生物分离工程
- 格式:docx
- 大小:35.45 KB
- 文档页数:13
第一章绪论1.生物分离工程是指从发酵液、酶反应也活动植物培养液中分离、纯化生物产品的过程。
2.生物分离的一般流程:发酵液的预处理;提取;精制;成品加工。
第二章发酵液的预处理1.过滤和离心是最基本的单元操作。
2.凝集是指在投加的化学物质作用下,发酵液中的胶体脱稳并使粒子相互凝集成为1mm大小块状絮凝体的过程。
3.絮凝是指某些高分子絮凝剂能在悬浮粒子之间产生桥梁作用,使胶粒形成粗大絮凝团的过程。
4.调节pH法:在进行pH调节时,一般采用草酸等有机酸或某些无机酸来进行。
Ca+经常选用酸化剂为草酸;Mg+的去除是采用加入磷酸盐,如三磷酸钠;Fe+通常加入黄血盐。
5.影响发酵液过滤的因素:菌种;发酵液粘度。
6.发酵液的过滤设备形式很多,按过滤的推动力分为:重力式过滤器、压力式过滤器、针孔式过滤器和离心式过滤器。
7.目前国内外对过滤液的分离和过滤常采用的设备为:板框式压滤机;板式压滤机;自动板框式压滤机和真空过滤机。
第三章细胞分离技术1.细胞破碎的方法可分为:机械破碎发、物理破碎法、化学渗透法及酶溶法。
2.变性剂的加入,可削弱氢键的作用,使胞内产物相互之间的作用力减弱,从而易于释放。
3.包埋病毒粒子具一定形状和大小的蛋白结晶体,在相差显微镜下呈现强的折光性,由单一多肽构成。
第四章沉淀技术1.盐析:蛋白是在搞离子强度溶液中溶解度降低,以致从溶液里沉淀出来的现象称为盐析。
2. 常用脱盐处理的方法有:透析法、超滤法及凝胶过滤法。
3.有机溶剂沉淀法的原理:①传统观点认为向蛋白质溶液中加入丙醇或乙醇等有机溶剂,水的活度程度降低,水对蛋白子表面的水化程度降低,即破坏了蛋白子表面的某水化蹭;另外,溶液的介电常数下降,蛋白子分之间的静电引力增大,从而聚集和沉淀。
②新观点认为,有机溶剂可能破坏蛋白质的某种键,使其空间结构发生某种程度的变化,致使一些原来包在内部的疏水基团暴露于表面并与有机溶剂的疏水基团结合形成疏水层,从而是蛋白子沉底,而当蛋白子的空间结构发生变形超过一定程度时,使会导致完全的变性。
生物分离工程1、生物分离工程概念指回收生物产品分离过程的原理与方法。
2、在设计生物分离过程前,必须考虑哪些问题方能确保所设计的工艺过程最为经济、可靠?(1)产品价值;(2)产品质量;(3)产物在生产过程中出现的位置;(4)杂质在生产过程中出现的位置;(5)主要杂质独特的理化性质是什么;(6)不同分离方法的技术、经济比较。
3、生物分离工程包括哪些单元操作?固液分离过程采用过滤、离心、细胞破碎操作;浓缩阶段采用萃取、吸附、离子交换等操作;纯化环节用沉淀、色谱、电泳等操作;精制步骤采用结晶、干燥。
4、生物分离的依据根据混合物中不同组分间物理、化学和生物学性质的差别。
5、生物分离效率分离效率从两个角度评价:分离方法和设备;分离过程和产品。
(1)分离方法和设备评价指标有分离容量、分离速度、分辨率1)分离容量:单位体积的分离设备(或分离介质)处理物料或目标产物的体积或质量。
2)分离速度:单批次分离所需要的时间,或连续分离的进料速度。
3)分辨率:目标产品的纯化效果或杂质的去除能力。
(2)分离过程和产品从具体分离过程对目标产品的浓缩程度、纯化程度和回收率来评价。
6、细胞分离方法重力沉降、离心沉降、过滤。
1)凝聚是指在电解质作用下,由于胶粒之间双电层排斥电位的降低,而使胶体体系不稳定的现象。
2)絮凝是指在某些高分子絮凝剂存在下,基于架桥作用,使细胞聚集形成粗大的絮凝团的过程。
7、细胞破碎方法机械破碎法、非机械破碎法(物理破碎、化学破碎、酶促破碎法)8、选择破碎方法的依据1)细胞处理量;2)细胞壁强度和结构(高聚物交联程度、种类和壁厚度);3)目标产物对破碎条件的敏感性;4)破碎程度;5)目标产物的选择性释放。
9、沉淀法基本原理就是采用适当的措施改变溶液的理化参数,控制溶液中各种成分的溶解度,根据不同物质在溶剂中的溶解度不同而达到分离的目的。
10、沉淀法应用范围不仅用于实验室中,因其不需专门设备,且易于放大,也广泛用于生产的制备过程,是分离纯化生物大分子,特别是制备蛋白质和酶时最常用的方法。
生物分离工程部分知识点生物分离效率三个指标:分离纯化浓缩程度,纯化倍数,回收率。
生物分离工程:从发酵液、酶反应液或动/植物细胞培养液中将目标产物提取、浓缩、分离、纯化和成品化的过程。
机械破碎法:固体剪切法(珠磨法、压榨法、撞击法) 液体剪切法(高压匀浆法、超声波破碎)工业常用方法:高压匀浆法、高速珠磨法。
优缺点:高压匀浆优点是细胞经历了高速造成的剪切、碰撞、高压到常压的变化,从而造成细胞破碎。
缺点是较容易造成堵塞的丝状真菌、放线菌以及较小的G+菌不适合用本法。
高压匀浆一般需多级循环操作,每次循环前需要进行级间冷却。
主要能耗是高压和维持低温操作能量消耗。
