27.2 27.2.1 第1课时
一、相似三角形
相似三角形 相似三角形的判定
平行线分线段成比例
∽ △A′B′C′. 1.记法:△ABC与△A′B′C′相似,记作△ABC 2.判定:在△ABC 与△A′B′C′中,如果∠A= ∠A′ ,∠B= ∠B′ ,∠C= ∠C′ ,且
AB AB
=
BC BC
【导学探究】 1.由DE∥BC可得,△ADE∽
2.由△ADE∽△ABC 可得
△ABC
DE
,△ADG∽
△ABH .
AD = AB
AD = AB BCຫໍສະໝຸດ .由△ADG∽△ABH 可得
AG
AH
.
解:因为 DE∥BC, 所以△ADE∽△ABC,△ADG∽△ABH, 所以 所以
AD DE AD AG = , = , AB BC AB AH DE AG = , BC AH
(A) (C)
AD 1 = AB 2 AD 1 = EC 2
)B
(B) (D)
AE 1 = EC 2 DE 1 = BC 2
2.(2017 临沂)已知 AB∥CD,AD 与 BC 相交于点 O.若
BO 2 = ,AD=10,则 AO= OC 3
4
.
3.(2017长春)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和D,E,F.若 6. AB∶BC=1∶2,DE=3,则EF的长为
OE 2.由 l1∥l2 得 = OD
解:(2)因为 l1∥l2,所以
OB OA
OE OB = , OD OA
.
因为 OD=30,OE=12,OB=10, 所以 OA=
OB OD 10 30 = =25, OE 12