第16章 logistic回归
- 格式:ppt
- 大小:1.92 MB
- 文档页数:114
logistic回归的模型公式Logistic回归模型是一种经典的统计学习方法,用于解决二分类问题。
它通过建立一个逻辑回归方程,预测某个样本属于某一类别的概率。
本文将介绍Logistic回归模型的原理和应用,并探讨其优缺点。
一、Logistic回归模型的原理Logistic回归模型是建立在线性回归模型的基础上,通过引入一个非线性函数(称为Logistic函数或Sigmoid函数)将线性回归的输出结果转化为概率值。
Logistic函数的数学表达式为:f(x) = 1 / (1 + e^(-x)),其中e为自然对数的底。
该函数的特点是输出值在0和1之间,可以用来表示某个事件发生的概率。
在Logistic回归模型中,假设有n个自变量(特征)x1,x2,...,xn,对应的回归系数为β1,β2,...,βn。
模型的方程可以表示为:P(y=1|x) = f(β0 + β1x1 + β2x2 + ... + βnxn),其中P(y=1|x)表示样本属于正例的概率。
为了估计回归系数,通常采用最大似然估计方法。
具体来说,我们希望通过最大化似然函数来找到最优的回归系数,使得模型对观测数据的拟合度最高。
然后,利用估计得到的回归系数,我们可以对新的样本进行预测,并给出其属于正例的概率。
二、Logistic回归模型的应用Logistic回归模型有广泛的应用领域,尤其在医学、金融、市场营销等领域中得到了广泛的应用。
在医学领域,Logistic回归模型常用于疾病风险预测和诊断模型的建立。
例如,可以利用患者的年龄、性别、血压等特征来预测患者患某种疾病的风险。
在金融领域,Logistic回归模型可以用于信用评分和违约预测。
银行可以根据客户的个人信息和历史信用记录,利用Logistic回归模型来评估客户的信用风险,并据此决定是否给予贷款。
在市场营销领域,Logistic回归模型可以用于客户分类和市场细分。
根据客户的购买行为、兴趣爱好等特征,可以预测客户对某种产品或服务的购买概率,进而制定相应的市场营销策略。
logistic回归模型统计描述在统计学中,logistic回归模型是一种常用的分类方法,它适用于将自变量与离散的二分类因变量相关联的情况。
本文将会详细介绍logistic回归模型的原理、概念以及应用,并解释如何利用该模型进行统计推断与预测。
一、logistic回归模型的原理与概念1.1 逻辑函数与S型曲线在logistic回归模型中,我们使用逻辑函数(logistic function)将自变量的线性组合转换为一个介于0和1之间的概率值。
逻辑函数(也称为sigmoid函数)是一个S型曲线,它可以表示如下:f(z) = 1 / (1 + e^(-z))其中,f(z)表示逻辑函数的输出值,e为自然对数的底,z为自变量的线性组合。
1.2 线性组合与logit函数在logistic回归模型中,自变量的线性组合表示为:z = β0 + β1x1 + β2x2 + ... + βnxn其中,zi表示第i个样本的线性组合值,β0、β1、β2...βn为模型的参数,xi为自变量的取值。
1.3 参数的解释与推断在logistic回归模型中,参数的解释通常使用odds ratio(比率几率)来进行推断。
比率几率表示的是某个事件的成功概率与失败概率之间的比值。
对于一个二分类事件,比率几率可以表示为:odds = p / (1 - p)其中,p为事件成功的概率。
通过对比两种不同情况下的比率几率,可以推断参数对于事件发生的影响程度。
二、logistic回归模型的应用2.1 数据准备在使用logistic回归模型时,首先需要准备好相关的数据。
通常情况下,我们将数据集分为训练集和测试集,用于模型的训练与验证。
2.2 模型拟合与参数估计使用logistic回归模型进行拟合时,通常采用最大似然估计法。
最大似然估计法旨在选择最适合观测到的数据的参数值,使得观测到的数据的概率最大化。
