五年级下册奥数题
- 格式:pdf
- 大小:37.33 KB
- 文档页数:23
五年级下册数学奥数题及答案一、选择题1.下列数中,哪一个不能整除30? A. 5 B. 6 C. 10 D. 15答案:A2.小明买了3双袜子,每双袜子花费5元,他还剩下多少元? A. 10 B.12 C. 15 D. 18答案:C3.一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米? A.16 B. 20 C. 30 D. 32答案:D4.下列数字中,哪一个是奇数? A. 10 B. 15 C. 20 D. 24答案:B5.如果一个三角形的三条边长度分别是3cm、4cm和5cm,那么它是什么三角形? A. 等边三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形答案:B二、填空题1. 5 × 6 = ____ 答案:302.下列数字中,最小的是____ 答案:03.7 ÷ 2 = ____ 答案:3.54. 2 + 4 × 3 = ____ 答案:145.12 ÷ 3 = ____ 答案:4三、解答题1. 计算题小明在商场购买了两本数学书,每本书的价格分别是35元和20元。
他付给售货员一张50元的钞票,请问他应该找给小明多少零钱?解答:两本书的总价格:35元+ 20元= 55元小明给了售货员50元的钞票,所以需要找给小明的零钱是:50元- 55元= -5元小明应该还需要给售货员5元。
2. 推理题一辆汽车前进了200公里,然后返回原点,再往前走100公里,最后又返回原点。
请问汽车最终所在的位置与原点的位置相比,是在原点的左边还是右边?解答:汽车前进了200公里,然后返回原点,所以汽车回到了原点。
再往前走100公里,又返回原点,所以汽车依然在原点。
因此,汽车最终所在的位置与原点的位置重合,即汽车最终位置与原点相同。
四、总结本文列出了五年级下册数学奥数题及答案。
选择题包括了求除数、数字判断、图形面积、奇偶数、三角形分类等题型。
填空题涵盖了乘法、最小数、除法以及复杂的运算顺序。
五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
五年级下册奥数题(1)(1+++)×(+++)-(1++++)×(++)2131412131415121314151213141(2)+++……+++211⨯321⨯431⨯200920081⨯201020091⨯201120101⨯(3)++++……++200812008220083200842008200620082007盈亏问题基本数量关系(盈+亏)÷两次所分之差=人数(盈-盈)÷两次所分之差=人数(亏-亏)÷两次所分之差=人数1、一些铅笔奖给三好学生,每人分5支还多4支;每人分6支则少4支。
有多少个三好学生?有多少支铅笔?2、一些铅笔奖给三好学生,每人分4支还多10支;每人分6支则多2支。
有多少个三好学生?有多少支铅笔?3、一些铅笔奖给三好学生,每人分9支则少21支;每人分7支则少7支。
有多少个三好学生?有多少支铅笔?4、一筐桃子,每只猴子分6个,余12个;每只猴子分7个,少11个。
有几只猴子、几个桃子?5、一叠本子发给同学们,每人发4本还差2本,每人发6本就差20本。
求一共有多少个同学、多少个本子?6、一篮苹果分给小朋友,如果减少一人,每人正好分5个;如果增加一人,每人正好分4个。
这篮苹果一共有多少个?7、五年级同学去划船,如果增加一条船,正好每只船上坐7人;如果减少一条船,正好每只船上坐8人。
共有多少个同学?8、一个旅游团去旅馆住宿,如果6人一间,多2个房间;如果4人一间,就会少2个房间。
这个旅游团共有多少人?长方体和正方体的表面积1、有四个棱长为3分米的正方体,如果将它们拼成一个长方体,求这个长方体的表面积。
2、将一个长方体的高增加2厘米后,就成了一个正方体,且表面积比原来增加了40平方厘米,求原来长方体的表面积。
3、把三个长、宽、高分别是10厘米、8厘米、3厘米的长方体拼成一个较大的长方体,求这个长方体的表面积最小是多少平方厘米?4、一个长方体正好可以切割成3个完全一样的正方体,且没有剩余;三个正方体的表面积比原来增加了60平方厘米。
小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
五年级数学下册奥数50题、附解析及参考答案一、工程问题1.甲乙两个水管单独开,注满一池水需要20小时和16小时。
丙水管单独开,排一池水要10小时。
如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答:甲水管每小时注入1/20的水量,乙水管每小时注入1/16的水量,丙水管每小时排出1/10的水量。
在5小时内,甲乙两水管共注入了5/20+5/16=19/40的水量,水池中水量为19/40.再打开丙水管后,每小时水池中的水量减少1/10-1/20-1/16=3/80,所以注满整个水池还需要(1-19/40)/(3/80)=16小时。
2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低。
甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答:设甲队合作x天,乙队合作XXX,则有以下两个方程:20x/(5/4)+30y/(10/9)=1.(甲、乙两队合作完成1个单位的工程)20x/(5/4)+(30-y)/(1/3)=16.(甲、乙两队合作16天完成工程)解得x=8,y=6,所以两队需要合作8天。
3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。
现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?答:设甲、乙、丙每小时完成的工作量分别为a、b、c,则有以下三个方程:2(a+c)+6b=1.(甲、乙、丙合作完成1个单位的工作)4(a+b)=1.(甲、乙合作完成1个单位的工作)5(b+c)=1.(乙、丙合作完成1个单位的工作)解得a=1/20,b=1/60,c=1/12,所以乙单独做完这件工作需要6b=6/60=1/10小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
五年级下册奥数题目录第一讲图形的变换(图形的分割与拼接)………………………………3-5第二讲因数与倍数(数的整除特征一)………………………………6-10第三讲因数与倍数(数的整除特征二)……………………………11-12第四讲因数与倍数(奇数与偶数)……………………………13-17第五讲因数与倍数(最小公倍数与最大公因数)……………………18-20第六讲因数与倍数(最小公倍数与最大公因数)……………………21-261第七讲长方体和正方体(巧算表面积)………………………………27-30 第八讲长方体和正方体(巧算体积)……………………………………31-35 第九讲分数的意义和性质……36-40 第十讲分数的加法和减法……41-44 第十一讲平均数问题……………45-49 第十二讲教学广角(追及问题)…………………………………50-54 第十三讲数学广角(还原问题)…55-58 第十四讲容斥原理………………59-62 第十五讲抽屉原理和最不利……63-67 第十六讲综合练习…………… 68-982五年级下册奥数题第一讲图形的变换(图形的分割与拼接)1、把右图分成形状、大小都相同的四块,并且每个图形中要有一个“·”。
2、把下图分成大小、形状相同的三块,使每一块都有一颗星,该怎么分割?33、下图是由一个正方形和一个等腰直角三角形组成的,请把它分成大小、形状相同的四块。
4、将下图分成大小、形状相同的四块、每块中带有一个小圆圈。
5、将图中五个图形拼成一个正方形456、将图中长方形切成两块,拼成一个正方形。
7、将下图(缺两角的长方形)分割成两块,然后拼成一个正方形。
8、将下图“T ”字剪成四块,然后拼成一个正方形。
169第二讲因数与倍数(数的整除特征一)1、五位数73()28能被9整除,()里应该是几?2、一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底,此问题解的组数为多少?3、A8919B能被66整除,这个六位数是多少?64、期末考试六年级一班数学平均分是90分,总分是()95(),这个班有多少名学生?5、任意一个三位数连着写两回得到一个六位数,这个六位数一定能被7,11,13整除。
