,当DM、DN分别是△ADE和△CDG的角平分线,其他条件不变时,问题(2)的结论是否仍然成立?(只写出结论,不要求证明)参考答案:1.D【分析】根据俯视图的观察方法判断即可.【详解】:根据俯视图是从上向下观察可知该几何体的俯视图为两个小正方形,一个在左下方,一个在右上方,所以该几何体的俯视图如下.故选:D .【点睛】本题考查判断简单组合体的三视图,熟练掌握该知识点是解题关键.2.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】420000=4.2×105故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B【分析】根据合并同类项、积的乘方、同底数幂的除法、完全平方公式逐项解答即可.【详解】详解:A 、∵3332a a a +=,∴选项错误;B 、∵()326a a =,∴选项正确;C 、∵624a a a ÷=,∴选项错误;D 、∵()2222a b a ab b +=++,∴选项错误;故选B .【点睛】本题考查了整式的相关运算,解答本题的关键是熟练掌握合并同类项、积的乘方、同底数幂的除法、完全平方公式.4.C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根∴△APQ 的面积为:S =此时,25PC t =-,BQ t =-∵四边形ABCD为平行四边形,∴BC∥AD,BC=AD,∴∠BCM=∠ADN,【点睛】本题考查了二次函数综合题,此题是一道典型的和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.25.(1)见解析∴DM⊥DN;(3)类比猜想:①小亮的观点正确,理由如下:由(1)得:△ADE≌△CDG(SAS),∴∠DAE=∠DCG,AE=CG,∵DM和DN分别是△ADE和△CDG的高,∴∠AMD=∠CND=90°,又∵AD=CD,∴△ADM≌△CDN(AAS),∴DM=DN,∠ADM=∠CDN,∴∠MDC+∠CDN=∠MDC+∠ADM=∠ADC=90°,∴DM⊥DN;②当DM、DN分别是△ADE和△CDG的角平分线时,问题(2)中的结论依然成立,如图3,理由如下:同①得:△ADM≌△CDN(ASA),∴DM=DN,∠ADM=∠CDN,∴∠MDC+∠CDN=∠MDC+∠ADM=∠ADC=90°,∴DM⊥DN.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、垂线的判定等知识;本题综合性强,熟练掌握正方形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
2024年广东省深圳市宝安区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3-,0,23-四个数中,最小的是( )A .3-B .0C .23-D2.如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是( )A .B .C .D . 【答案】B【分析】四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻.【详解】解:四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻;A 、C 、D 选项折成正方体后有图案的面有两个相对,不符合题意;B 选项折成正方体后,有图案的三个面两两相邻;的展开图是故选:B .【点睛】正方体展开图“1−4−1”结构,折成正方体后,两个“1”相对,“4”组成侧面,间隔面相邻.关键是明白有图案的三个面两两相邻.3.下列计算正确的是( )A .426a a a +=B .527a a a ⋅=C .5210()ab ab =D .1025a a a ÷=【答案】B【分析】根据合并同类项法则、幂的运算法则逐项计算即可判断.【详解】解:A. 42a a 、不是同类项,不能合并,不符合题意;B. 527a a a ⋅=,符合题意;C. 52210()ab a b =,不符合题意;D. 1028a a a ÷=,不符合题意;故选:B .【点睛】本题考查了合并同类项和幂的运算,掌握相关法则是解题关键.4.如图,12l l ∥,135∠=︒,250∠=︒,则∠3的度数为( )A .85︒B .95︒C .105︒D .115︒【答案】B 【分析】首先根据平行线的性质可得出231180∠+∠+∠=︒,据此可得出∠3的度数.【详解】解:∵12l l ∥,∴231180∠+∠+∠=︒,∵135∠=︒,250∠=︒,∴()()318021*********∠=︒-∠+∠=︒-︒+︒=︒.故选:B .【点睛】本题考查平行线的性质,解题的关键是准确识图,熟练掌握两直线平行,同旁内角互补.5.某次射击训练中,一小组的成绩如表所示,已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )环数789人数2?3A .4人B .5人C .6人D .7人A B C D7.如图,在O 中,弦AB ,CD 相交于点P ,则一定与A ∠相等的是( )A .B∠B .C ∠C .D ∠D .APD∠【答案】C 【分析】根据圆周角定理得出即可.【详解】解:根据圆周角定理得:∠A =∠D ,故选:C .【点睛】本题考查了圆周角定理,能熟记圆周角定理是解此题的关键,注意:在同圆或等圆中,同弧所对的圆周角相等.8.一艘轮船在静水中的最大航速为50km /h ,它以最大航速沿河顺流航行80km 所用时间和它以最大航速沿河逆流航行60km 所用时间相等,设河水的流速为xkm /h ,则可列方程( )A .8050x +=6050x -B .8050x -=6050x +C .8050x +=6050x -D .8050x -=6050x+【答案】C9.如图,将一张矩形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开,则展开图是()A.B.C.D.【答案】D【分析】对于此类问题,亲自动手操作,即可得出答案.【详解】严格按照图中的顺序向右翻折,向下翻折,按按虚线剪裁,展开得到结论,故选:D.【点睛】本题考查了剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+)x+c=0有两个不相等的实数根其中正确结论的个数是( )(b﹣12A.1个B.2个C.3个D.4个二、填空题11.分解因式3818x y xy -= .【答案】()()22323xy x x +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据题中所给多项式的结构特征,先提公因式,再由平方差公式因式分解即可得到答案,灵活应用提公因式法及公式法因式分解是解决问题的关键.【详解】解:3818x y xy-()2249xy x =-()()22323xy x x =+-,故答案为:()()22323xy x x +-.12.今年春节电影《第二十条》、《热辣滚烫》、《飞驰人生2》、《熊出没•逆转时空》在网络上持续引发热议,根据猫眼专业版数据显示,截至2月17日21时,2024年春节档新片总票房突破80.23亿元,创造了新的春节档票房纪录,则其中数据80.23亿用科学记数法表示为 .13.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.4,由此可以估计纸箱内红球的个数约是 个.系.14.新冠疫情期间,同学们都在家里认真的进行了网课学习,小明利用平板电脑学习,如图是他观看网课时的侧面示意图,已知平板宽度即20cm AB =,平板的支撑角60ABC ∠=︒,小明坐在距离支架底部30cm 处观看(即30cm DB =),点E 是小明眼睛的位置,ED DC ⊥垂足为D .EF 是小明观看平板的视线,F 为AB 的中点,根据研究发现,当视线与屏幕所成锐角为80︒时(即80AFE ∠=︒),对眼睛最好,那么请你求出当小明以此视角观看平板时,他的眼睛与桌面的距离DE 的长为 cm .(结果精确到1cm )(参考数据:1.73,tan 400.84,sin 400.64,cos400.77︒≈︒≈︒≈≈)∵20cm AB =,F 为AB 的中点,∴11201022BF AB ==⨯=,∵FT DC ∥,60ABC ∠=︒,∴60HFB ABC ∠=∠=︒,∵180HFB HFE EFA ∠+∠+∠=15.如图,正方形ABCD的边长为12,⊙B的半径为6,点P是⊙B上一个动点,则12 PD PC+的最小值为.