金属晶体堆积模型及计算公式
- 格式:ppt
- 大小:1.31 MB
- 文档页数:29
金属晶体四类晶胞空间利用率的计算高二化学·唐金圣在新课标人教版化学选修3《金属晶体》一节中,给出了金属晶体四种堆积方式的晶胞空间利用率。
空间利用率就是晶胞上占有的金属原子的体积与晶胞体积之比。
下面就金属晶体的四种堆积方式计算晶胞的空间利用率。
一、简单立方堆积:在简单立方堆积的晶胞中,晶胞边长a等于金属原子半径r的2倍,晶胞的体积V晶胞=(2r)3。
晶胞上占有1个金属原子,金属原子的体积V原子=4πr3/3 ,所以空间利用率V原3/ (3×(2r)3)=52.33﹪。
子/V晶胞 = 4πr二、体心立方堆积:在体心立方堆积的晶胞中,体对角线上的三个原子相切,体对角线长度等于原子半径的4倍。
假定晶胞边长为a ,则a2 + 2a2 = (4r)2, a=4 r/√3 ,晶胞体积V晶胞 =64r3/ 3√3 。
体心堆积的晶胞上占有的原子个数为2,原子占有的体积为V原子=2×(4πr3/3)。
晶胞的空间利用率等于V原子/V晶胞 =(2×4πr3×3√3)/(3×64r3)= 67.98﹪。
三、面心立方最密堆积在面心立方最密堆积的晶胞中,面对角线长度是原子半径的4倍。
假定晶胞边长为a,则a2 + a2 = (4r)2 ,a = 2√2r ,晶胞体积V晶胞=16√2r3。
面心立方堆积的晶胞上占有的原子数为4,原子占有的体积为V原子 = 4×(4πr3/3)。
晶胞的空间利用率等于V原子/V晶胞 =(4×4πr3)/(3×16√2r3)= 74.02﹪.四、六方最密堆积六方最密堆积的晶胞不再是立方结构。
晶胞上、下两个底面为紧密堆积的四个原子中心连成的菱形,边长a = 2r ,夹角分别为60°、120°,底面积s = 2r×2r×sin(60°) 。
晶胞的高h的计算是关键,也是晶胞结构中最难理解的。
晶胞结构一、金属晶体2.钾型A2(体心立方堆积)堆积晶胞钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为:ar r a r a 43,34 ,43===%02.68833364342234223364)34(33333==⋅=⋅===πππr r V V A rV rr V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中3.六方最密堆积(4)A1(面心立方最密堆积)A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。
A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A1堆积空间利用率的计算:A1堆积用圆球半径r 表示的晶胞体积为:(5)A4堆积形成晶胞A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A4堆积的空间利用率的计算:A4堆积用圆球半径r 表示的晶胞体积为: ra r a 22 ,42==%05.742312163441344 4216)22(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中ar r a r r a 83,38 ,8243===⨯=%01.34163335123484348 833512)38(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中二、原子晶体1.金刚石立体网状结构,每个碳原子形成4个共价键,任意抽出2个共价键,每两个单键归两个六元环所有,而不是只归一个六元环所有(如图所示,红色的两个碳碳单键,可以构成蓝色和紫红色的两个六元环)。
金属晶体的三种密堆积方式金属晶体的三种密堆积方式中,原子排列的密堆积方式是指原子在三维空间中紧密排列,以使得晶体的空间利用率达到最大。
密堆积方式可以有效影响金属的密度、强度、硬度等物理性质,因此在材料科学和固体物理中具有重要意义。
通常,金属晶体的密堆积方式主要分为以下三种:面心立方堆积(FCC)、六方最密堆积(HCP)和体心立方堆积(BCC)。
一、面心立方堆积(FCC)面心立方堆积(Face-Centered Cubic, FCC)是一种常见的密堆积方式,其中每个立方体的面上都有一个原子,且每个顶点上也有一个原子。
FCC结构可以看作是由许多面心立方单元重复堆积而成,其代表性金属包括铜(Cu)、铝(Al)、银(Ag)和金(Au)等。
1. 结构特点:在FCC结构中,每个原子都有12个最近邻原子,即配位数为12。
该结构单胞中包含4个原子(8个顶点上的原子分别与相邻单元共享,6个面的原子与邻近单元共享),堆积因子达到0.74,即约74%的空间被原子占据,属于最密堆积结构。
2. 性质:FCC结构由于其紧密的堆积方式,具有较高的塑性和延展性。
因此,FCC金属在室温下一般较易发生滑移,从而产生延展变形。
例如,铜和铝具有良好的延展性,易于加工成型。
