数学北师大九年级上册2013年新编正方形的性质与判定教案3
- 格式:doc
- 大小:53.07 KB
- 文档页数:11
《3正方形的性质与判定》教案
教学目标:
1、经历探索、猜想、证明的过程,进一步发展推理论证能力.
2、能够用综合法证明正方形的性质定理和判定定理以及其他相关结论.
3、进一步体会证明的必要性以及计算与证明在解决问题中的作用.
教学重点:
掌握正方形的性质和判定,以及证明.
教学难点:
运用综合法证明.
教学刚才:
提问:1.正方形有哪些性质?
2.判定一个四边形是正方形有哪些方法?
正方形性质:
1.具有平行四边形所有性质
2.具有菱形的所有性质
3.具有矩形的所有性质
正方形的判定:
先证矩形,再证有一组邻边相等
先证菱形,再证有一个角是直角
你能证明所得出的结论吗?
议一议
1.依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明.
2.依次连接平行四边形四边中点呢?
3.依次连接四边形各边中点所得到的新四边形的形状与哪些线段有关系?
课堂小结:
当平行四边形的一个角为直角、一组邻边相等时、图形为正方形.正方形既是平行四边形的特例,又是矩形和菱形的特例.正方形具有平行四边形、矩形、菱形的所有性质.它既是中心对称图形,又是被对称图形.正方形除具有平行四边形的一切性质外,还具有如下性质:四个角都是直角;四条边都相等;两条对角线相等且互相垂直平分,每条对角线平分一组对角.判定一个四边形是正方形的思路.
第1页共1页。
北师大版初三数学上册正方形性质及判定教案一、教学内容本节课选自北师大版初三数学上册,主要讲述正方形的性质及判定。
涉及教材的第四章第二节,内容包括:正方形的定义、性质、判定方法以及应用。
二、教学目标1. 让学生掌握正方形的定义和性质,能够运用性质解决实际问题。
2. 使学生掌握正方形的判定方法,能够判断一个四边形是否为正方形。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点教学难点:正方形的判定方法。
教学重点:正方形的性质及其应用。
四、教具与学具准备1. 教具:多媒体课件、正方形模型。
2. 学具:直尺、圆规、量角器。
五、教学过程1. 实践情景引入利用多媒体课件展示一组正方形的图片,引导学生观察正方形的特点,激发学生的学习兴趣。
2. 知识讲解(1)正方形的定义:四边相等且四角均为直角的矩形。
(2)正方形的性质:四边相等、四角均为直角、对角线相等、对角线互相垂直平分。
(3)正方形的判定方法:①四边相等且四角均为直角;②对角线互相垂直平分且相等;③一组邻边相等且垂直。
3. 例题讲解(1)判断题:判断下列图形是否为正方形。
(2)解答题:证明一个四边形是正方形。
4. 随堂练习(1)判断题:判断下列图形是否为正方形。
(2)解答题:已知四边形ABCD中,AD=CD,AB=BC,∠DAB=∠ADC=90°,证明:四边形ABCD是正方形。
5. 小结归纳正方形的性质和判定方法,强调正方形在实际生活中的应用。
六、板书设计1. 正方形的定义2. 正方形的性质3. 正方形的判定方法4. 例题解析七、作业设计1. 作业题目(1)判断题:判断下列图形是否为正方形。
(2)解答题:已知四边形ABCD中,AB=BC=CD=DA,∠B=∠C=90°,求证:四边形ABCD是正方形。
2. 答案(1)判断题:图形①、③、⑤是正方形,图形②、④、⑥不是正方形。
(2)解答题:见教材P92。
八、课后反思及拓展延伸1. 反思:本节课学生对正方形的性质和判定方法掌握程度如何,教学中是否存在需要改进的地方。
北师大版初三数学上册正方形性质及判定精品教案一、教学内容本节课我们将学习北师大版初三数学上册第八章“多边形性质”中“正方形性质及判定”。
具体内容包括正方形定义、性质、判定方法以及应用。
我们将详细探讨教材第8.3节内容,理解正方形作为特殊矩形和菱形性质,并学会运用这些性质解决实际问题。
二、教学目标1. 知识目标:通过本节课学习,使学生掌握正方形定义、性质及判定方法,能够运用这些知识解决相关问题。
2. 能力目标:培养学生观察、分析、归纳问题能力,提高学生逻辑思维能力和空间想象能力。
3. 情感目标:激发学生学习数学兴趣,培养学生合作意识和团队精神。
三、教学难点与重点1. 教学难点:正方形性质及判定方法应用。
2. 教学重点:正方形定义、性质及判定方法掌握。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、三角板。
五、教学过程1. 实践情景引入:通过展示一组生活中常见正方形物品(如魔方、瓷砖等),引导学生观察正方形特征,提出问题:“正方形有哪些特殊性质?”2. 自主探究:学生通过观察、测量正方形模型,发现正方形性质,如四条边相等、四个角相等、对角线互相垂直等。