最新小学五年级下册数学奥数题带答案一、拓展提优试题1.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.2.(15分)小吴从从家骑自行车去森林公园游玩,出发30分钟后,小吴的父亲发现小吴的钱包还在家里,于是立即开车给小吴送钱包,在距离森林公园3.5千米处追上小吴.将钱包给小吴后,父亲立即原路返回,返回家时小吴还需10分钟才能到达森林公园,若父亲开车的速度是小吴骑自行车速度的5倍,小吴家距离森林公园多少千米?3.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.4.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.5.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.6.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.7.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.8.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.13.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.14.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.15.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.16.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S=.△ABC17.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.18.(7分)如图,按此规律,图4中的小方块应为个.19.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.20.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.21.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;22.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.23.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块24.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.25.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.26.数一数,图中有多少个正方形?27.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.28.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.29.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.30.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.31.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.32.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.33.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.34.(12分)如图,C、D为AB的三等分点.8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟丙从B出发匀速向A行走;甲、乙在C点相遇时丙恰好走到D点,甲、丙8:30相遇时乙恰好到A.那么,丙出发时是点分.35.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.36.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.37.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.38.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.39.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.40.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)【参考答案】一、拓展提优试题1.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.2.解:由题意,30÷(5﹣1)=7.5分钟,3500÷(7.5+10)=200(米/分),200×(30+7.5+7.5+10)=11000米=11千米,答:小吴家距离森林公园11千米.3.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.4.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.5.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.6.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.7.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:1608.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:1209.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11811.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.12.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.故答案是:2.13.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.14.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.15.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.16.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.1617.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.18.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.19.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.520.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.21.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.22.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR =2KP =RE ,那么由三角形AEK 是六边形面积的,且S △APK =S △AKE ,S △APK =S ABCDEF =47,所以阴影面积为47×3=141故答案为141.23.64[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。