【答案】15三、解答题16.计算:6023112)cos 45()2---︒-︒+-.17.先化简,再求值:21221121x x x x x --⎛⎫+÷ ⎪+++⎝⎭,再从1,-1,2中选一个合适的数作为x 的值代入求值.18.为进一步提高学生学习数学的兴趣,3月14日(国际数学日)当天,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了部分学生的竞赛成绩,经过整理数据得到以下信息(单位:分):信息一:所抽取学生成绩分组整理成如图所示的扇形统计图,其中第Ⅰ组5060x ≤<,第Ⅱ组6070x ≤<,第Ⅲ组7080x ≤<,第Ⅳ组8090x ≤<,第Ⅴ组90100x ≤<;信息二:第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,.根据信息解答下列问题:(1)本次抽取的学生人数为________人,第Ⅱ组所在扇形的圆心角度数为:________;(2)第Ⅲ组竞赛成绩的众数是________分,本次抽取的所有学生竞赛成绩的中位数是________分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的学生人数.【答案】(1)50,72︒(2)76,77.5(3)720【分析】(1)根据第Ⅲ组人数及第Ⅲ组所占的百分数可得到抽样总人数,第Ⅱ组的所占百分数为20%即可解答;(2)根据第Ⅲ组的成绩及中位数和众数的定义即可解答;(3)根据样本成绩不低于80分的学生人数即可解答.【详解】(1)解:∵第Ⅲ组7080x ≤<为12人,第Ⅲ组所占的百分数为24%,∴本次抽取的学生人数为1224%50÷=(人),∵第Ⅰ组所占百分数为8%,第Ⅲ组所占百分数24%,第Ⅳ组所占百分数40%,第Ⅴ组所占百分数8%;∴第Ⅱ组的所占百分数为100%8%24%40%8%20%----=,∴第Ⅱ组所在扇形的圆心角度数为36020%72︒⨯=︒,故答案为:50,72︒;(2)解:∵第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,,∴第Ⅲ组竞赛成绩的众数是76分,∵第Ⅰ组人数为508%4⨯=(人),第Ⅲ组人数为5024%12⨯=(人),第Ⅴ组的人数为19.2024年4月18日上午10时08分,华为70Pura 系列正式开售,华为70Pura Ultra 和70Pura Pro 已在华为商城销售,约一分钟即告售罄.“4G 改变生活,5G 改变社会”,不一样的5G 手机给人们带来了全新的体验,某营业厅现有A 、B 两种型号的5G 手机出售,售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元.(1)求A 、B 两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A 、B 两种型号手机共20部,其中B 型手机的数量不超过A 型手机数量的23,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A 种型号手机每部利润是200元,B 种型号手机每部利润是400元.(2)营业厅购进A 种型号手机12部,B 种型号手机8部时获得最大利润,最大利润是5600元.【分析】本题考查的是二元一次方程组的解法,一次函数的应用,一元一次不等式的应用:(1)设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,由售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元,再建立方程组即可;(2)设购进A 种型号的手机a 部,则购进B 种型号的手机()20a -部,获得的利润为w 元,2008000w a =-+,再利用一次函数的性质可得答案.【详解】(1)解:设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,20.如图,在ABCD Y 中,O 为线段AD 的中点,延长BO 交CD 的延长线于点E ,连接AE BD 、,=90BDC ∠︒.(1)求证:四边形ABDE 是矩形;(2)连接OC ,若2AB =,BD =,求OC 的长.∵四边形ABDE是矩形,∴2==,ODDE AB=,∴OD OE∵OF DE⊥,21.定义:如图1,在平面直角坐标系中,点P 是平面内任意一点(坐标轴上的点除外),过点P 分别作x 轴、y 轴的垂线,若由点P 、原点O 、两个垂足AB 、为顶点的矩形OAPB 的周长与面积的数值相等时,则称点P 是平面直角坐标系中的“美好点”.【尝试初探】(1)点()23C ,______ “美好点”(填“是”或“不是”);【深入探究】(2)①若“美好点”()6(0)E m m >,在双曲线k y x =(0k ≠,且k 为常数)上,则k =______;②在①的条件下,()2F n ,在双曲线k y x=上,求EOF S △的值;【拓展延伸】(3)我们可以从函数的角度研究“美好点”,已知点()P x y ,是第一象限内的“美好点”.①求y 关于x 的函数表达式;②对于图象上任意一点()x y ,,代数式()()22x y -⋅-是否为定值?如果是,请求出这个定值,如果不是,请说明理由.∴11155956222EOF FOG EOG S S S =-=⨯⨯-⨯⨯= ;(3)①∵点()P x y ,是第一象限内的“美好点”,22.如图,(1)如图①,等腰ACB △,90ACB∠=︒,D 为AB 的中点,90MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),写出线段、、CF CE BC 之间的数量关系,并证明你的结论;(2)如图②,等腰ACB △,120ACB ∠=︒,D 为AB 的中点,60MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),直接写出线段、、CF CE BC 之间的数量关系为 ;(3)如图③,在四边形ABCD 中,AC 平分BCD ∠,120BCD ∠=︒,60DAB ∠=︒,过点A 作AE AC ⊥,交CB 的延长线于点E ,若6CB =,2DC =,则BE 的长为 .【答案】(1)CF CE BC +=,理由见解析∵等腰ACB △中,ACB ∠∴CD AB ⊥,即CDB ∠∵在Rt CDB △中,点G ∵AE AC ⊥,。
龙华区2023-2024学年第二学期九年级调研测试试题数学试卷(2024.4)说明:1.全卷共6页,考试时间90分钟。
满分100分2.答题前,请将学校、班级和姓名写在答题卡相应位置,将条形码粘贴在答题卡的贴条形码区。
请保持条形码整洁、不污损。
3.作答选择题1~10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑,如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11~22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.答题卡必须保持清洁,不能折叠。
第一部分选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.为打造极具辨识度的城市环保新名片,深圳市清洁能源环卫作业车辆的外观、标识正逐步改为统一标准.下列四个图标是深圳环卫车身上的环保符号,其中既是轴对称图形,又是中心对称图形的是2.深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册.其中800万用科学记数法表示为A.8X102B.8X105C.8X106D.0.8X1073.下列运算正确的是A.m2+m2=mB.m(n+1)=mn+1C.(m+n)2=m2+n2D.(m+n)(m-n)=m2-n4.小文根据“赵爽弦图”设计了一个如图1所示的3X3的正方形飞镖盘,则飞镖落在阴影区域的概率为A. B. C. D.5.一元一次不等式组的解集在数轴上表示正确的是6.某一时刻在阳光照射下,广场上的护栏及其影子如图2-1所示,将护栏拐角处在地面上的部分影子抽象成图2-2,已知∠MAD=22°,∠FCN=23°,则∠ABC的大小为A.44°B.45°C.46°D.47°7.《算经》中记述了这样一个问题:一组人平分10元钱,每人分得若干:若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,可列方程为8.