3. 例题讲解:讲解教材中例题,引导学生运用正方形性质解决问题,强调解题思路和方法。
4. 随堂练习:设计有针对性练习题,让学生巩固正方形性质及判定方法,及时反馈并纠正错误。
5. 小组讨论:分组讨论教材中思考题,培养学生合作意识和解决问题能力。
六、板书设计1. 正方形定义:四边相等、四角相等矩形。
2. 正方形性质:(1)四条边相等;(2)四个角相等,都是直角;(3)对角线互相垂直、平分;(4)对角线相等;(5)内切圆与外接圆半径相等。
3. 正方形判定方法:(1)有一组邻边相等且一个角为直角矩形;(2)有一组邻边相等且对角线互相垂直矩形;(3)对角线相等且互相垂直四边形;(4)有一组邻边相等、对角线互相垂直且相等四边形。
1.3.1 正方形的性质与判定(1)教学目标知识与技能:了解正方形的有关概念,理解并掌握正方形的性质定理.过程与方法:经历探索正方形有关性质的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法.情感态度与价值观:培养合情推理能力和探究习惯,体会平面几何的内在价值.重难点、关键重点:探索正方形的性质定理.难点:掌握正方形的性质的应用方法.关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容.教学准备教师准备:投影仪,制作投影片,补充本节课内容,矩形纸片,活动的菱形框架.学生准备:复习平行四边形、矩形、菱形性质,预习本节课内容.学法解析1.认知起点:已积累了几何中平行四边形、矩形、菱形等知识,•在取得一定的经验的基础上,认知正方形.2.知识线索:3.学习方式:采用自导自主学习的方法解决重点,突破难点.教学过程一、合作探究,导入新课【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?•四个角呢? 2.正方形是矩形吗?是菱形吗?为什么?3.正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.•正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊菱形也是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质;它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问,突破难点.二、实践应用,探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,•且分别与OA、OB相交于M、N.求证:(1)BM=CN;(2)BM⊥CN.思路点拨:本是证明BM=CN,根据正方形性质,可以证明BM、CN所在△BOM与△CON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5+∠CMG=90°就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问.证:(1)•∵四边形ABCD是正方形,∴∠COB=∠BOM=90°,OC=OB。
北师大版九年级上册第一章3.1 正方形的性质与判定(教案)3.1 正方形的性质与判定教学目标:1.知道正方形在现实生活中的广泛应用,熟悉正方形的有关性质并灵活应用.2.经历探索正方形的性质的过程,在观察、操作和分析的过程中,进一步增强主动探究的意识,体会说理的基本方法.教学重难点:【重点】正方形的定义和性质.【难点】正方形的性质的灵活应用.教学过程:一、新课导入:问题1:上述图片中的四边形都是特殊的平行四边形,除菱形、矩形外,还有一种特殊的平行四边形,观察这些特殊的平行四边形,你能发现它们有什么样的共同特征?与同伴交流.问题2 观察特征,填写下表:图形名称角议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示出它们之间的关系吗?与同伴交流.四、课堂小结1.正方形的性质正方形的性质1:正方形的四个角都是直角,四条边都相等.正方形的性质2:正方形的对角线相等且互相垂直平分.2.特殊平行四边形的包含关系五、课堂练习1、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.四条边相等D.一条对角线平分一组对角2、正方形的四条边,四个角,两条对角线.3、如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有()个等腰三角形.A.4B.6C.8D.104、正方形具有而矩形不一定具有的性质是()A.四个角都是直角 B.对角线互相平分C.对角相等 D.对角线互相垂直5、若正方形的一条对角线长为2,则它的边长是,若正方形的面积是9,则它的对角线长是 .