小学五年级奥数题修改版一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
4. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
5. 计算 1.25⨯0.32⨯2.5=_____。
6. 计算 75⨯4.7+15.9⨯25=_____。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
9.。
10.计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23。
二、数的整除性(一)填空题1. 四位数“3AA1”是9的倍数,那么A=_____。
2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。
3. 能同时被2、3、5整除的最大三位数是_____。
4. 能同时被2、5、7整除的最大五位数是_____。
5. 1至100以内所有不能被3整除的数的和是_____。
6. 所有能被3整除的两位数的和是______。
7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____。
(二)解答题8. 173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?9.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?三质数与合数(一)填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____。
1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。
现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。
现在甲丙合作2小时,剩下的乙7小时完成。
甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王……王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。
王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。
王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。
所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。
五年级下册数学最难的奥数题1、一个筐子放进4篮苹果后,连筐共重28千克,当倒出3篮苹果后再称,连筐共重10千克,一个筐子重(4)千克2、一块正方形菜地,边长是12米。
如果要把它的面积扩大到原来的2倍,其中一条边增加4米,另一条边增长多少米?(写出过程)3、学校卖3把椅子和4张桌子共用元,未知卖2张桌子的钱可以卖5把椅子,一把椅子多少元?一张桌子多少元?(写下过程)4.一条路长米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?5、12棵柳树排列成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?6、一根厘米长的木条,要锯成10厘米长的小段,需要锯几次?7、.蚂蚁爬到树枝,每上时一节须要10秒钟,从第一节爬到至第13节须要多少分钟?8.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?9、从发电厂至闹市区一共存有根电线杆,每相连两根电线杆之间就是30米。
从发电厂至闹市区存有多离?10、.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?11.一个人沿着小骗走了全长的一半后,又跑了剩的一半,还剩1千米,问:小加全长多少千米?12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?13.一条毛毛虫由幼虫短至成虫,每天短一倍,16天能长至16厘米。
反问它几天可以短至4厘米?14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出千克,桶中还剩下80千克。
桶里原来有水多少千克?15、甲、乙两书架共计图书本,甲书架的图书数比乙书架的3倍太少16本。
甲、乙两书架上各存有图书多少本?16、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?17.小明、小华捉住完鱼。
五年级数学下册奥数题练习班级考号姓名总分一、排列组合问题1、有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有( )A、768种B、32种C、24种D、2的10次方种2、若把英语单词hello的字母写错了,则可能出现的错误共有( )A、119种B、36种C、59种D、48种二、容斥原理问题1、有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A、43,25B、32,25C、32,15D、43,112、在多元智能大赛的决赛中只有三道题。
已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍;(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A、5B、6C、7D、83、一次考试共有5道试题。
做对第1、2、3、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。
如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?三、抽屉原理、奇偶性问题1、一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?2、有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?3、某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?4、地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)四、路程问题1、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学五年级数学下册经典奥数应用题66道(附答案)1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?10.一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人..29.图书馆科技书与文艺书的比是4:5,又购进300本文艺术后,科技书与文艺书的比是5:7,文艺书比原来增加了百分之几?30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?31.五、六年级只有学生175人。
五年级下册奥数题:
1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,
同向而行,小明每秒跑3.5米,小华每秒跑5.5米。
经过多少秒,两人第三次相遇?
2.一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站,已知前6
个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有多少人。
3.在1997后面补上三个数字,组成一个七位数1997□□□,如果这七位数能
被4、5、6整除,那么补上的三个数字的和的最小可能值是多少?