数学活动课上,小亮同学用四根相同的火柴棒AB,BC,CD,DE在桌面上摆成如图3所示的图形,其中点A,C,E在同一直线上,BC⊥CD,若AE=10,则点B,D到直线AE的距离之和为A.5B.2C.5D.109.小明在科普读物中了解到:每种介质都有自己的折射率,当光从空气射入该介质时,折射率为入射角正弦值与折射角正弦值之比,即折射率n=(i为入射角,r为折射角).如图4,一束光从空气射向横截面为直角三角形的玻璃透镜斜面,经折射后沿垂直AC边的方向射出,已知i=30°,AB=15cm,BC=5cm,则该玻璃透镜的折射率n为A.1.8B.1.6C.1.5D.1.410.如图5,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,连接BE,作∠BEF=120°交CD边于点F,若=则的值为A. B. C. D.第二部分(非选择题,共70分)二、填空题(本题共5小题,每小题3分,共15分)11.化简:+=__________12.已知m是一元二次方程x2+2x-3=0的一个根,则2m2+4m的值为__________13.如图6,点A,B,C在OO上,AC平分∠OAB,若∠OAB=40°则∠CBD=__________°14.如图7-1是某种气式酒精测武仪的电路原理图,电源电压保持不变,R,为气敏可变电阻,定值电阻Ro=30Ω.检测时,可通过电压表显示的读数U(V)换算为酒精气体浓度p(mg/m3),设R=R+Ro,电压表显示的读数U(V)与R(Ω)之间的反比例函数图象如图7-2所示,R与酒精气体浓度p的关系式为R=-60p十60,当电压表示数为 4.5V时,酒精气体浓度为___mg/m315.如图8,在矩形ABCD中,AB=6,P是AD边上一点,将△PCD沿CP折叠,若点D的对应点E恰好是△ABC的重心,则PD的长为__________三、解答题(本题共7小题,共55分)16.(本题5分)计算:17.(本题6分)如图9,在平面直角坐标系中,将直线l1:y=x+2向右平移5个单位长度得到直线l2.(1)直接画出直线l2;(2)l2的解析式为__________(3)直线l1与l2之间的距离为__________个单位长度.18.(本题8分)随着人们环保意识的增强,电动汽车作为一种绿色交通工具越来越受到消费者的青睐.明打算从某汽车租赁公司租一辆纯电动汽车使用一天,预计总行程约为420km.该汽车租赁公司有B,C三种型号纯电动汽车,每天的租金分别为300元/辆,380元/辆,500元/辆.为了选择合适型号,小明对三种型号的汽车满电续航里程进行了调查分析,过程如下:【整理数据】(1)小明共调查了辆A型纯电动汽车,并补全上述的条形统计图;(2)在A型纯电动汽车满电续航里程的扇形统计图中,“390km”对应的圆心角度数为__________【分析数据】(3)由上表填空:m=__________,n=__________【判断决策】(4)结合上述分析,你认为小明选择哪个型号的纯电动汽车较为合适,并说明理由.19.(本题8分)投壶是中国古代的一种弓箭投掷游戏,弓箭投入壶内、壶耳会得到不同的分数,落在地上不得分.小龙与小华每人拿10支箭进行游戏,游戏结果如下:(1)求一支弓箭投入壶内、壶耳各得几分?(2)小丽也加入游戏,投完10支箭后,有2支弓箭落到了地上,若小丽赢得了比赛,则她至少投入壶内几支箭?20.(本题8分)如图10,以AB为直径的OO交BC于点D,DE⊥AC,垂足为E.(1)在不添加新的点和线的前提下,请增加一个条件:__________使直线DE为OO的切线,并说明理由;(2)在(1)的条件下,若DE=6,tan∠ADE=,求OO的半径.21.(本题10分)【项目式学习】项目主题:合理设计智慧泉源项目背景:为加强校园文化建设,学校计划在原有的喷泉池内增设一块矩形区域,安装LED发光地砖灯,用于展示校园文化标语,要求该矩形区域被喷泉喷出水柱完全覆盖,因此需要对原有喷泉的喷头竖直高度进行合理调整,围绕这个问题,某数学学习小组开展了“合理设计智慧泉源”为主题的项目式学习,任务一测量建模(1)如图11-1,在水平地面上的喷泉池中心有一个可以竖直升降的喷头,它向四周喷出的水柱为抛物线.经过测量,水柱的落点均在水平地面半径为2米的圆上,在距池中心水平距离0.75米处,水柱达到最高,高度为1.25米,学习小组根据喷泉的实景进行抽象,以池中心为原点,水平方向为x轴,竖直方向为y轴建立平面直角坐标系,画出如图11-2所示的函数图象,求水柱所在抛物线(第一象限部分)的函数表达式(不需写自变量的取值范围):任务二推理分析(2)学习小组通过进一步分析发现:当喷头竖直高度调整时,喷头喷出的水柱抛物线形状不发生改变,当喷头竖直高度增加h米,水柱落点形成的圆半径相应增加d米,h与d之间存在一定的数量关系,求出h与d 之间的数量关系式;任务三设计方案(4)现计划在原有喷水池内增设一块矩形区域ABCD,AB=1.4米,BC=0.4米,增设后的俯视图如图11-3所示,AB与原水柱落点形成的圆相切,切点为AB的中点P.若要求增设的矩形区域ABCD被喷泉喷出水柱完全覆盖,则喷头竖直高度至少应该增加__________米.22.(本题10分)如图12,在正方形ABCD中,点E是AB边上一点,F为CE的中点,将线段AF绕点F顺时针旋转90°至线段GF,连接CG.某数学学习小组成员发现线段CE与CG之间存在一定的数量关系,并运用“特殊到一般”的思想开展了探究(1)①在上述两种思路中,选样其中一种完成其相应的第一步的证明;②写出线段CE与CG之间的数量关系式:__________【深入探究】(2)如图12,当点E与点B不重合时,(1)中线段CE与CG之间的数量关系还成立吗?若成立,请加以证明:若不成立,请说明理由:【拓展延伸】(3)连接AG,记正方形ABCD的面积为S1,△AFG的面积为S2,当△FCG是直角三角形时,请直接写出的值龙华区2023-2024学年第二学期九年级调研测试试题参考答案及评分标准一、选择题(本题共有10小题,每小题3分,共30分.)二、填空题(说明:每小题3分,共15分.第13题填写结果带符号“°”,不扣分.)三、解答题(本题共有7小题,共55分.)16.解:原式=………………4 分(说明:一个点1分)== 0……………………………5分17.(1)如图 ………………………………2分(说明:没有描出两个点,就画出了直线的,扣1分;没有标记l 2不扣分)(2)……………………………4分(3) . ………………………………6分18 .(1) 20 ; ……………………………1分 补全的条形统计图如下:……2分(2) 72° ; ………………………………………………4分 (3) 430 ; 450 (每空1分) ………………………6分212421´+-+143+-2121-=x y 5题号 1 2 3 4 5 6 7 8 9 10 答案DCDBABBACD题号 11 12 13 14 15 答案1670!"(或0.5)3√2图10A B C D E O 图10 A B C D E O图10 A B C D E O21.(1)解:∵距离池中心水平距离0.75米处,水柱达到最高,高度为1.25米,∴设水柱所在抛物线的函数表达式为…1分∵水柱的落点均在水平地面半径为2米的圆上∴当x =2时,y =0,代入得 ………………2分解得………………………………………………………3分 ∴函数表达式为………………………………4分 (2)解法一:解:设喷头调整后的水柱轨迹函数解析式为 (h >0)………5分 由题意得,当时, ,∴ …………………………………………7分 化简得 (或ℎ=#$/d +$#1"−$#) ………………………8分 解法二:解:设喷头调整后的水柱轨迹函数解析式(h >0),……………5分 当时,0=−#$(x −%#)"+$#+ℎ解得x =%#±4"$!&+$#ℎ …………………………………………………6分当x >0时,d =x −2=%#+4"$!&+$#ℎ−2=4"$!&+$#ℎ−$# …………………7分 整理得……………………………………………………8分 (其它解法,请参照上述评分标准,按步骤酌情给分)(3) ………………………………………………………………………10分22. (1)①选择思路一:证明:连接AC ,AG .