3. 堆积方式:在面心立方堆积中,原子在平面上形成紧密的六边形排列,层间顺序为ABCABC 的排列模式。
这意味着每三层后结构重复,形成周期性排列。
4. 应用:FCC结构的金属由于其良好的延展性和抗冲击性,常用于制造电线、金属薄膜和结构材料等。
二、六方最密堆积(HCP)六方最密堆积(Hexagonal Close-Packed, HCP)是一种与面心立方相似的密堆积方式,但其晶体结构为六方柱体,且具有不同的堆积顺序。
HCP结构的代表性金属包括镁(Mg)、钛(Ti)、锌(Zn)和钴(Co)等。
1. 结构特点:在HCP结构中,原子的配位数同样为12,说明其紧密度与FCC相似。
金属晶体的四种堆积模型总结Metal crystals can be classified into four main stacking models: Close-packed cubic (FCC), Close-packed hexagonal (HCP), Body-centered cubic (BCC), and Simple cubic (SC). These models represent different ways in which metal atoms arrange themselves in a crystal lattice. Close-packed cubic structures have atoms arranged in layers of repeating ABCABC... pattern, giving them high packing efficiency.金属晶体可以分为四种主要的堆积模型:密堆立方(FCC)、密堆六方(HCP)、体心立方(BCC)和简单立方(SC)。
这些模型代表了金属原子在晶格中排列的不同方式。
密堆立方结构中,原子按照重复ABCABC...模式排列在不同层中,使得具有较高的填充效率。
Close-packed hexagonal structures, on the other hand, consist of layers with an ABAB... stacking sequence. This type of arrangement gives rise to a compact structure with a hexagonal unit cell. Body-centered cubic structures have atoms arranged in a simple cubic lattice with an additional atom at the center of the cube. This arrangement provides good mechanical properties due to thepresence of the central atom, which enhances the strength of the crystal lattice.另一方面,密堆六方结构由具有ABAB...堆叠序列的层组成。
金属晶体晶胞堆积方式金属晶体是金属元素构成的晶体结构,其原子或离子以某种特定的方式堆积在一起。
这些堆积方式对于金属的性质和性能有着至关重要的影响。
在金属晶体中,金属原子或离子的堆积方式通常被称为“堆积方式”或“堆积模型”。
一、常见堆积方式1. 六方堆积(Hexagonal Close-Packed,简称hcp):这种堆积方式在金属晶体中是最常见的之一。
在六方堆积中,每个原子周围都有12个原子,它们以六重对称的方式排列。
这种堆积方式可以有效地减少原子间的空隙,提高晶胞的密度。
许多金属元素,如镁、锌、镉等,采用这种堆积方式。
2. 面心立方堆积(Face-Centered Cubic,简称fcc):这种堆积方式在金属晶体中也较为常见。
在面心立方堆积中,每个原子周围都有12个原子,它们以面心对称的方式排列。
这种堆积方式可以提供最大的空间利用率,因此许多金属元素,如铜、铁、镍等,采用这种堆积方式。
3. 体心立方堆积(Body-Centered Cubic,简称bcc):这种堆积方式在金属晶体中不如前两种常见。
在体心立方堆积中,每个原子周围有8个原子,它们以体心对称的方式排列。
这种堆积方式的空间利用率较低,通常用于一些高熔点、高硬度的金属元素,如钨、钼等。
二、堆积方式的影响因素金属原子的电子排布和大小是决定其堆积方式的主要因素。
一般来说,如果金属原子的电子排布较稳定,且原子半径较小,则更倾向于采取六方堆积;如果金属原子的电子排布不太稳定,且原子半径较大,则更倾向于采取面心立方堆积或体心立方堆积。
此外,金属的物理化学性质,如熔点、硬度、延展性等,也与堆积方式密切相关。
三、堆积方式的检测方法对于金属晶体堆积方式的检测,通常可以采用X射线衍射法或中子衍射法。
这些方法可以通过分析衍射图谱来确定晶胞的几何形状和大小,从而推断出金属原子的堆积方式。
此外,近年来发展起来的计算机模拟方法也为研究金属晶胞的堆积方式提供了有力的工具。