4.已知两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一
个数是多少?
5.定义新运算a△b=ab-(a+b),则(4△3)+(3△4)=多少。
五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版1、一块草地,可以供24匹马吃6天,20匹马吃10天。
问12天时多少匹马可以吃尽这块草地?假设草地单位为“1”,所以24*6=144,20*10=200.因此每天草地长草14个单位“1”。
200-14*10=60,因此草地原有草60个单位"1"。
所以,60/12+14=19,即19匹马12天可以吃尽这块草地。
2、一块草地,可以供5只羊吃40天,6只羊吃30天。
如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?同理,40*5=200,30*6=180.因此每天草地长草2个单位“1”。
200-2*40=120是原有草。
120-(4-2)*30=60是剩余草。
因此,60/(6+2)=7.5,即再吃7.5天。
3、每小时有3000人到书店买书。
如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。
那么如果设4个口,多长时间后就没有人排队了?每分钟有3000/60=50人来买书。
如果设一个售书口,每分钟可以卖出50本书。
因此,每分钟的人数和卖出的书数相等,不会有排队。
如果设2个售书口,每分钟可以卖出100本书。
因此,每分钟有50人来买书,需要排队等待。
但是,2个售书口可以同时处理,所以不会有排队。
同理,如果设4个售书口,每分钟可以卖出200本书。
因此,每分钟有100人来买书,需要排队等待。
但是,4个售书口可以同时处理,所以不会有排队。
4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。
那么5部同样的抽水机,多少分钟可以抽干?设5部抽水机可以在x分钟内抽干这口井。
则有3*40=6*16,即120=96.因此,每分钟5部抽水机可以抽干的水量为120/5=24.所以,用5部抽水机抽干这口井需要24x的时间。
又因为6部抽水机可以在16分钟内抽干,每分钟抽干的水量为120/16=7.5.因此,5部抽水机每分钟可以抽干的水量为7.5*5/6=6.25.所以,24x=120,即x=5,用5部抽水机可以在5分钟内抽干这口井。
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。
2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。
3. 一个数的3倍是45,这个数是多少?答案:这个数是15。
4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。
5. 一个数加上12等于36,这个数是多少?答案:这个数是24。
6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。
7. 一个数的4倍是64,这个数是多少?答案:这个数是16。
8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。
9. 一个数的5倍是100,这个数是多少?答案:这个数是20。
10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。
11. 一个数的6倍是72,这个数是多少?答案:这个数是12。
12. 一个数减去15得到30,这个数是多少?答案:这个数是45。
13. 一个数的7倍是49,这个数是多少?答案:这个数是7。
14. 一个数的8倍是64,这个数是多少?答案:这个数是8。
15. 一个数的9倍是81,这个数是多少?答案:这个数是9。
16. 一个数的10倍是100,这个数是多少?答案:这个数是10。
17. 一个数的11倍是121,这个数是多少?答案:这个数是11。
18. 一个数的12倍是144,这个数是多少?答案:这个数是12。
19. 一个数的13倍是169,这个数是多少?答案:这个数是13。
20. 一个数的14倍是196,这个数是多少?答案:这个数是14。
21. 一个数的15倍是225,这个数是多少?答案:这个数是15。
22. 一个数的16倍是256,这个数是多少?答案:这个数是16。
23. 一个数的17倍是289,这个数是多少?答案:这个数是17。
1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。
现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。
现在甲丙合作2小时,剩下的乙7小时完成。
甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王…… 王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。