高速珠磨破碎法:破碎率与能耗成正比。
增加装珠量或延长破碎时间或增加转速均可提高破碎率,但同时能量消耗和产热增加,提高了制冷费和总能源消耗量。
当破碎率≥80%,能耗急剧增加。
超声波破碎:有效能量利用率低,冷却要求苛刻。
①常用的蛋白质沉淀方法有:盐析沉淀(硫酸铵,低温)、等电点沉淀、有机溶剂沉淀(丙酮/乙醇等有机溶剂)及热沉淀法等。
②有机溶剂沉淀蛋白质的机理是:向蛋白质溶液中加入有机溶剂,水的活度降低。
随着有机溶剂溶度的增大,水对蛋白质分子表面荷电基团的水化程度降低,液体的介电常数下降,蛋白质分子间的静电引力增大,从而凝聚和沉淀。
盐析的主要因素有无机盐的种类,浓度,温度和pH值。
lgS=-β—KsI。
盐的种类影响KS值,离子半径小而带电荷较多的阴离子盐析效果好。
温度和pH值影响β,在高离子强度溶液中,温度上升,有利于某些蛋白质失水,因此温度升高,蛋白质溶解度下降。
pH值接近蛋白质等电点有利于提高盐析效果。
水相pH值对弱电解质分配系数具有显著影响。
物理萃取时,弱酸性电解质的分配系数随pH值降低而增大,弱碱性电解质随pH值降低而减少。
弱电解质在水相中发生不完全解离,仅仅是游离酸或游离碱在两相产生分配平衡,而酸根或碱基不能进入有机相,所以萃取达到平衡状态时,一方面弱电解质在水相中达到解离平衡,另一方面,未解离的游离电解质在两相中达到分配平衡。
生物分离工程第一章(绪论)生物分离工程的定义和过程生物分离工程定义(名词解释):为提取生物产品时所需的原理、方法、技术及相关硬件设备的总称,指从发酵液、动植物细胞培养液、酶反应液和动植物组织细胞与体液等中提取、分离纯化、富集生物产品的过程。
过程:目标产物捕获目标产物初步纯化(萃取、沉淀、吸附等方法)目标产物高度纯化和精制细胞分离三种手段:重力沉降离心沉降过滤第二章离心分离原理和方法:原理:离心沉降是在离心力的作用下发生的。
单位质量的物质所受到的离心力:式中:r为离心半径,即从旋转轴心到沉降颗粒的距离;ω为旋转角速度;N为离心机的转数,s-1方法:(1)差速离心分级(2)区带离心(差速区带离心、平衡区带离心)离心分离设备:离心力(转速)的大小:低速离心机、高速离心机、超离心机按用途:分析性、制备性按工业应用:管式离心机、碟片式离心机实验室用以离心管式转子离心机,离心操作为间歇式悬浮液的预处理方法和目的:方法:1.加热:最简单和最廉价的处理方法。
黏度、促凝聚、固体成分体积、破坏凝胶结构、增加空隙率调pH值:方法简单有效、成本低廉2.凝聚:在凝聚剂(如铝盐、铁盐、石灰和NaCl)作用下,细胞蛋白质等胶体去稳定,并聚集成1mm大小的凝聚块的过程。
(机理:破坏双电层,水解后胶体吸附,氢键结合等)3.絮凝:在絮凝剂高分子聚合电解质的作用下,胶体颗粒和聚合电解质交连成网,形成10mm大小的絮凝团过程。
(机理:絮凝剂主要起中和电荷、桥架和网络作用)4.惰性助滤剂:一种颗粒均匀、质地坚硬的粒状物质,用于扩大过滤表面的适应范围,减轻细小颗粒的快速挤压变形和过滤介质的堵塞。
(使用方法:预涂层;按一定比率混合。
助滤剂种类:硅藻土、纤维素、未活化的炭、炉渣、重质碳酸钙等。
)目的:提高过滤速度和过滤质量是过滤操作的目标。
各种细胞破碎技术原理和优缺点:原理:许多生物产物在细胞培养过程中保留在细胞内,需破碎细胞,使目标产物选择性地释放到液相。
生物分离工程的原理是什么生物分离工程是一种利用生物学和工程学的原理和方法,对混合物中的生物分子或细胞进行分离和纯化的过程。
其原理主要包括物理分离原理、化学分离原理和生物分离原理。
物理分离原理是基于生物分子或细胞在不同物理环境中的特性差异进行分离的方法。
常用的物理分离方法有离心、过滤、凝胶电泳和超滤等。
离心是通过界面张力和离心力的作用下,在不同密度的溶液中将生物分子或细胞分离出来。
过滤是根据物质的大小选择性通过滤膜的原理进行分离,通常用于分离细胞或大分子。
凝胶电泳则是利用电场作用,通过电泳迁移速度的差异将带电的生物分子在凝胶中逐渐分离开来。
超滤则是利用压差将分子或细胞通过半导膜分离出来。
化学分离原理是通过不同化学特性将生物分子或细胞分离和纯化的方法。
其中常用的方法包括溶剂萃取、凝胶过滤、层析和电解等。
溶剂萃取是利用溶解性差异将目标物质从溶液中分离出来,通常是用有机溶剂与水溶液相互萃取。
凝胶过滤则是利用粒径差别将生物分子或细胞分离出来,通过选择性选择不同尺寸的过滤膜或纤维经过过滤操作,大分子或细胞可以被留在膜的一侧。
层析是一种利用不同成分在固定相上的迁移速度差异进行分离的技术,常用的层析方法包括凝胶层析、离子交换层析和亲和层析等。
电解是将分子或细胞通过正负电荷的相互作用来分离的方法。
生物分离原理则是利用生物学上的特性对生物分子或细胞进行分离的过程。
常用的生物分离方法包括细胞离心、免疫分离和蛋白质结合等。