六、布置作业1.菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分 B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等2.正方形面积为36,则对角线的长为( )A.6 B.6 2 C.9D.9 23.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.14 B.15 C.16 D.17 4.如图,延长正方形ABCD的边BC至E,使CE=AC,连接AE交CD于F,则∠AFC=________°.5.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:OE=OF.6.如图,正方形ABCD中,过D做DE∥AC,∠ACE =30,CE交AD于点F,求证:AE = AF;7.如图,在⊿ABC中,∠BAC =90,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;。
1.3.1《正方形的性质和判定》几何图形能诱发学生的学习兴趣,但枯燥的概念也能使学生心生厌倦。
因此在概念性的几何教学中,要突出重难点,有很好的教学导入,要多借助于教具、模型、实物、图形等进行描述,让学生获得直观的感性认识,在此基础上,通过引导、探究、和交流,帮助学生形成抽象思维。
下面将自己执教过的七年级下册的《正方形的性质与判定》的教学设计与大家分享。
一.教材分析《正方形的性质与判定》是北师大版九年级上册第一章的内容,是在学生已经系统的学习了平行四边形、菱形、矩形的性质和判定的基础上进行的。
正方形既是特殊的菱形,又是特殊的矩形,它的性质与判定也应综合了菱形和矩形的所有性质和判定,所以,《正方形的性质与判定》是集本章知识与一体的一节综合课。
二.教学目标:1、知识与技能目标:了解正方形的有关概念,理解并掌握正方形的性质和判定方法。
2、过程与方法目标:经历探索正方形有关性质、判定条件的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法。
3、情感态度与价值观: 培养合情推理能力和探究习惯,体会平面几何的内在价值。
三. 教学重/难点教学重点:探索正方形的性质与判定。
教学难点:掌握正方形的性质和判定的应用方法。
四.教学关键:把握正方形既是矩形又是菱形这一特性来学习本节内容。
五.教学过程(一)、复习铺垫复习矩形、菱形的性质及判定。
在学生回答的时候,教师有意识的根据它们之间的关系在黑板上贴出这些图形。
设计意图:正方形是综合了平行四边形、菱形、矩形的所有性质,本节课的教学关就是要把握正方形既是矩形又是菱形这一特性来学习,所以课前给了学生一个直观上的感觉,让他们初步体验到正方形与菱形、矩形的关系,我想当这样的一个直观图展示之后,一定会给学生一个思维上的过渡。
(二)、操作探究1、操作一:折叠矩形纸片。
课件出示图片,问“同学们都玩过折纸吧,你能将一张矩形纸片经过折叠、剪裁等,折成一个正方形吗?”学生演示操作,并说明此时该矩形纸片的特点(还是矩形,但是邻边相等。
《正方形的性质判定》教案3学生起点分析学生的知识技能基础:学生已经较为系统的学习了平行四边形、矩形、菱形的基本性质与判定,已经具有了四边形的基本认知与知识结构,这些已有的认知结构可以迁移到正方形的学习中来。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些对四边形探索的具体方法,并能解决一些简单的现实问题,感受到数学信息的收集和处理的必要性和作用,获得了从事探究活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
教学任务分析1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.3、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.4、培养学生勇于探索、团结协作交流的精神。
激发学生学习的积极性与主动性。
教学过程设计本节课设计了七个教学环节:第一环节:课前准备;第二环节:情境引入;第三环节:合作学习;第四环节:性质应用;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节:课前准备活动内容:搜集身边的矩形(提前布置)。
以合作小组为单位,开展调查活动:各尽所能收集生活中应用的各种矩形图形。
准备好数学常用的度量工具:直尺、量角器、圆规。
活动目的:通过活动,使学生能获取尽可能多的关于矩形的信息,体会数学在社会生活中的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;使学生通过对目标问题展开调查采访或查阅资料,在此过程中培养学生勇于探索、团结协作的精神。