2.3 模型评估与优化在模型拟合完成后,我们需要对模型进行评估与优化。
l o g i s t i c回归-CAL-FENGHAI.-(YICAI)-Company One1定性资料的回归分析------Logistic 回归Logistic 模型的主要用途:1. 用作影响因素分析2.作为判别分析方法 第一节 二分类变量的logistic 回归逻辑回归区别于线性回归,最主要的特点就一个:它的因变量是0-1型数据。
啥是0-1型数据?就是这个数据有且仅有两个可能的取值。
数学上为了方便,把其中一个记作0,另外一个记作1.例1:购买决定:我是买呢还是买呢还是买呢如果您的决策永远是:买、买、买,这不是0-1数据。
我们说的购买决策是:买还是不买定义:1=购买,0=不购买。
这个关于购买决定的0-1变量老牛了。
为啥?因为它支撑了太多的重要应用。
例如,我生产了一瓶矿泉水,叫做“农妇山泉有点咸”,到底卖给谁呢为此,我们需要做市场定位。
什么是市场定位市场定位从回归分析的角度看,就是想知道:谁会买这个产品谁不会买或者说:谁购买这个产品的可能性大,谁购买的可能性小。
这样我们就可以瞄准可能性最高的一批人,他们就构成了我的目标市场。
这就是我们通常所说的市场定位。
令Y 表示购买决定,那么影响它的因素有很多。
比如,消费者自己的人口特征1X 、消费者过去的购买记录是2X 、来自社交网络朋友的行为信息3X 、产品自己的特征4X 、产品正在承受的市场手段策略(例如:促销)5X 、竞争对手的市场动作6X 等等。
一.模型建立 理论回归模型:01122ln...,1p p px x x pββββ=+++-其中1(1,...,)p p p y x x ==。
注:1pp- 称为优势(odds), 表示某个事件的相对危险度. 获得容量为n 的样本()12,,,,1,...,i i ip i x x x y i n =后可得样本回归模型:01122ln,1ii i p ip ip x x x p ββββ=+++-其中1(1,...,)i i p p p y x x ==,1,...,i n =。
logistic回归计算讲解Logistic回归是一种广泛用于分类问题的机器学习算法。
它可以用于二分类问题,也可以通过一些修改用于多分类问题。
下面是Logistic回归的计算过程的简要讲解:1. 数据准备:首先,收集和准备用于训练和测试的数据集。
每个数据样本应该包括特征和对应的类别标签。
特征可以是连续值或离散值。
2. 特征缩放:如果特征具有不同的量纲或取值范围,可以对特征进行缩放,以便更好地使用Logistic回归算法。
常见的缩放方法包括标准化和归一化。
3. 参数初始化:初始化Logistic回归模型的参数,通常为权重(也称为系数)和偏置(也称为截距)。
4. 假设函数:定义Logistic回归的假设函数,它将特征值映射到预测的类别概率。
通常使用sigmoid函数作为Logistic回归的假设函数。
5. 成本函数:使用成本函数(也称为损失函数)来度量模型预测的错误程度。
对于Logistic回归,常用的成本函数是逻辑损失函数(Log Loss)或交叉熵损失函数。
6. 梯度下降:使用梯度下降算法或其他优化算法来最小化成本函数,从而找到最佳的模型参数。
梯度下降算法通过计算参数的梯度,沿着梯度的反方向更新参数,逐步调整参数值以降低成本。
7. 模型训练:使用训练数据集来训练Logistic回归模型。
通过迭代优化算法来更新参数,重复计算成本函数和梯度下降步骤,直到达到停止条件(如达到最大迭代次数或成本函数的变化很小)。
8. 模型预测:使用训练好的Logistic回归模型来进行预测。
将新的输入特征传递给假设函数,计算预测的类别概率。
通常,如果概率大于一个阈值,将样本预测为正类;否则,预测为负类。
常见的阈值是0.5。
以上是Logistic回归算法的主要计算步骤。
在实践中,还需要考虑特征选择、模型评估和调优等方面,以获得更好的分类性能。