细胞离心是一种通过多次离心来分离细胞的方法,通常需要根据目标细胞的密度来选择不同的离心速度和时间。
免疫分离是利用抗体与特定抗原结合的特异性来分离目标细胞或生物分子的方法。
蛋白质结合则是利用蛋白质与配体的亲和性来进行分离和纯化,常用的方法有亲和层析、亲和吸附和免疫沉淀等。
总之,生物分离工程是利用物理分离原理、化学分离原理和生物分离原理,通过不同的方法对混合物中的生物分子或细胞进行分离和纯化的过程。
这些原理和方法的选择取决于需要分离的目标物质的特性和要求,通过灵活应用这些原理和方法,可以实现对复杂混合物中生物分子或细胞的高效纯化和分离。
生物分离工程与日常生活的关系
生物分离工程是一门应用于生物工程领域的技术,主要用于分离、纯化和提取生物大分子、生物活性物质及其他相关物质。
它在很多领域都有广泛的应用,与日常生活也有一定的关系。
以下是生物分离工程与日常生活的一些关系:
1. 食品加工:生物分离工程在食品加工中起着重要的作用。
例如,通过分离技术可以提取食品中的营养成分、调味品、色素等,不仅提高了食品的品质和口感,还能增加食品的营养价值。
2. 药物开发:生物分离工程在药物开发领域有着重要的应用。
通过分离和纯化技术,可以获得药物原料和活性成分,从而制备出高纯度的药物,并提高药物的生物利用度和疗效。
3. 环境保护:生物分离工程也被用于环境保护领域。
例如,通过生物分离技术可以对废水、废气等进行处理,去除其中的有害物质,净化环境,保护生态系统。
4. 能源开发:生物分离工程在生物能源开发领域也有应用。
例如,通过分离技术可以提取生物质能源中的有用物质,用于生物燃料的制备和利用。
5. 医学诊断:生物分离工程在医学诊断中也有重要作用。
例如,通过分离和纯化技术可以获得高纯度的诊断试剂,用于疾病的检测和诊断。
总之,生物分离工程在日常生活中的应用相当广泛,涉及到食品、药物、环境、能源等多个方面,为我们的生活和健康带来了很多好处。
名词解释1.凝聚:气体由稀变浓或变成液体2.絮凝:是指水或液体中悬浮微粒集聚变大,或形成絮团,从而加快粒子的聚沉,达到固液分离的目的。
3.扩散双电层:胶核由于吸附或电离作用,并为带电的胶核,由于静电引力,吸引介质中持相反电荷的离子,形成双电层,由于静电作用与扩散作用两种作用同时存在,两种作用达到平衡后,双电层的返离子不是整齐的排在胶核表面,而是呈一个扩散状态分布在溶液中,这样的双电层称为扩散双电层。
4.凝聚价或凝聚值:电解质的凝聚能力,可用凝聚值来表示使胶粒发生凝聚作用的最小电解质浓度(毫摩尔每升)称为凝聚值。
5.过滤:过滤就是用机械方法使某一液体穿过多孔物质,使该液体的固相部分与液相部分分开。
6.滤饼过滤:滤饼过滤是使用织物、多孔材料或膜作为过滤介质只是起着支撑滤饼的作用,过滤介质的孔径不一定要小于最小颗粒的粒径。
7.深层过滤:深层过滤是指当颗粒尺寸小于介质孔道直径时,不能在过滤介质表面形成滤饼,这些颗粒便进入介质内部,借惯性和扩散作用趋近孔道壁面,并在静电和表面力的作用下沉积下来,从而与流体分离。
8.错流过滤:是在泵的推动下,料液平行于膜面流动。
9.离心分离:借助于离心力,使比重不同的物质进行分离的方法。
10.离心分离因数:离心分离机所转鼓内的悬浮液或乳浊液在离心力场中所受的离心力与其重力的比值,即离心加速度与重力加速度的比值。
11.沉降系数:用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。
12.离心过滤:以离心力作为推动力,在具有过滤介质的有孔转鼓中加入悬浮液,固体粒子截留在过滤介质上,液体穿过滤饼层而流出,最后完成滤液和滤饼分离的过滤操作。
13.差速离心:根据颗粒大小和密度的不同,存在的沉降速度差别,分级增加离心力,从试样中依次分离出不同组分的方法。
14.密度梯度区带离心法(区带离心法):是将样品加在惰性梯度介质中进行离心沉降或沉降平衡,在一定的离心力下把颗粒分配到梯度中某些特定位置上,形成不同区带的分离方法。
生物分离工程生物分离工程是指采用物理、化学和生物学方法将生物体或其组成部分从混合物中分离出来,并纯化得到目标物质的一种工程领域。
该领域涉及到许多专业知识,包括生物学、生化学、物理化学等多个学科的理论和技术,应用广泛。
生物分离工程的目的是将生物体中的目标物分离出来,以便进行药物发现、分析化学以及生命科学研究等方面的应用。
生物分离工程包括生物分离过程、分离器设备及工艺控制等多个方面。
生物分离过程是将混合物中的目标物通过特定的工艺流程进行分离,得到纯化的目标物质。
一般包括以下几个步骤:(1)前处理:对样品进行初步处理,如细胞破碎、离心、过滤等。
(2)初步分离:将混合溶液通过某些技术方法进行初步分离,如各种色谱技术、电泳分离、凝胶柱分离等。
(3)中间分离:在初步分离的基础上,对样品进一步处理,如双向电泳、反渗透膜分离、超重力分离等。