激发学生学习的积极性与主动性。
活动的注意事项:学生搜集的方式、以及展示结果的形式不限,可以上网搜集图片,可以是照片,也可以搜集实物,或者学生自己喜欢的其它形式。
教案:北师大版九年级数学13正方形的性质与判定一、教学内容本堂课的教学内容为正方形的性质与判定。
学生通过本节课的学习,将了解正方形的定义和特征,并能够利用正方形的性质判断给定的图形是否为正方形。
二、教学目标1.知识目标:了解正方形的定义和特征,能够应用正方形的性质判断图形是否为正方形。
2.技能目标:培养学生观察并归纳总结的能力,以及运用已学知识判断问题的能力。
3.情感目标:培养学生对数学的兴趣,增强学生解决问题的自信心。
三、教学重难点1.教学重点:正方形的定义和特征,以及判断给定图形是否为正方形的方法。
2.教学难点:帮助学生归纳总结正方形的特征,理解并应用正方形的性质进行判断。
四、教学准备1.教师准备:教材、黑板、白板笔、图形卡片。
2.学生准备:准备纸和笔。
五、教学过程Step 1 自由探究1.教师出示一些较为复杂的图形,并让学生观察和讨论,看是否能够找出其中的正方形。
2.学生观察并尝试寻找,教师帮助引导学生观察正方形的特征,如四条边相等且四个角都是直角等。
3.学生将可能的正方形标出来,并与同桌讨论。
4.教师随机选择一组学生发言,让他们将找到的正方形标出来,并说明自己的观察。
Step 2 归纳总结1.教师引导学生回顾所找到的正方形图形,并将其特征进行总结,强调正方形的定义:四边相等,四个角都是直角。
2.教师将正方形的定义写在黑板上,学生将其抄写在笔记本上。
3.学生自主提问并与同桌讨论:只有边相等和角为直角,是否就能判断为正方形?4.教师引导学生思考,并通过举例说明:对角线相等,是否能判断为正方形?引导学生进行思考和讨论,并总结规律。
Step 3 知识点讲解1.教师讲解正方形的性质:正方形的对角线相等,并通过示意图进行说明。
2.学生通过观察和讨论,将正方形的对角线相等这一性质归纳总结,并记录在笔记本上。
Step 4 练习巩固1.教师出示一些图形,让学生根据正方形的性质判断其是否为正方形。
2.学生分组进行讨论,并将判断结果写在纸上。
北师大版九年级 第1章 特殊的平行四边形1.3.1 正方形的性质与判定(一)【学习目标】1.了解正方形的相关概念,理解并掌握正方形的相关性质定理.2.进一步了解平行四边形、矩形、菱形、正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.3.在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力. 【自主学习】 课前复习名称 边 角对角线 对称性 面积平行四边形一般平行四边形性质菱形与一 般平 行四 边形 性质比较 特有 性值矩形图中的四边形都是特殊平行四边形,观察这些特殊的平行四边形,你能发现有什么共同特征?正方形的定义:有一组邻边_________并且有一个角是________的平行四边形叫做正方形.问题:正方形是矩形吗?是菱形吗?归纳:性质探究问题:你认为正方形具有哪些性质?请同学们小组交流. 正方形的性质:归纳: 名称边 角 对角线 对称性面积正方形与一般平行四边形 性质比较 特有性值【自检互评】1.正方形具有而矩形不一定具有的性质是( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等 2.正方形具有而菱形不一定具有的性质( )A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等.【例1】已知正方形ABCD 的面积为8,求对角线AC 的长.【例2】如图,在正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE=CF ,BE 与DF 之间有怎样的关系?说明理由.问题再探:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个你喜欢的方式直观地表示它们之间的关系吗 ?与同伴交流.【点拨归纳】【自检互评】3.如图,在正方形ABCD 中,点F 为对角线AC 上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.【我的收获】本节课,我学到了哪些知识? 本节课,给我感受最深的是什么? 【我的困惑】本节课还有哪些困惑?此外我还知道了...... 【拓展迁移】4.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE=AF ,连结AC 交EF 于点O ,延长OC 至点M ,使OM=OA ,连结EM ,FM . (1)判断四边形AEMF 是什么特殊四边形?并证明你的结论;(2)若正方形的边长为3cm ,BE=DF=1cm ,求四边形AEMF 的面积.。