∵四边形ABCD 是正方形∴'(')=√2,∠BAC =45°由旋转得,AF =FG ,∠AFG =90°∴△AFG 是等腰直角三角形∴'*'+=√2,∠FAG =45° ∴'(')='*'+=√2……………………………1分∵∠BAC =∠FAG∴∠BAC −∠FAC =∠FAG −∠FAC即∠BAF =∠CAG ……………………2分∴△ACG ∽△ABF ……………………3分 25.1)75.0(2+-=x a y 025.1)75.02(2=+-a 54-=a 45)43(542+--=x y h x y ++--=45)43(5420=y d x +=2045)432(542=++-+-h d d d h 2542+=h x y ++--=45)43(5420=y d d h 2542+=2.1选择思路二:证明:∵旋转∴HF =FC ,∠HFC =90°,AF =FG ,∠AFG =90°………………………1分∴∠AFG =∠HFC∴∠AFH =∠GFC ……………………2分在△AFH 与△GFC 中>AF =GF ∠AFH =∠GFC HF =CF∴△AFH ≌△GFC (SAS )……………3分②CE =√2CG 或CG =√""CE ……………4分(2)线段CE 与CG 的关系成立思路一:连接AC ,AG ,BF∵四边形ABCD 是正方形∴'(')=√2,∠BAC =45°由旋转得,AF =FG ,∠AFG =90°∴△AFG 是等腰直角三角形∴'*'+=√2,∠FAG =45°∴'(')='*'+=√2……………………………5分∵∠BAC =∠FAG∴∠BAC −∠FAC =∠FAG −∠FAC∴∠BAF =∠CAG ………………………6分∴△ACG ∽△ABF∴(*)+='(')=√2………………………7分在Rt △EBC 中,∠EBC =90°∵F 为CE 中点∴BF =!"CE∴CG =√""CE ……………………………8分思路二:将线段CF 绕点F 逆时针旋转90°至HF ,连接AH 、EH 、CH 、BH 将HB 绕点H 逆时针旋转90°得到HK ,连接CK∵旋转∴HF =FC ,∠HFC =90°,AF =FG ,∠AFG =90°∴∠AFG =∠HFC ,∴∠AFH =∠GFC在△AFH 与△GFC 中>AF=GF ∠AFH=∠GFC HF=CF∴△AFH≌△GFC(SAS)∴CG=AH……………………………………5分∵F为EC中点,FH=FC,FH⊥EC∴△EHC为等腰直角三角形∴∠EHC=90°,∠ECH=∠CEH=45°EC=√2CH………………………………6分∵旋转∴∠BHK=90°=∠EHC,HB=HK∴∠EHB=∠CHK在△EHB和△CHK中>HE=HK ∠EHB=∠CHK HB=HK∴△EHB≌△CHK(SAS)∴∠HEB=∠HCK∵∠ABC+∠EHC=180°∴∠HEB+∠HCB=180°∴∠HCB+∠HCK=180°∴B、C、K三点共线∴△HBK为等腰直角三角形∴∠EBH=∠ECH=∠HEC=∠HBC=45° 在△ABH和△CBH中>AB=BC ∠EBH=∠HBC BH=BH∴△ABH≌△CBH∴AH=HC………………………………………7分∵EC=√2CH∴EC=√2AH=√2CG……………………8分蓝色部分证∠ABH=45°,证法二如下:连接DH、AC∵∠HCE=∠DAC=45°∴∠ACE=∠DCH又∵-((.='(/(=√2∴△ACE∽△DCH∴∠HDC=∠EAC=45°后续同理证△ADH≌△CDH即可(其它解法,请参照上述评分标准,按步骤酌情给分)(3)4或#0"√"%…………………………………10分(答对一个给1分)HK H。
2024年广东省深圳市南山区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(3分)下列各数中,最小的数是()A.﹣1B.0C.1D.2.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形3.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8B.众数是9C.平均数是8D.方差是04.(3分)下列运算正确的是()A.B.(x2)5=x10C.x5•x6=x30D.5.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)如图,在△ABC中∠C=90°,∠BAC=30°,以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,过点A和两弧的交点作射线,交BC于点D,则CD:BD=()A.2:3B.:2C.:3D.:27.(3分)如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4D.68.(3分)成语“朝三暮四”讲述了一位老翁喂养猴子的故事,老翁为了限定猴子的食量分早晚两次投喂,早上的粮食是晚上的,猴子们对于这个安排很不满意,于是老翁进行调整,从晚上的粮食中取2千克放在早上投喂,这样早上的粮食是晚上的,猴子们对这样的安排非常满意.设调整前早上的粮食是x 千克,晚上的粮食是y千克,则可列方程组为()A.B.C.D.9.(3分)如图,Rt△ABC中,∠C=90°,点D在BC上,∠CDA=∠CAB.若BC=4,tan B=,则AD的长度为()A.B.C.D.4二、填空题:本题共5小题,每小题3分,共15分。
2024年广东省深圳市福田区中考数学二模试卷一.选择题(本大题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个是正确的)1.(3分)计算(﹣2024)×(﹣1)的结果为( )A.2024B.﹣2024C.D.2.(3分)截至2023年12月底,全国累计发电装机容量约2920000000千瓦,这个容量用科学记数法可表示为( )A.0.292×109千瓦B.2.92×109千瓦C.0.292×1010千瓦D.2.92×1010千瓦3.(3分)计算(ab)2正确的是( )A.a2b B.ab2C.a2b2D.a3b34.(3分)车间有15名工人,某一天他们生产的机器零件个数统计如下:生产个数(个)67891011131516工人人数(人)124121121为提高工作效率和工人的积极性,管理者准备实行“每天定额生产,超产有奖,奖励大多数”的措施,决定用这一天的众数来作为生产定额,则定额数量为( )A.7个B.8个C.9个D.10个5.(3分)如图,一辆货车,为了方便装运货物,使用了三角形钢架,已知∠BCA=90°,∠BAC=α,BC =h,则AB的长为( )A.B.C.h sinαD.h cosα6.(3分)如图,在已知△ABC中,按以下步骤作图:①分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AC于点E,交BC于点F,连接AF.若AB=AC,∠BAC =120°,则∠FAB的大小为( )A.70°B.80°C.90°D.100°7.(3分)如图,点A,B,C在半径为3的⊙O上,∠ACB=30°,则的长为( )A.3B.C.πD.8.(3分)如图1,是简易伽利略温度计的结构示意图,图2反映了其工作原理.在t1,t2,t3三个时刻,观察到液面分别处于管壁的A,B,C三处.测得AB=BC=3cm,且已知t1,t2两个时刻的温差是2℃,则t1时刻的温度比t3时刻的温度( )A.高6℃B.低6℃C.高4℃D.低4℃9.(3分)如图,若设从2019年到2021年我国海上风电新增装机容量的平均增长率为x,根据这个统计图可知,x应满足( )A.x=B.14.5%(1+x)2=452.3%C.1.98(1+x)2=16.9D.1.73(1+x)2=3.0610.(3分)如图,△ABC中,AB=10,AC=8,BC=6,一束光线从AB上的点P出发,以垂直于AB的方向射出,经镜面AC,BC反射后,需照射到AB上的“探测区”MN上,已知MN=2,NB=1,则AP的长需满足( )C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)因式分解:m3﹣9m= .12.(3分)甲、乙两位选手各10次射击成绩的平均数都是9环,方差分别是s甲2=0.8,s乙2=0.4,则 选手成绩更稳定.(填“甲”或“乙”)13.(3分)如图1,“幻方”源于我国古代夏禹时期的“洛书”.把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方、三阶幻方中,要求每行、每列及对角线上的三个数的和都相等.小明在如图2的格子中填入了代数式,若它们能满足三阶幻方要求,则x+y﹣3= .14.(3分)如图,在平行四边形OABC中,点C在y轴正半轴上,点D是BC的中点,若反比例函数y=(x>0)的图象经过A,D两点,且△ACD的面积为2,则k= .15.(3分)如图,正方形ABCD的边长为4,F为对角线AC上一动点,延长BF,AD交于点E,若BF•BE =24,则CF= .