王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。
王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。
所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。
五年级下册奥数题一、填空题(只写答案即可,每题3分)1 一个数, 减去它的20%, 再加上5, 还比原来小3。
那么, 这个数是______________。
2. 甲数比乙数小16%, 乙数比丙数大20%, 甲、乙、丙三数中, 最小的数是_________数。
3. 时钟上六点十分时, 分针和时针组成的钝角是______________度。
4. 一个真分数, 如乘以3, 分子比分母小16, 如除以, 分母比分子小2, 这真分数是________。
5. 11 只李子的重量等于2只苹果和1只桃子的重量, 2只李子和1只苹果的重量等于1只桃子的重量, 那么, 一只桃子的重量等于__________只李子的重量。
6. A、B两数的和是, A数的倍与B数的两倍的和是16, A数是______________。
7. "六一"画展所参展的画中, 14幅不是六年级的, 17幅不是五年级的, 而五、六年级共展画21幅, 那么, 其它年级参展的画是___________幅。
8. 100克15%浓度的盐水中, 放进了盐8克, 为使溶液的浓度为20%, 那么, 还得再加进水_________克。
9. 甲、乙两厂生产的产品数量相等, 甲厂产品中正品的数量是乙厂次品数的3倍, 乙厂正品的数量是甲厂次品数量的4倍, 那么, 甲、乙两厂生产的正品的数量之比是__________。
10.1000只鸽子飞进50个巢,无论怎么飞,我们都能找到含鸽子最多的巢,它里面至少有__________只鸽子。
11.试卷上有4道题,每题有3个可供选择的答案,结果对于其中任何3人都有一道题目答案互不相同。
这个班有__________人。
12.悉尼与北京时差是3小时,例如:悉尼是12:00,北京就是9:00。
某日当悉尼是9:15时,小明和小红分别乘机从悉尼和北京同时出发去对方的所在地,小明于北京时间19:33到达北京。
小明和小红所用时间之比为7:6,那么当小红到达悉尼时,当地时间是__________。
二.应用题:(每题9分, 要求列式计算, 仅有答数不给分)1. 两数相除的商是22, 余数是8, 被除数、除数、商数、余数的和是866, 问:被除数是多少?2. 六一歌手大奖赛有407人参加, 女歌手未获奖人数占女歌手总数的, 男歌手16人未获奖, 而获奖男女歌手人数一样多, 问:参赛的男歌手共几人?3. 甲从A地往B地, 乙、丙两人从B地往A地, 三人同时出发, 甲首先在途中与乙相遇, 之后15分钟又与丙相遇, 甲每分钟走70米, 乙每分钟走60米, 丙每分钟走50米, 问:A、B两地相距多少米?4. 一批拥军物资, 如用8辆大卡车装运, 3天可运完, 如用5辆小卡车装运, 8天可运完全部的75%, 现用3辆大卡车、4辆小卡车装运, 几天可以运完?5. 三个小组的人数一样多, 第一小组男生数等于第二小组女生数, 第三小组的男生数是三个小组男生数总和的, 问三个小组的男生总数占三个小组总人数的几分之几?6. 甲乙两根进水管同时打开, 4小时可注满水池的40%, 接着甲管单独开5小时, 再由乙管单独开7.4小时, 方才注满水池, 问:如果独开乙管, 多少时间可将水池注满?7.浓度为60%的酒精溶液200g,与浓度为30%的酒精溶液300g,混合后所得到的酒精溶液的浓度是( )。
8.一船在河流中顺水航行5小时,你逆水航行7小时,若有一木排顺水漂游到下游要几小时?9.甲乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相隔336千米的两港同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?10、山坡上有一群羊,其中有绵羊和山羊。
已知绵羊比山羊的3倍多55只,已知绵羊比山羊多345只,两种羊各有多少只?11、育才小学参加科技小组的同学比参加合唱队的4倍少45人,参加科技小组的同学比合唱队的人数多105人,求参加科技小组同学和参加合唱队的人数各有多少人?12、甲、乙两数的差是9,甲数的1/6和乙数的1/4相等,甲数是多少?乙数是多少?13、有两缸金鱼,如果从甲缸中取出5条放入乙缸,两缸内的金鱼数相等。
已知原来甲缸的金鱼数是乙缸的1又2/3倍,甲缸原有金鱼多少条?14、两个自然数的和,与这两个的差相乘,积为77,问这两个数是多少?15、在相距120米的两楼之间栽树,每隔12米栽一棵,共栽树多少棵?16、在一条公路一旁从头至尾植树36棵,每相邻两棵之间隔8米,这条公路长多少米?17、在圆形的水池边,每隔3米种一棵树,共种树60棵,这个水池的周长是多少米?18、有2根木料,打算把每根锯成3段,每段锯开一处需要3分钟,全部锯完需要几分钟?19、某人到十五层大楼的第十层楼办事,由于电梯维修,只能走楼梯,如果从一层走到第三层需要30秒,请问:用同样的速度往上走到第十层,还要20、某商店进了定价分别为210元、90元、60元的羊毛衫共47件,卖完后共得6360元。