(4)终极分离:最后通过某些技术,将目标物质从混合物中完全分离出来,如聚集素层析、反转移层析、凝胶电泳等。
分离器设备是指在生物分离过程中使用的各种设备,根据不同的分离过程,分离器设备也有所不同。
例如,在分离蛋白质时,最常用的分离器设备是各种色谱技术和电泳分离设备,而在分离细胞时,采用的设备则主要是离心机、过滤器等。
工艺控制是指对生物分离工程中各个步骤进行控制和调节,以确保分离工艺的有效性和纯化度的提高。
常用的工艺控制手段包括调节温度、压力、流量等系列参数的控制,并且可以采用自动化操作,进一步提高生物分离工程的自动化程度。
生物分离工程的应用非常广泛,包括生命科学研究、药物研发、食品工业以及纯化工程、环境保护等方面。
例如,在药物研发中,生物分离工程用于分离制备药物,提高药物纯度和效果;在食品工业中,生物分离工程用于提高食品的品质和安全性;在环境保护中,生物分离工程可用于处理污水和有害气体等。
总之,生物分离工程是一项复杂、细致的研究领域,在各个行业都有广泛的应用。
随着科技的发展和人们对生命科学研究的不断深入,生物分离工程将会越来越得到关注和重视,为人们的生活和健康做出更大的贡献。
绪论1、生物分离工程的定义:从发酵液或酶反应液或动植物细胞培养液中分离、纯化生物产品的过程。
2、生物分离工程特点:1 发酵液或培养液是产物浓度很低的水溶液;2 培养液是多组分的混合物;3 生化产品的稳定性差;4 对最终产品的质量要求高。
3、生物分离工程可分为几大部分,分别包括哪些单元操作?答:1、发酵液的预处理与固液分离,过滤(filtration)、离心(centrifugation) 2、初步纯化,沉淀(precipitation)、萃取 (extraction)、吸附(adsorption)、膜分离(membrane separation)3、高度纯化,色谱(chromatography)、电泳(electrophoresis)4、成品加工,结晶(crystallization)、干燥(drying)。
4、在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠?答:1、产品价值2、产品质量3、产物在生产过程中出现的位置4、杂质在生产过程中出现的位置。
5、产品和主要杂质独特的物化性质6、不同分离方法的技术经济比较。
5、阐述生物分离工程的发展动向。
答、1、基础理论研究2、提高分离过程的选择性3、开发分离介质4、提高分离纯化技术5、清洁生产6、规模化、工程化研究6、分离效率的评价:目标产物的浓缩程度、分离纯化程度、回收率第二章细胞分离与破碎Cell isolation and disruption1如何预处理发酵液?答:1.高价无机离子的去除方法去除钙离子:通常使用草酸。
去除镁离子:加入三聚磷酸钠,与镁离子形成络合物。
用磷酸盐处理,也能大大降低钙离子和镁离子的浓度。
去除铁离子: 加入黄血盐,使其形成普鲁士蓝沉淀而除去。
2、杂蛋白质的除去:沉淀、吸附法、变性法、凝聚Coagulation和絮凝flocculation 3.有色物质的去除及其他:使用吸附剂去除有色物质(离子交换剂、离子交换纤维、活性炭等)、用工业酶制剂可净化发酵产物,除去干扰性浑浊物、使用惰性助滤剂、加入反应剂2凝聚和絮凝的区别答:凝聚:向胶体悬浮液中加入电解质,由于双电层电位降低,使胶体体系不稳定,胶体粒子间因相互碰撞而产生凝集(1mm左右)的现象。
生物分离工程:,从生物产品的生产技术来看:指生物产品的下游加工过程(Down stream processing)。
➢从生物工程的新技术看,主要指工程菌和动植物细胞产品的分离与纯化。
➢从研究对象看,主要指生物大分子产品的分离与纯化。
➢➢➢包涵体(inclusion body):外源蛋白质在大肠杆菌中高效表达时常形成不可溶、无生物活性的聚集体。
➢初级分离是指从发酵液、细胞培养液、胞内抽提液(细胞破碎液)及其他各种生物原料初步提取目标产物,使目标产物得到浓缩和初步分离的下游加工过程。
➢胶体是一种尺寸在1~100 nm以至1000 nm的分散体。
它既非大块固体,又不是分子分散的液体,而是具有两相的微不均匀分散体系。
➢沉淀定义:物理环境的变化引起溶质溶解度降低,生成固体凝聚物(aggregrates)的现象➢盐析:蛋白质在高离子强度的溶液中溶解度降低、发生沉淀的现象称为盐析。
➢利用蛋白质在pH值等于其等电点的溶液中溶解度下降的原理进行沉淀分级的方法称为等电点沉淀法➢泡沫分离:根据表面吸附的原理,利用通气鼓泡在液相中形成的气泡为载体对液相中的溶质和颗粒进行分离,又称泡沫吸附分离,泡沫分级或鼓泡分级。
➢在一种流体相间内或者两种流体相间,有一层薄的凝聚相物质,其把流体相分隔开来成为两部分,并在两部分之间进行传质作用,这一薄层物质称为膜。