三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)计算:(﹣2024)0﹣+(﹣)﹣1+4cos45°.17.(7分)先化简,再求值:,其中x=4.18.(8分)“龙腾冰雪,逐梦亚冬”,壮观的冰雪大世界吸引了众多的“南方小土豆”.寒假初期,班长委托甲、乙、丙、丁、戊5位同学组团先到哈尔滨了解景点情况.第一天,5位同学中的甲、乙、丙3位被指派分别前往冰雪大世界、东北虎林园、中央步行街三个景点(分别用A,B,C表示)考查,其余2位须在上述3个景点中任选一个考查,且每人每天刚好只够考查一个景点.(1)关于“第一天”的以下事件:①甲考查A景点;②乙考查A景点;③丁考查A景点;④丁、戊两人都考查A景点,其中,是随机事件的是 .(填序号).(2)结合本题条件,仿第(1)问写两条事件,要求它们是随机的等可能事件.事件①: ;事件②: .(3)小明对如下问题:“求5位同学在这一天中,恰好有两位同学在冰雪大世界考查的概率是多少?”他是这样解的:解:5名同学与景点的匹配关系,可能形成如下几种人员分布状态:景区人员数冰雪大世界(A)东北虎林园(B)中央步行街(C)第一种1人3人1人第二种1人1人3人第三种1人2人2人第四种2人1人2人第五种2人2人1人第六种3人1人1人总共有6种等可能的分布状态,其中A景区恰好有两人的占两种,所以,P(恰好有两位同学在冰雪大世界考查)=.请对以上解法给出评价,并给出你的解法.(要求列表或用树状图,景区用字母表示)19.(8分)坐拥1200余座公园的深圳被誉为“千园之城”.当前,这些公园正在举办一系列“公园十市集”消费体验活动.笑笑在“五一”假期租了一个公园摊位,销售“文创雪糕”与“K牌甜筒”,其中一个“文创雪糕”的进货价比一个“K牌甜筒”的进货价多1元,用800元购进“K牌甜筒”的数量与用1200元购进“文创雪糕”的数量相同.(1)求:每个“文创雪糕”、“K牌甜筒”的进价各为多少元?(2)“K牌甜筒”每个售价5元.根据销售经验,笑笑发现“文创雪糕”的销量y(个)与售价x(元/个)之间满足一次函数关系:y=﹣20x+200,且售价不高于10元.若“文创雪糕”与“K牌甜筒”共计每天最多能进货200个,且所有进货均能全部售出.问:“文创雪糕”销售单价为多少元时,每天的总利润W(元)最大,此时笑笑该如何进货?20.(8分)如图1,AB为⊙O的直径,C为⊙O上一点,点D为的中点,连接AD,CD,过点C作CE ∥AD交AB于点E,连接DE,DB.(1)证明:DC=DE.(2)如图2,过点D作⊙O的切线交EC的延长线于点F,若,且,求EF的长.21.(9分)背景:双目视觉测距是一种通过测量出左、右两个相机视野中,同一物体的成像差异,来计算距离的方法.它在“AI”领域有着广泛的应用.材料一:基本介绍如图1,是双目视觉测距的平面图.两个相机的投影中O1,O r的连线叫做基线,距离为t,基线与左、右投影面均平行,到投影面的距离为相机焦距f,两投影面的长均为l(t,f,l是同型号双目相机中,内置的不变参数),两投影中心O1,O r分别在左、右投影面的中心垂直线上.根据光的直线传播原理,可以确定目标点P在左、右相机的成像点,分别用点P1,P r表示d1,d2分别是左、右成像点到各投影面左端的距离.材料二:重要定义①视差﹣﹣点P在左、右相机的视差定义为d=|d1﹣d2|.②盲区﹣﹣相机固定位置后,在基线上方的某平面区域中,当目标点P位于该区域时,若在左、右投影面上均不能形成成像点,则该区域称为盲区(如图2,阴影区域是盲区之一).③感应区﹣﹣承上,若在左、右投影面均可形成成像点,则该区域称为感应区.材料三:公式推导片段以下是小明学习笔记的一部分:如图3,显然,△O1P1E∽△PO1H,△O r P r F∽△PO r H,可得,,所以,(依图)…任务:(1)请在图2中(A,B,C,D是两投影面端点),画出感应区边界,并用阴影标示出感应区.(2)填空:材料三中的依据是指 ;已知某双目相机的基线长为200mm,焦距f为4mm,则位于感应区的目标点P到基线的距离z(mm)与视差d(mm)之间的函数关系式为 .(3)如图4,小明用(2)中那款双目相机(投影面CD长为10mm)正对天空连续拍摄时,一物体M 正好从相机观测平面的上方从左往右飞过.已知M的飞行轨迹是抛物线的一部分,且知,当M刚好进入感应区时,d1=0.05mm,当M刚好经过点O r的正上方时,视差d=0.02mm,在整个成像过程中,d 呈现出大﹣小﹣大的变化规律,当d恰好减小到上述d1的时,开始变大.①小明以水平基线为x轴,右投影面的中心垂直线为y轴,建立了如图4所示的平面直角坐标系,则该抛物线的表达式为 (友情提示:注意横、纵轴上的单位:1m=1000mm);②求物体M刚好落入“盲区”时,距离基线的高度.22.(10分)【初步探究】(1)如图1,四边形ABCD是矩形,点P是平面内任一点,则下列结论成立的是( )A.PA+PD=PB+PCB.PA+PC=PB+PDC.PA2+PD2=PB2+PC2D.PA2+PC2=PB2+PD2【深入探究】(2)如图2,正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上一动点,连接PA,PC,PD,设PA=x,PC=y.(如有需要,可直接使用(1)中你所得的结论)①求x2+y2的最小值;②直接写出|x﹣y|的最大值,并直接写出此时PD的长.2024年广东省深圳市福田区中考数学二模试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个是正确的)1.(3分)计算(﹣2024)×(﹣1)的结果为( )A.2024B.﹣2024C.D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣2024)×(﹣1)=+(2024×1)=2024.故选:A.【点评】本题考查了有理数的乘法,掌握有理数的乘法法则是解答本题的关键.2.(3分)截至2023年12月底,全国累计发电装机容量约2920000000千瓦,这个容量用科学记数法可表示为( )A.0.292×109千瓦B.2.92×109千瓦C.0.292×1010千瓦D.2.92×1010千瓦【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数的绝对值<1时,n是负整数.【解答】解:2920000000千瓦=2.92×109千瓦,故选:B.【点评】本题主要考查了科学记数法的表示方法,掌握形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.3.(3分)计算(ab)2正确的是( )A.a2b B.ab2C.a2b2D.a3b3【分析】根据积的乘方运算法则计算即可.【解答】解:(ab)2=a2b2.故选:C.【点评】本题考查了积的乘方,掌握幂的运算法则是解答本题的关键.4.(3分)车间有15名工人,某一天他们生产的机器零件个数统计如下:生产个数(个)67891011131516工人人数(人)124121121为提高工作效率和工人的积极性,管理者准备实行“每天定额生产,超产有奖,奖励大多数”的措施,决定用这一天的众数来作为生产定额,则定额数量为( )A.7个B.8个C.9个D.10个【分析】根据众数的定义即可得到结论.【解答】解:由题意得,这一天的众数为8个,∵决定用这一天的众数来作为生产定额,定额数量为8个,故选:B.【点评】本题考查了众数,熟练掌握众数的定义是解题的关键.5.(3分)如图,一辆货车,为了方便装运货物,使用了三角形钢架,已知∠BCA=90°,∠BAC=α,BC =h,则AB的长为( )A.B.C.h sinαD.h cosα【分析】在Rt△ABC中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:在Rt△ABC中,∠BCA=90°,∠BAC=α,BC=h,∴AB==,∴AB的长为,故选:A.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.6.(3分)如图,在已知△ABC中,按以下步骤作图:①分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AC于点E,交BC于点F,连接AF.若AB=AC,∠BAC =120°,则∠FAB的大小为( )A.70°B.80°C.90°D.100°【分析】由等腰三角的性质和三角形内角和定理求出∠C,根据线段垂直平分线的性质和等腰三角形的性质求出∠FAC,即可求出答案.