word整理版学习参考资料《正方形的性质判定》教案3学生起点分析学生的知识技能基础:学生已经较为系统的学习了平行四边形、矩形、菱形的基本性质与判定,已经具有了四边形的基本认知与知识结构,这些已有的认知结构可以迁移到正方形的学习中来。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些对四边形探索的具体方法,并能解决一些简单的现实问题,感受到数学信息的收集和处理的必要性和作用,获得了从事探究活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
教学任务分析1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.3、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.4、培养学生勇于探索、团结协作交流的精神。
激发学生word整理版学习参考资料学习的积极性与主动性。
教学过程设计本节课设计了七个教学环节:第一环节:课前准备;第二环节:情境引入;第三环节:合作学习;第四环节:性质应用;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业。
第一环节:课前准备活动内容:搜集身边的矩形(提前布置)。
以合作小组为单位,开展调查活动:各尽所能收集生活中应用的各种矩形图形。
准备好数学常用的度量工具:直尺、量角器、圆规。
活动目的:通过活动,使学生能获取尽可能多的关于矩形的信息,体会数学在社会生活中的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;使学生通过对目标问题展开调查采访或查阅资料,在此过程中培养学生勇于探索、团结协作的精神。
激发学生学习的积极性与主动性。
活动的注意事项:学生搜集的方式、以及展示结果的形式不限,可以上网搜集图片,可以是照片,也可以搜集实物,或者学生自己喜欢的其它形式。
这样可以在极大程度上保护、鼓励学生参与的积极性和热情,并且可以极大程度上凝聚学生间的合作精神。
word整理版学习参考资料附部分学生作品:学生搜集的图片或实物(部分):第二环节:情境引入活动内容:展示学生的成果,包括图片以及实物等各种学生能得到的“图形”。
并让学生利用适当的度量工具,对搜word整理版学习参考资料集到的图形素材进行度量或者对素材进行适当的操作,并记录、整理数据。
活动目的:培养学生从具体数学对象中获得必要的数学要素(数据)以及对素材进行适当的操作的能力。
培养学生对于数据进行整理、解析的能力。
培养学生从数据中发现、推导结论的能力。
(通过对测量数据的分析、发现其中的相同与不同,便可较为自然的引导到本节课。
)同时也可以最大程度的满足不同认知能力、信息搜集能力学生的不同认知需求(比如:实物的同学可以利用手头的测量工具得数据,而善于利用电脑的同学则可以将其搜集到的图片放入合适的软件(如几何画板)中,利用软件的便利来获得数据。
)并可以极大程度上增强学生对于度量数据(图形性质)的感受。
活动的注意事项:我们要注意实物测量、操作和利用软件进行测量,这两种方式显然各有可取之处,比如学生利用实物进行折叠显然比用软件要方便的多,所以老师要给予恰当的引导。
由于度量会有误差,所以老师应该提醒学生小组多次(或多人分别)测量减小误差。
由于可测量的数据较多,所以老师应该提醒学生可以借鉴前几节课的研究,对于测量数据进行适当的选择。
并整理记录数据。
老师可以给学生一个示范性的数据整理模式(如下表),但不要强求。
word整理版学习参考资料图形名称数据角线边数量关系对角数量位置对称第三环节:合作学活动内容:选取一些有代表性的小组,对其得到的的数据或是操作得到的结论进行交流。
活动目的:是为了完成以下任务。
第一任务:①引出“有一组临边相等的矩形叫做正方形”②通过数据的交流自然的回答了“议一议”中的两个问题:(1)正方形是菱形吗?(2)你认为正方形有哪些性质?第二任务:通过引导学生回顾关于矩形、菱形的性质、“正方形既是矩形又是菱形”得出关于正方形的两个定理“正方形的四个角都是直角四条边都相等”“正方形的对角线互相垂直平分”word整理版学习参考资料第三任务:引用书上的议一议,让学生解决“正方形有几条对称轴”活动的注意事项:第一任务:学生对于(1)正方形是菱形吗?这个问题,无论是操作、度量实物还是借助于软件都比较容易得到结论。
对于(2)你认为正方形有哪些性质?中的“四个角都是直角”“四条边都相等”的结论,无论是操作、度量实物还是借助于软件也都比较容易得到,但是对于“正方形的对角线互相垂直平分”这个结论,学生有可能不一定能够发现或者得到的结论不一定完整。