➢膜分离技术➢利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。
➢微滤( Microfiltration ,MF):以多孔细小薄膜为过滤介质,压力差为推动力,使不溶性物质得以分离的操作,孔径分布范围在0.025~14μm之间;➢超滤( Ultrafiltration ,UF):分离介质同上,但孔径更小,为0.001~0.02 μm,分离推动力仍为压力差,适合于分离酶、蛋白质等生物大分子物质;➢反渗透(Reverse osmosis, RO):是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在0.0001~0.001 μm之间;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透);➢纳滤(Nanofiltration,NF ):以压力差为推动力,从溶液中分离300~1000小分子量的膜分离过程,孔径分布在平均2nm;➢电渗析(Electrodialysis,ED):以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作;➢超滤:根据高分子溶质之间或高分子与小分子溶质之间分子量的差别进行分离的方法。
生物分离工程名词解释1、错流过流:料液流动方向与过滤介质平行的过滤属于错流过滤。
其常用的过滤介质为微孔滤膜或超滤膜。
2生物分离工程:指从发酵液、动植物细胞培养液、酶反应液中分离、纯化生物产品的过程。
3. 盐析:蛋白质在高离子强度的溶液中溶解度降低、发生沉淀的现象4、沉淀:是指在溶液中加入沉淀剂使溶质溶解度降低,生成无定形固体从溶液中析出的过程。
5、等电点沉淀:指利用蛋白质在PH等于其等电点的溶液中溶解度下降的原理进行沉淀分离的方法。
6、萃取:萃取是利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液(原料)中提取出来的方法。
7、带溶剂:是指易溶于溶剂中并能够和溶质形成复合物且此复合物在一定条件下又容易分解的物质,也称为化学萃取剂。
8、细胞破碎:是指利用各种方法去破坏细胞壁和细胞膜,使胞内产物有效的释放出来。
9、包含体:包含体是聚集蛋白形成的浓密颗粒,呈无定形或类晶体。
10、乳化现象:是一种液体分散在另一种不相混合的液体中的现象。
11、超临界流体:是温度和压力同时高于临界值的流体,亦即压缩到具有接近液体密度的气体。
12、超临界流体萃取:是指利用超临界流体作为萃取剂,从固体或液体中萃取出某种高沸点或热敏性成分,以达到分离和纯化的目的。
13、蒸发浓缩:是利用加热的方法使溶液中的一部分溶剂(通常为水)汽化后除去,得到含较高浓度溶质的一种操作过程。
14、结晶:是溶液中的溶质在一定条件下因分子有规则的排列而结合成晶体的过程。
15、双水相萃取:利用物质在互不相溶的两水相间分配系数的差异来进行萃取的方法。
16、分离:是利用混合物中各组分在物理性质或化学性质上的差异,通过适当的装置和方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一区域的过程。
17、亲和沉淀:亲和沉淀是利用蛋白质与特定分子(配基、基质、辅酶)之间高度专一作用而设计的一种特殊选择性的分离技术。
18、重结晶:第一章1、生物分离工程主要目标产品类型:直接产物,即由发酵直接生产,分离过程从发酵罐流出物开始间接产物:即由发酵过程得到细胞或酶,再经转化和修饰得到产品。
绪论1、生物分离工程的定义:从发酵液或酶反应液或动植物细胞培养液中分离、纯化生物产品的过程。
2、生物分离工程特点:1发酵液或培养液是产物浓度很低的水溶液;2培养液是多组分的混合物;3生化产品的稳定性差;4对最终产品的质量要求高。
3、生物分离工程可分为几大部分,分别包括哪些单元操作?答:1、发酵液的预处理与固液分离,过滤(filtration) 、离心(centrifugation) 2、初步纯化,沉淀(precipitation) 、萃取(extraction) 、吸附(adsorption )、膜分离(membrane separation) 3、高度纯化,色谱(chromatography )、电泳(electrophoresis) 4、成品加工,结晶(crystallization) 、干燥(drying)。
4、在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠?答:1、产品价值2、产品质量3、产物在生产过程中出现的位置4、杂质在生产过程中出现的位置。
5、产品和主要杂质独特的物化性质6、不同分离方法的技术经济比较。
5、阐述生物分离工程的发展动向。