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C==30°,由作图的步骤可知,直线MN是线段AC的垂直平分线,∴AF=CF,∴∠FAC=∠C=30°,∴∠FAB=∠BAC﹣∠FAC=120°﹣30°=90°.故选:C.【点评】本题主要考查了基本作图,线段垂直平分线的性质和等腰三角形的性质,综合运用这些知识是解决问题的关键.7.(3分)如图,点A,B,C在半径为3的⊙O上,∠ACB=30°,则的长为( )A.3B.C.πD.【分析】先求出圆心角∠AOB的度数,再根据弧长公式求出的长度即可.【解答】解:∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∴的长==π,故选:C.【点评】本题考查了弧长公式和圆周角定理,能熟记弧长公式是解此题的关键.8.(3分)如图1,是简易伽利略温度计的结构示意图,图2反映了其工作原理.在t1,t2,t3三个时刻,观察到液面分别处于管壁的A,B,C三处.测得AB=BC=3cm,且已知t1,t2两个时刻的温差是2℃,则t1时刻的温度比t3时刻的温度( )A.高6℃B.低6℃C.高4℃D.低4℃【分析】根据所给函数图象,得出温度与容器内空气体积的关系,再根据AB=BC,且t1,t2两个时刻的温差是2℃即可解决问题.【解答】解:令容器内空气体积为V,温度为T,细管液面高为H,由图2可知,V=aT(a>0),H=bV(b<0),所以H=abT.因为ab<0,所以H随T的增大而减小,所以点A处的温度低于点C处的温度,即t1<t3.因为AB=BC,且t1,t2两个时刻的温差是2℃,所以t1与t3两个时刻的温度差是4℃,即t1时刻的温度比t3时刻的温度低4℃.故选:D.【点评】本题考查一次函数的图象和性质,能根据图2得出温度与容器内空气体积的关系是解题的关键.9.(3分)如图,若设从2019年到2021年我国海上风电新增装机容量的平均增长率为x,根据这个统计图可知,x应满足( )A.x=B.14.5%(1+x)2=452.3%C.1.98(1+x)2=16.9D.1.73(1+x)2=3.06【分析】利用2021年我国海上风电新增装机容量=2019年我国海上风电新增装机容量×(1+平均增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:1.98(1+x)2=16.9.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,△ABC中,AB=10,AC=8,BC=6,一束光线从AB上的点P出发,以垂直于AB的方向射出,经镜面AC,BC反射后,需照射到AB上的“探测区”MN上,已知MN=2,NB=1,则AP的长需满足( )C.D.【分析】易得△ABC是直角三角形,那么可得∠B的正弦值,余弦值和正切值;根据光的反射可得:∠ADP=∠CDE,∠CED=∠BEF,可推断出∠BFE=90°.根据光线需要照射到AB上的“探测区”MN 上,点F可能与点N重合,也可能与点M重合.根据∠B的三角函数值可推断出不同情况下AP的值,即可求得AP的取值范围.【解答】解:∵AB=10,AC=8,BC=6,∴AC2+BC2=AB2.∴∠C=90°.∴∠A+∠B=90°,∠CDE+∠CED=90°,sin B==,cos B==,tan B==.∵DP⊥AB,∴∠APD=90°.∴∠A+∠ADP=90°.∴∠B=∠ADP.由光的反射可得:∠ADP=∠CDE,∠CED=∠BEF.∴∠B=∠CDE.∴∠B+∠BEF=90°.∴∠BFE=90°.①点F与点N重合.∵BN=1,∴BE==1×=.∴CE=BC﹣BE=.∴CD==×=.∴AD=AC﹣CD=.∴AP=AD•sin B=×=.②点F与点M重合.∵MN=2,NB=1,∴BM=3.∴BE==3×=5.∴CE=BC﹣BE=1.∴CD==1×=.∴AD=AC﹣CD=.∴AP=AD•sin B=×=.∴≤AP≤.故选:C.【点评】本题考查解直角三角形的应用.理解光线需要照射到AB上的“探测区”MN上,那么点F可能与点N重合,也可能与点M重合是解决本题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)因式分解:m3﹣9m= m(m+3)(m﹣3) .【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(m2﹣9)=m(m+3)(m﹣3),故答案为:m(m+3)(m﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)甲、乙两位选手各10次射击成绩的平均数都是9环,方差分别是s甲2=0.8,s乙2=0.4,则 乙 选手成绩更稳定.(填“甲”或“乙”)【分析】根据方差越大波动越大越不稳定,作出判断即可.【解答】解:∵s甲2=0.8,s乙2=0.4,∴S乙2<S甲2,∴成绩最稳定的是乙.故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(3分)如图1,“幻方”源于我国古代夏禹时期的“洛书”.把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方、三阶幻方中,要求每行、每列及对角线上的三个数的和都相等.小明在如图2的格子中填入了代数式,若它们能满足三阶幻方要求,则x+y﹣3= ﹣4 .【分析】根据每行、每列及对角线上的三个数的和都相等.列出二元一次方程组,解方程组即可.【解答】解:由题意得:,解得:,∴x+y﹣3=﹣2+1﹣3=﹣4,故答案为:﹣4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.(3分)如图,在平行四边形OABC中,点C在y轴正半轴上,点D是BC的中点,若反比例函数y=(x>0)的图象经过A,D两点,且△ACD的面积为2,则k= .【分析】根据条件可知S▱OABC=8,设点A坐标为(a,b),OC•a=8,OC=AB=,所以B(a,b+),C(0,),由中点坐标公式得D(,),根据反比例函数图象上点的坐标特征列出ab=(),求出ab值即可.【解答】解:如图,延长BA交点x轴于E,∵△ACD的面积为2,点D是BC的中点,∴S▱OABC=4S△ACD=4×2=8,设点A坐标为(a,b),∵OC•a=8,∴OC=AB=,∴B(a,b+),C(0,),根据中点中点坐标公式可得D(,),∵A、D都在反比例函数图象上,∴ab=(),解得ab=.∴k=.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握图象上点的坐标特征是解答本题的关键.15.(3分)如图,正方形ABCD的边长为4,F为对角线AC上一动点,延长BF,AD交于点E,若BF•BE =24,则CF= .【分析】通过正方形的性质和勾股定理可求得AC的长,设DE=x,可求得AE和BE的长.求出△BCF ∽△EAF后可求得各边的长,由BF•BE=24得到一元二次方程,求解可求得DE,最后可求CF的长.【解答】解:∵四边形ABCD是正方形,∴AB=CB=AD=4,AD∥BC,∠BAD=∠ABC=90°,在Rt△ABC中,根据勾股定理可得,设DE=x,则AE=AD+DE=4+x,在Rt△ABE中,根据勾股定理,有,∵AD∥BC,∴∠CBF=∠E,∠BCF=∠EAF,∴△BCF∽△EAF,∴,∵AF=AC﹣CF=4﹣CF,EF=BE﹣BF=﹣BF,∴,整理得(8+x)CF=16,(8+x)BF=4,解得CF=,BF=,由BF•BE=24,得,整理得x2+2x﹣16=0,解得x1=﹣1,x2=﹣1﹣(舍去),∴x=﹣1,检验:当﹣1时,8+x≠0,x2+8x+32=(x+4)2+16>0成立,∴的根,∴,故答案为:.【点评】本题考查了相似三角形的判定和性质,勾股定理和正方形的性质,理清各边的关系从而了解各边比例是求解的关键.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)计算:(﹣2024)0﹣+(﹣)﹣1+4cos45°.【分析】直接利用零指数幂的性质、二次根式的性质、负整数指数幂的性质、特殊角的三角函数值分别化简,进而得出答案.【解答】解:原式=1﹣2﹣3+4×=1﹣2﹣3+2=﹣2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.(7分)先化简,再求值:,其中x=4.【分析】先把括号里面的分式通分后相减,再把各个分式的分子和分母分解因式,除法化成乘法,进行约分化简,最后把x=4代入化简后的式子进行计算即可.【解答】解:原式=•=•=,当x=4时,原式=2.