已知定价为90元的羊毛衫件数是定价为60元羊毛衫件数的2倍。
求,三种羊毛衫各进了多少件?21.浦江对江两个渡口A、B之间有两条渡船,分别以各自的常速同时往返行驶于两个渡口,两船在江中离A渡200米处首次相遇,相遇后继续向对江渡口驶去,各自到渡口后,立即掉头再驶向原来出发的渡口,这样在离渡口B渡100米处第二次相遇。
假设不计渡船在渡口停留时间,那么渡口A、B之间的距离是多少千米?22.甲城有177吨贷物要一趟运到乙城。
大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车各跑一趟的耗油量分别是10千克和5千克。
问,用多少辆大卡车和小卡车来运输时耗油最少?23甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇。
已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?24.甲.乙两人分别从A、B两地同时出发,相遇后,甲继续向B地走,乙马上返回往B地走,甲从A到达B地比乙返回迟到0.5小时。
已知甲的速度是乙的1/4 ,甲从A地到B地共用了多少小时?25.甲、乙两车分别从 A.B两地同时相向而行,甲车每小时行40千米,乙车每小时行45千米,两车相遇后继续前进,到达 B.A两地立即返回,途中再次相遇,两车从出发到再次相遇共用6小时,A.B相距多少千米?26.甲轮船以每小时平均16千米的速度由一码头出发,经过3小时,乙轮船也由同一码头按照同一方向出发,再经过12小时追上甲轮船。
求乙轮船的速度。
27.王骑摩托车由甲城到乙城要5小时。
小李骑自行车由乙城到甲城要10小时。
两人同时从两城相向开出,相遇时小王距离乙城还有192千米。
求两城距离。
28.甲、乙两船的静水速度是每小时24千米和每小时20千米,两船先后从某港口顺水开出,乙比甲早出发3小时,若水速是每小时4千米,问甲开出后几小时可追上乙?29.一只汽船在一条可上航行从A地到B地,如果它顺水航行需用3小时,返回逆水航行需要4小时,请问:如果一只木桶仅靠水的流动而漂移,走完同样长的距离需要多少小时?30. 某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?31. 某商店从某公司批发部购100件A种商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元?32.某商场一种商品的原单价为125元,因故以八折出售,如果想使降价前后的销售额都1万元,那么销售量该增加多少?33.两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?34.有浓度为55%的酒精溶液若干升,加入1升浓度为80%的酒精溶液后,酒精溶液浓度变为60%,如果要得到70%的酒精溶液需要加入多少升浓度为80%的酒精溶液?浙江省“我爱数学杯”2011年决赛试题(五年级卷的一部分)一、计算1、2011-900+2009-902+2007-904+ ...... +1999-912=?2、1044*2013+1046*2011+1048*2009=?A=12345*54321+2468*8642问a/7的余数是4、甲乙丙丁四个数每次去掉一个数,然后算出平均数,这四个平均数分别为50,38,52,46问最大的数是5、2011/A=()/13 满足条件的有几个数?6、528人到郊外种树计划共总1167棵树,老师每人种5棵,学生每人种2棵,实计上老师每人少种一棵,学生每人多种1棵。
问实际种了几棵树7、1,1,2,1,1,2,3,2,1,1,2,3,4,3,2,1....问第220个数是多少10、将23个同样的零件放在5只同样的箱子里,要求有人领取1~23个之间的任意多个零件时,都不用开箱就可取走,问共有多少种方法11,张王李三人承包了一项工程,张和王合作5天完成了整个工程的1/3,张和李合作2天完成了剩下工程的1/4,最后王和李合作5天做了剩下的工程,若整个工程的承包款是4200元,则老张分得多少元?(根据工作总量来分钱)12、甲乙丙三辆汽车同时从某地出发,沿同一公路追赶一骑车人,一支这三辆车分别用6、10、12分钟追上那个人,如果甲车每分钟行1600米,乙每分钟行1200米,问丙车每分钟行多少米?1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包, 2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C 两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为 4.5吨的汽车可以一次全部运走集装箱?小学数学应用题综合训练(02)11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?小学数学应用题综合训练(03)21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?1、在中原路上铺一条地下电缆,已经铺了34 ,还剩下250米没有铺。