答、1、基础理论研究2、提高分离过程的选择性3、开发分离介质4、提高分离纯化技术5、清洁生产6、规模化、工程化研究6、分离效率的评价:目标产物的浓缩程度、分离纯化程度、回收率第二章细胞分离与破碎Cell isolation and disruption1 如何预处理发酵液?答:1.高价无机离子的去除方法去除钙离子:通常使用草酸。
去除镁离子:加入三聚磷酸钠,与镁离子形成络合物。
用磷酸盐处理,也能大大降低钙离子和镁离子的浓度。
去除铁离子:加入黄血盐,使其形成普鲁士蓝沉淀而除去。
2、杂蛋白质的除去:沉淀、吸附法、变性法、凝聚Coagulation和絮凝flocculation 3.有色物质的去除及其他:使用吸附剂去除有色物质(离子交换剂、离子交换纤维、活性炭等) 、用工业酶制剂可净化发酵产物,除去干扰性浑浊物、使用惰性助滤剂、加入反应剂2 凝聚和絮凝的区别答:凝聚:向胶体悬浮液中加入电解质,由于双电层电位降低,使胶体体系不稳定,胶体粒子间因相互碰撞而产生凝集(1mm左右)的现象。
第一章生物分离的一般步骤1、不溶物的去除(固液分离)——预处理包括过滤、离心、细胞破碎等,产物浓度和质量得到了提高。
2、产物提取(浓缩)产物初步纯化的过程。
将目标产物与性质差异较大的杂质分开,可大幅提高产物浓度。
往往多单元协同操作,如吸附、萃取、沉淀、超滤等。
以上分离过程不具备特异性,只是进行初分,除去主要杂质3、产品的纯化产物被高度纯化,除去与目标物性质接近的杂质。
采用的技术具有产物的高选择性和杂质的去除性,即可以除去微量的杂质。
如色谱、电泳、层析等。
4、产品精制将纯化的产品按要求制成商用成品。
按商品要求的用途、纯度、剂型等进行最后加工。
如结晶、喷雾干燥、冷冻干燥等。
生物分离基本原理生物分离的基本原理是指根据混合物(包括原子、离子、分子、分子复合物、分子聚合体、和细胞、细胞碎片和颗粒等)中各种溶质间具有物理、化学和生物学性质的差别,利用能够识别这些差别的分离介质和能够扩大这些差别的分离设备,实现各种物质的分离,或使被分离的目的产物得以纯化。
第二章发酵液预处理的目的预处理的目的:促进从悬浮液中分离固形物的速度,提高固液分离的效率:(1)改变发酵液的物理性质,包括增大悬浮液中固体粒子的尺寸,降低液体黏度。
(2)相对纯化,去除发酵液中的部分杂质(高价无机离子和杂蛋白质),以利于后续各步操作。
(3)尽可能使产物转入便于后处理的一相中(多数是液相)。
发酵液预处理的方法1.加热法(Heating)2.调节悬浮液的pH值(Regulation of pH)3.助滤剂和反应剂(Filter aids and Reactant)4.杂蛋白的去除(Removal of useless protein)5.高价无机离子的去除(Removal of inorganicion)6.凝聚和絮凝(Coagulation and flocculation)凝聚:凝聚是指在电解质作用下,由于胶粒之间扩散双电层电位下降,电排斥作用降低,破坏胶体体系的分散状态,使之不稳定相互凝集成1mm左右块状凝聚体的现象。
1.生物分离工程:是指从发酵液、酶反应液或动植物细胞培养液中分离、纯化生物产品的过程。
它描述了生物产品分类里、纯化过程的原理、方法和设备。
因为它处于整个生物产品过程的后端,所以也称为生物工程下游技术。
2.生物分离工程的一般流程:(1)发酵液的预处理:主要采用凝聚和絮凝等技术来加速固相、液相分离,提高过滤速度。
过滤和离心是发酵液预处理最基本的单元操作。
(2)产物的提取:可采用沉淀、吸附、萃取、超滤等单元操作。
(3)产物的精制:(高度纯化)主要是除去与目标物性质相近的杂质。
这一阶段的单元操作涉及色谱分离技术有层析(包括柱层析和薄层层析)、离子交换、亲和色谱、吸附色谱、电色谱。
(4)成品的加工处理:单元操作主要由浓缩、结晶和干燥。
3.生物分离过程的体系特殊:(1)原料液的特点:生物分离与纯化处理的原料液体系十分复杂,含有为生物细胞、菌体、代谢产物、未耗用的培养基以及各种降解目标产物的杂质;原料液中常存在与目标分子在结构等理化性质上及其相似的分子及异构体,形成用普通方法难于分离的混合物;除少数特定的生化反应系统,原料液是产物浓度很低的水溶液;原料液低于环境变化(热、pH药物等)的能力差,溶液发生活性降低甚至丧失(变性失活)。
(2)对产物的要求:在分离纯化过程中必须保持目标物的生物活性;粗产物的纯度较低,而最终产品要求的纯度却极高;用作医药、食品和化妆品的生物产物与人类生命息息相关,要求最终产品的质量必须符合药典、试剂标准和食品规范等国家标准。
4.发酵液预处理的方法:按预处理的目的分为:提高过滤速度的方法(凝集和絮凝)、改变发酵液性质的方法(调节pH法)和杂质去除的方法三类。