【点评】本题主要考查了分式的化简求值,解题关键是熟练掌握分式的通分和几种常见的分解因式的方法.18.(8分)“龙腾冰雪,逐梦亚冬”,壮观的冰雪大世界吸引了众多的“南方小土豆”.寒假初期,班长委托甲、乙、丙、丁、戊5位同学组团先到哈尔滨了解景点情况.第一天,5位同学中的甲、乙、丙3位被指派分别前往冰雪大世界、东北虎林园、中央步行街三个景点(分别用A,B,C表示)考查,其余2位须在上述3个景点中任选一个考查,且每人每天刚好只够考查一个景点.(1)关于“第一天”的以下事件:①甲考查A景点;②乙考查A景点;③丁考查A景点;④丁、戊两人都考查A景点,其中,是随机事件的是 ③④ .(填序号).(2)结合本题条件,仿第(1)问写两条事件,要求它们是随机的等可能事件.事件①: 第一天,丁考查B景点 ;事件②: 第一天,戊考查A景点 .(3)小明对如下问题:“求5位同学在这一天中,恰好有两位同学在冰雪大世界考查的概率是多少?”他是这样解的:解:5名同学与景点的匹配关系,可能形成如下几种人员分布状态:景区人员数冰雪大世界(A)东北虎林园(B)中央步行街(C)第一种1人3人1人第二种1人1人3人第三种1人2人2人第四种2人1人2人第五种2人2人1人第六种3人1人1人总共有6种等可能的分布状态,其中A景区恰好有两人的占两种,所以,P(恰好有两位同学在冰雪大世界考查)=.请对以上解法给出评价,并给出你的解法.(要求列表或用树状图,景区用字母表示)【分析】(1)根据随机事件的定义可得答案.(2)根据题意,结合随机事件的定义可得答案.(3)由题意可知,小明的解法不对.列表可得出所有等可能的结果数以及还有一名同学在冰雪大世界考查的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,甲考查A景点是必然事件,乙考查A景点是不可能事件,丁考查A景点是随机事件,丁、戊两人都考查A景点是随机事件,∴是随机事件的是③④.故答案为:③④.(2)事件①:第一天,丁考查B景点;事件②:第一天,戊考查A景点(答案不唯一).故答案为:第一天,丁考查B景点;第一天,戊考查A景点.(3)评价:小明的解法不对,表格中列举的6种人员分布状态,并非6种等可能结果.丁、戊两名同学与景点的匹配关系,列表如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)共有9种等可能的结果.∵甲同学已在冰雪大世界考查,∴还有一名同学在冰雪大世界考查的结果有:(A,B),(A,C),(B,A),(C,A),共4种,∴恰好有两位同学在冰雪大世界考查的概率是.【点评】本题考查列表法与树状图法、随机事件,熟练掌握列表法与树状图法、随机事件的定义是解答本题的关键.19.(8分)坐拥1200余座公园的深圳被誉为“千园之城”.当前,这些公园正在举办一系列“公园十市集”消费体验活动.笑笑在“五一”假期租了一个公园摊位,销售“文创雪糕”与“K牌甜筒”,其中一个“文创雪糕”的进货价比一个“K牌甜筒”的进货价多1元,用800元购进“K牌甜筒”的数量与用1200元购进“文创雪糕”的数量相同.(1)求:每个“文创雪糕”、“K牌甜筒”的进价各为多少元?(2)“K牌甜筒”每个售价5元.根据销售经验,笑笑发现“文创雪糕”的销量y(个)与售价x(元/个)之间满足一次函数关系:y=﹣20x+200,且售价不高于10元.若“文创雪糕”与“K牌甜筒”共计每天最多能进货200个,且所有进货均能全部售出.问:“文创雪糕”销售单价为多少元时,每天的总利润W(元)最大,此时笑笑该如何进货?【分析】(1)设每个“文创雪糕”的进价为a元,则每个“K牌甜筒”的进价为(a﹣1)元,根据题意列方程并求解即可;(2)根据题意,“K牌甜筒”进货200﹣y=20x(个),根据每天的总利润=“文创雪糕”的销售利润+“K牌甜筒”的销售利润写出W关于x的函数关系式,根据x的取值范围和二次函数求最值的方法求出W最大时x的值,从而求出y的值和(200﹣y)的值即可.【解答】解:(1)设每个“文创雪糕”的进价为a元,则每个“K牌甜筒”的进价为(a﹣1)元.根据题意,得=,解得a=3,经检验,a=3是所列分式方程的根,3﹣1=2(元),∴每个“文创雪糕”的进价为3元,每个“K牌甜筒”的进价为2元.(2)根据题意,“K牌甜筒”进货200﹣y=20x(个).根据每天的总利润=“文创雪糕”的销售利润+“K牌甜筒”的销售利润,得W=(x﹣3)y+(5﹣2)×20x=﹣20(x﹣8)2+680,∵x≤10,∴当x=8时,W的值最大,此时“文创雪糕”进货﹣20×8+200=40(个),“K牌甜筒”进货200﹣40=160(个),∴“文创雪糕”销售单价为8元时,每天的总利润最大,此时笑笑应该“文创雪糕”进货40个,“K牌甜筒”进货160个.【点评】本题考查一次函数的应用,掌握分式方程的解法和二次函数求最值的方法是本题的关键.20.(8分)如图1,AB为⊙O的直径,C为⊙O上一点,点D为的中点,连接AD,CD,过点C作CE ∥AD交AB于点E,连接DE,DB.(1)证明:DC=DE.(2)如图2,过点D作⊙O的切线交EC的延长线于点F,若,且,求EF的长.【分析】(1)如图1,设BD与DE交于G,根据圆周角定理得到∠ADB=90°,根据平行线的性质得到∠BGE=∠ADB=90°,得到∠ABD=∠CBD,根据全等三角形的性质得到EB=CB,DC=DE;(2)如图2,连接OD,OC交于K,根据等腰直角三角形的性质得到∠AOD=∠COD=45°,求得∠ADO=∠DAO=(180°﹣45°)=67.5°,同理∠ODC=∠OCD=(180°﹣45°)=67.5°,得到∠ADO=∠DKF=67.5°,根据切线的性质得到OD⊥DF,根据平行线的性质得到∠DKC=∠ADK =67.5°求得∠F=∠DCE﹣∠CDF=22.5°,得到DC=CF,∠DCE=45°,由(1)知,DC=DE,求得∠DEC=∠DCE=45°,根据勾股定理得到EC==2,于是得到EF=EC+CF=2+.【解答】(1)证明:如图1,设BD与DE交于G,∵AB为⊙O的直径,∵∠ADB=90°,∵CE∥AD,∴∠BGE=∠ADB=90°,∵点D为的中点,∴,∴∠ABD=∠CBD,∵BG=BG,∠BGE=∠BGC=90°,∴△GBC≌△GBE(ASA),∴EB=CB,∵∠ABD=∠CBD,DB=DB,∴△DCB≌△DEB(SAS),∴DC=DE;(2)如图2,连接OD,OC交于K,∵,∴∠AOC=90°,∴∠AOD=∠COD=45°,∵OD=OA,∴∠ADO=∠DAO=(180°﹣45°)=67.5°,同理∠ODC=∠OCD=(180°﹣45°)=67.5°,∵EC∥AD,∴∠ADO=∠DKF=67.5°,∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°,∴∠FDC=∠ODF﹣∠ODC=22.5°,∵AD∥CE,∴∠DKC=∠ADK=67.5°,∴∠F=∠DCE﹣∠CDF=22.5°,∴DC=CF,∠DCE=45°,由(1)知,DC=DE,∴∠DEC=∠DCE=45°,∴△DCE是等腰直角三角形,∵弧AD与弧CD相等,∴CD=AD,∵AD=,∴AD=DE=DC=CF=.在等腰直角三角形DCE中,EC==2,∴EF=EC+CF=2+.【点评】本题是圆的综合题,考查了圆周角定理,切线的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,正确地找出辅助线是解题的关键.21.(9分)背景:双目视觉测距是一种通过测量出左、右两个相机视野中,同一物体的成像差异,来计算距离的方法.它在“AI”领域有着广泛的应用.材料一:基本介绍如图1,是双目视觉测距的平面图.两个相机的投影中O1,O r的连线叫做基线,距离为t,基线与左、右投影面均平行,到投影面的距离为相机焦距f,两投影面的长均为l(t,f,l是同型号双目相机中,内置的不变参数),两投影中心O1,O r分别在左、右投影面的中心垂直线上.根据光的直线传播原理,可以确定目标点P在左、右相机的成像点,分别用点P1,P r表示d1,d2分别是左、右成像点到各投影面左端的距离.材料二:重要定义①视差﹣﹣点P在左、右相机的视差定义为d=|d1﹣d2|.②盲区﹣﹣相机固定位置后,在基线上方的某平面区域中,当目标点P位于该区域时,若在左、右投影面上均不能形成成像点,则该区域称为盲区(如图2,阴影区域是盲区之一).③感应区﹣﹣承上,若在左、右投影面均可形成成像点,则该区域称为感应区.材料三:公式推导片段以下是小明学习笔记的一部分:如图3,显然,△O1P1E∽△PO1H,△O r P r F∽△PO r H,可得,,所以,(依图)…任务:(1)请在图2中(A,B,C,D是两投影面端点),画出感应区边界,并用阴影标示出感应区.(2)填空:材料三中的依据是指 比例的性质 ;已知某双目相机的基线长为200mm,焦距f为4mm,则位于感应区的目标点P到基线的距离z(mm)与视差d(mm)之间的函数关系式为 z= .(3)如图4,小明用(2)中那款双目相机(投影面CD长为10mm)正对天空连续拍摄时,一物体M 正好从相机观测平面的上方从左往右飞过.已知M的飞行轨迹是抛物线的一部分,且知,当M刚好进入感应区时,d1=0.05mm,当M刚好经过点O r的正上方时,视差d=0.02mm,在整个成像过程中,d 呈现出大﹣小﹣大的变化规律,当d恰好减小到上述d1的时,开始变大.①小明以水平基线为x轴,右投影面的中心垂直线为y轴,建立了如图4所示的平面直角坐标系,则该抛物线的表达式为 y=﹣x2+x+40 (友情提示:注意横、纵轴上的单位:1m=1000mm);②求物体M刚好落入“盲区”时,距离基线的高度.。