所以老师在此处还是要进行必要的引导。
比如:“我们来关注一下对角线的数量和位置关系”或者“既然正方形也是菱形,那么它的对角线。
(引导学生回答)”第二任务:注意引导学生数学表达的准确性。
此处尽量引导学生自我完成,哪怕让学生在多次失败中不断的自我完善,也比老师给出结论要好,至少锻炼学生的自我修正、完善能力。
第三任务:此时学生已经有了前面的探索经验,其实从方法上来说,已经无障碍,只是可能学生没有关注到这个角度。
此时我们可以引导学生通过操作(折纸)得到对角线然后再研究,或者我们可以从另一个角度给学生适当的提示“正方形也是菱形,菱形还研究过。
(期待学生思考)“第四环节:性质应用word整理版学习参考资料活动内容:①引用课本例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”活动目的:①使学生对通过自己的实践总结得到的关于正方形的性质能够熟练运用、解决具体问题。
实际上就是充分锻炼学生理论依据(本节课是关于正方形的定理)图形化的能力,也锻炼了学生文本信息图形化的能力。
充分锻炼学生的空间观念。
②使学生养成阶段性回顾总结的习惯,使其逐渐养成良好的学习品质。
同时又是对知识结构的再建过程,是学生丰富、重建自身认知结构的必要手段。
活动的注意事项:①在引用本例题时由于问题中“BE与DF之间又怎样的关系?”这个表述过于笼统,所以可能有部分学生可能会对“关系”的理解不到位,只理解为数量或位置关系,所以在具体word整理版学习参考资料上课时要根据具体的学情,进行适当的分解。
比如分层教学,可将问题分解为“BE与DF之间又怎样的数量关系?”“BE与DF之间又怎样的位置关系?”“BE 与DF之间又怎样的数量、位置关系?”“BE与DF之间又怎样的关系?”分别由不同层次的学生选择适合自己的问题。
最后一定要让学生明确“BE与DF之间又怎样的关系”包含数量和位置两种关系。
或者我们可以在课堂上故意让“位置”“数量”两种不同观点的同学交流自己的意见,从而引发同学的关注与参与,进而在交争论中达成共识,加深印象。
②实际上“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”中“你能用一个图直观地表示它们之间的关系吗?”的这个表述在一定程度上是对学生回答问题方式的一种约束,不利于学生充分调动自己的认知结构对此问题做出“丰富多彩”的展示,建议将此表述改为“你能用一个你喜欢的方式直观地表示它们之间的关系吗?”更贴近学生,更有利于学生做出“丰富多彩”的展示。
可预知学生可能会出现图的展示,可能会出现表格的展示,甚至可能出现卡通的展示,小品式的展示。
既激发了学生参与的热情,又丰富了总结的形式,何乐而不为。
我们也可以采用如下的方式对学生进行追问:“这是老师的,你的呢?”word整理版学习参考资料来不断引导学生参与、思考。
第五环节:练习提高活动内容:1:如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?2:如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF。
你能找出图中的全等三角形吗?选择其中一对进行证明。
活动目的:对本节知识进行巩固练习。
活动注意事项:其实我们教师可以根据自己课堂的具体学情,对题目进行适当的替换。
但是这种对于学生来说的初次尝试,不宜太复杂,以免打击学生的主动性、积极性。
第六环节:课堂小结活动内容:总结正方形的性质:包括其边角关系以及对称word整理版学习参考资料性。
其次将平行四边形、菱形、矩形、正方形之间的联系建立起适合学生自己的知识结构并内化为自己数学品质的一部分。
活动目的:一是要通过此环节对学过的知识进行回顾,并且进行在加工,内化为自己的数学品质。
同时在此过程中学生间的相互交流、沟通、甚至是争论,也将逐渐在学生意识中渗透,进而使其将“交流、沟通、争论等等”逐渐吸收变成自己获取信息的方式中的一种。
活动注意事项:总结最好主要由学生自主完成,老师只是在学生将某些知识或思想方法遗忘时进行适当的引导即可。
因为学习的意义首先便是吸引受教育对象的主动参与,然后才会有后续的认知探究;其次这种亲身参与获得的感受与收获更容易内化为学生自身的认知结构;再次这种多个交流对象间的交流甚至争论不仅加深了学生对知识的认知,更重要的是这是触发灵感、产生新问题的重要途径。
第七环节:布置作业课本 P22A-1层作业:习题1.7A-2层作业:知识技能T1, T2 B层作业:数学理解T3比如我们可以将1进行变式:斜边为2的等腰直角三角形的word整理版学习参考资料腰长是多少?比如我们可以将2中的等边△CBE改为∠EBC=∠ECB=50°。
等等。
总之作业我们一定要源自于教材,如果需要我们可以以此为依据对题目进行适当的变式以便达到练习分层的目的。