其具体的方法有凝集和絮凝、加热法、调节pH法、加水稀释法、加入助滤剂法、加吸附剂法或加盐法、高价态无机离子去除的方法、可溶性杂蛋白质去除的方法、色素及其他杂质去除的方法等。
5.凝集:是指在投加的化学物质(如水解的凝集剂,铝、铁的盐类或石灰等)作用下,发酵液中的胶体脱稳并使粒子相互凝集成为1mm大小块状絮凝体的过程。
生物分离工程
生物分离工程,也称为生物酶工程,是一项技术,用于从生物体中分离和分离生物分子,特别是酶类的分离。
生物分离工程是一项具有挑战性的技术,它利用了自然界中生物体之间,分子之间的某种化学和物理联系,从而实现了生物体和生物体之间,因而也实现了分子与分子之间的分离,有时甚至可以实现不同基因组的物质的分离。
生物分离工程涉及到2个主要工作步骤:1)通过化学和物理方法,将原始样品中的分子分离出来;2)经过精细的技术,对得到的分子进行细解,进一步提取出有价值的酶及其仿生物体。
体外分离的原则包括化学组分改变,细菌分离,细胞分离,离心分离和膜分离等。
化学组分改变是最常用的原理之一,它通过改变样品的pH值或离子强度,实现分子的有效分离。
细菌分离可以通过替代培养基,修饰培养基或培养环境,从而实现细菌新陈代谢物的有效提取。
细胞分离则将不同种类的细胞从一起混和的物质中,单独分离出来。
离心分离是利用离心力将成分分离出来,它可以提取出细胞及细胞含量高的混合物,从而为进一步细胞分离提供前提。
膜分离是将非常细胞分子从其他颗粒分离出来的一种技术,它的实现原理是利用膜的渗透性将分子分离出来,从而达到分离的效果。
生物分离工程在医药、农业等多个领域有着重要应用,它可以帮助科学家获取有益的酶及其仿生物体,使用它们开发新型药物,优化农作物营养素,生产生物催化剂,等等,从而为人类的生活带来极大的好处。
总之,生物分离工程是一项非常有益的技术,其应用已经深入到了多个领域,为研究者们带来了巨大的帮助,可以使科学家获取具有良好抗病及其他特性的巨大机会,从而推动科学研究取得新的进展。
1,生物分离工程:是指从发酵液,酶反应液或动植物细胞培养液中分离,纯化生物产品的过程。
它描述了生物产品的分离,纯化过程的原理,方法和设备,因为它处于整个生物产品生产过程的后端,所以也称为生物工程下游技术。
2,凝集:通过加入无机盐,在无机盐作用下,发酵液中的胶体脱稳并使粒子相互凝集成块状絮凝体的过程。
3,絮凝:指某些高分子絮凝剂能在悬浮粒子之间产生桥梁作用,使胶粒形成粗大絮凝团的过程。
4,离心分离:是指在离心场的作用下,将悬浮液中的固相和液相加以分离的方法。
5,过滤:发酵液通过一种多孔介质,固体颗粒被截留的过程。
6,滤饼过滤:固体颗粒沉积于过滤介质表面形成滤渣层。
7,深层过滤:固体颗粒进入并沉积于多孔孔道内,溶液经孔道缝隙流过滤渣。
8,细胞破碎:是采用一定的方法,在一定程度上破坏细胞壁和细胞膜,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质的基础。
9,机械破碎法:通过机械运动产生的剪切力使组织细胞破碎。
10,物理破碎法:通过各种物理因素作用,使组织细胞的外层结构破坏,使细胞破碎。
生物分离工程(下游加工过程)11,化学破碎法:通过各种化学试剂对细胞膜的作用,使组织细胞的外层结构破坏,使细胞破碎。
12,通过细胞本身酶系或外加酶催化剂的催化作用,使外层结构破坏。
13,超声破碎法:在超声波作用下,液体发生空化作用,空穴的形成,增大和闭合产生极大的冲击波和剪切力,使细胞破碎。
14,空化作用:指存在于液体中的微气核空化泡在声波作用下发生变化,声压达到一定值,在声波纵向传插负压区,空泡化增大,在声波传播的正压区,空泡闭合,在反复增大,闭合中,空泡化崩溃,崩溃的瞬间,产生巨大的剪切力。
15,酶解法:利用溶解细胞壁的酶处理菌体细胞,使细胞壁受到破坏后,再利用渗透压冲击等方法破坏细胞膜。
16,酶解—自溶作用:利用生物体自身产生的酶来溶胞,而不需要外加其他酶。
第一章绪论一、生物分离工程在生物技术中的地位?生物技术的主要目标是生物物质的高效生产,而分离纯化是生物产品工程的重要环节。
因此,生物分离是生物技术的重要组成部分。
生物分离工程是生物技术的下游技术,用于目标产物的提取、浓缩、纯化以及成品化。
二、生物分离工程的特点是什么?1.产品丰富,产品的多样性导致分离方法的多样性2.绝大多数生物分离方法来源于化学分离3.生物分离一般比化工分离难度大三、生物分离工程可分为几大部分,分别包括哪些单元操作?生物分离过程一般分四步:1.固-液分离(不溶物的去除)离心、过滤、细胞破碎,目的是提高产物浓度和质量2.浓缩(杂质粗分)离子交换吸附、萃取、溶剂萃取、反胶团萃取、超临界流体萃取、双水相萃取以上分离过程不具备特异性,只是进行初分,可提高产物浓度和质量。
3.纯化色谱电泳沉淀以上技术具有产物的高选择性和杂质的去除性。