深圳市中考数学二模试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2019七下·海曙期中) 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076科学计数法表示为()
A .
B .
C .
D .
2. (2分) (2019九上·綦江期末) 方程的根是()
A .
B .
C .
D .
3. (2分)如图,锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,那么∠ACB与∠DFE的关系是()
A . 互余
B . 互补
C . 相等
D . 不互余、不互补也不相等
4. (2分)当x=3时,下列不等式成立的是()
A . x+3>5
B . x+3>6
C . x+3>7
D . x+3<5
5. (2分)如果点(-a,-b)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()
B . (b,-a)
C . (-a,b)
D . (-b,a)
6. (2分) (2019八下·滦南期末) 为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()
A . 方案一
B . 方案二
C . 方案三
D . 方案四
7. (2分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为()
A . 9
B . 12
C . 16
D . 18
8. (2分)(2018·沙湾模拟) 如图,正方形中,点、分别是边,的中点,连接
、交于点,则下列结论错误的是()
A .
B .
D .
二、二.填空题 (共8题;共8分)
9. (1分)(2017·埇桥模拟) 分解因式:x2y+2xy+y=________.
10. (1分) (2018九上·耒阳期中) 函数y= 中,自变量x的取值范围是________.
11. (1分)若分式方程有增根,则这个增根是________.
12. (1分)(2017·深圳模拟) 有A、B两只不透明口袋,每只口袋装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、”心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.
13. (1分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)
14. (1分) (2019七下·许昌期末) 如图,将一张长方形纸条沿某条直线折叠,若,则∠2等于________.
15. (1分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x…-4-3-2-10…
y…3-2-5-6-5…
则x<-2时, y的取值范围是________.
16. (1分)(2017·海口模拟) 如图,边长为1的正方形ABCD中绕点A逆时针旋转30°得到正方形AB′C′D′,则图中阴影部分的面积为________.
三、三.解答题 (共10题;共113分)
17. (10分)(2018·成华模拟)
(1)计算:
(2)解不等式组,并写出该不等式组的最大整数解.
18. (5分) (2020九上·镇平期末) 先化简(﹣1)÷ ,再求值,其中x是一元二次方程x2﹣3x+2=0的两根.
19. (5分) (2020九上·渭滨期末) 数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据tan67° ,tan37° )
20. (8分)(2019·合肥模拟) 九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调査结果绘制了不完整的频数分布表和扇形统计图.
类别频数(人数)频率
小说a0.5
戏剧4
散文100.25
其他6
合计b1
根据图表提供的信息,回答下列问题:
(1)直接写出:a=________.b=________m=________;
(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.
21. (17分)(2020·铁西模拟) 某校为了做好“营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按“优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:
(1)求抽取的学生总人数;
(2)抽取的学生中,等级为“优秀”的人数为________人;扇形统计图中等级为“不合格”部分的圆心角的度数为________°;
(3)补全条形统计图;
(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为“优秀”和“良好”的学生共有多少人.
22. (20分) (2017八上·龙泉驿期末) 某食品加工厂需要一批食品包装盒,供应这样包装盒有两种方案可供选择:
方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.
方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:
(1)方案一中每个包装盒的价格是多少元?
(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?
(3)请分别求出y1、y2与x的函数关系式.
(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.
23. (8分)(2017·深圳模拟) 某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:
(1)从统计图中可知:擦玻璃的面积占总面积的百分比为________,每人每分钟擦课桌椅________ m2;
(2)扫地拖地的面积是________ m2;
(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?
24. (10分)(2020·辽阳模拟) 如图,在中,,是的角平分线,平分交于点E,点O在边上,以点O为圆心的经过B、E两点,交于点F.
(1)求证:是的切线;
(2)若,,求阴影部分的面积.
25. (15分) (2019八下·新罗期末) 如图,正方形,点为对角线上一个动点,为
边上一点,且.
(1)求证:;
(2)若四边形的面积为25,试探求与满足的数量关系式;
(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.
26. (15分)(2012·海南) 如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,﹣3),求△ANO的面积;
(3)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、二.填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、三.解答题 (共10题;共113分)
17-1、
17-2、
18-1、
19-1、20-1、
20-2、21-1、21-2、
21-3、21-4、22-1、
22-2、22-3、
22-4、
23-1、23-2、
23-3、
24-1、
24-2、25-1、
25-2、25-3、26-1、
26-2、
26-3、。