4.精制结晶干燥四、在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠?(1)产品价值(2)产品质量(3)产物在生产过程中出现的位置(4)杂质在生产过程中出现的位置(5)主要杂质独特的物化性质是什么(6)不同分离方法的技术经济比较上述问题的考虑将有助于优质、高效产物分离过程的优化。
五、生物分离效率有哪些评价指标?1.目标产品的浓缩程度——浓缩率m2.系数α回收率REC第二章细胞分离与破碎一、细胞破碎的目的意义由于有许多生化物质存在于细胞内部,必须在纯化以前将细胞破碎,使细胞壁和细胞膜受到不同程度的破坏(增大通透性)或破碎,释放其中的目标产物,然后方可进行提取。
二、细胞破碎方法的大致分类破碎方法可归纳为机械破碎法和非机械破碎法两大类,非机械破碎法又可分为化学(和生物化学)破碎法和物理破碎法。
1.机械破碎处理量大、破碎效率高速度快,是工业规模细胞破碎的主要手段。
细胞的机械破碎主要有高压匀浆、研磨、珠磨、喷雾撞击破碎和超声波破碎等。
2.化学(和生物化学)渗透破碎法(1)渗透压冲击法(休克法)(2)酶溶(酶消化)法3.物理破碎法1)冻结-融化法(亦称冻融法)(2)干燥法空气干燥法真空干燥法冷冻干燥法喷雾干燥法三、化学渗透法和机械破碎法相比有哪些优缺点?化学渗透破碎法与机械破碎法相比优点:化学渗透破碎法比机械破碎法的选择性高,胞内产物的总释放率低,特别是可有效地抑制核酸的释放,料液的粘度小,有利于后处理过程。
单元操作及其适用范围。
1.固液分离:过滤(真菌,细菌,细胞碎片),离心(真菌、病毒、细胞)2.细胞破壁:机械法,酶法,化学法(胞内产品、酶、实验)3.产品分离纯化:蒸馏(乙醇和溶剂回收)萃取(抗生素、酶、精制油)、沉淀(酶),吸附(抗生素),膜技术(脱盐和除热原、蛋白质溶液脱盐),液相色谱(干扰素、血制品、蛋白质和多肽抗生素和多肽)4.水和溶剂的去除浓缩(抗生素,咖啡喝果汁),干燥(多数药物,a-淀粉酶和单细胞蛋白)。
哪些单元操作适用于生物小分子物质的提取?哪些单元操作生物大分子的提取?答:适用于生物小分子的单元操作有:液体萃取、非活性基吸附、低压亲和色谱逆同、高效液相色谱、蒸发、反渗透、超滤。
适用于大分子的单元操作有:过滤、离心、双水相萃取、沉淀,电渗析液相色谱、电泳、等电聚焦、干燥。
生物技术下游加工过程的发展动向:①基础理论研究:选择性分离剂、数学模型②应用研究:提高分离过程选择性、开发新介质、提高分离纯化技术③工程问题研究④改善环境相容性发酵液为何需要预处理?处理方法有哪些?答:因为发酵液中发酵产物浓度较低,含有许多杂质,悬浮颗粒,细胞的相对密度与培养液相似,液相粘度大,大多为非牛顿型液体,需要预处理。
此外,预处理可达到如下目的:⑴改变发酵液的物理性质,包括增大悬浮液中固体粒子的尺寸,降低液体黏度。
促进从悬浮液中固形物的分离速度,提高固液分离的效率。
⑵相对纯化,去除发酵液中的部分杂质(高价无机离子和杂蛋白质),以利于后续各步操作。
⑶尽可能使产物转入便于后处理的一相中(多数是液相)处理方法:加热法;絮凝和凝聚;调节PH;杂蛋白的去除;高价无机离子的去除;助滤剂和反应剂。
凝聚和絮凝过程有何区别?答:凝聚:指在投加的化学物质(铝、铁的盐类)作用下,胶体脱稳并使粒子相互聚集成1mm 大小块状凝聚体的过程。
机理:中和粒子表面电荷、消除双电层结构、破坏水化膜絮凝:指使用絮凝剂(天然的和合成的大分子量聚电解质)将胶体粒子交联成网,形成10mm 大小絮凝团的过程。
生物分离工程的原理是什么生物分离工程是一种利用生物化学和生物技术原理,通过物理、化学和生物学方法对生物体进行分离、提纯和纯化的过程。
它是一门综合性学科,涵盖了许多领域的知识和技术,如生物物理学、生物化学、分子生物学、生物工程等。
其核心原理是基于不同生物体的差异性,通过合适的实验设计和操作步骤,将目标物质从混合物中有效地分离出来。
生物分离工程的主要原理包括:1. 物理分离原理:物理分离是通过物料的物理性质进行分离,常用的方法包括离心、超滤、膜分离等。
离心是利用物料的不同密度和体积进行离心分离,如离心机可以分离细胞沉淀和液体上清。
超滤是利用滤膜的分子筛效应,根据分子尺寸的不同分离物质,常用于分离大分子如蛋白质和脱盐。
膜分离是利用逆渗透、微滤膜等,通过膜孔的大小和物料的压力差分离目标物质。
2. 化学分离原理:化学分离是利用物料的化学性质进行分离,常用的方法包括酸碱沉淀、吸附分离、电泳等。
酸碱沉淀是通过改变溶液pH值,使某些物质在酸或碱条件下形成不溶性沉淀,从而实现分离的目的。
吸附分离是利用物料在吸附介质上的亲和性差异进行分离,如利用离子交换树脂进行蛋白质与离子的吸附分离。
电泳是利用电场对带电物质进行迁移,根据它们的电荷、尺寸和形状的差异进行分离,如凝胶电泳可用于分离核酸。
3. 生物分离原理:生物分离是利用生物体本身的特性进行分离,如利用免疫反应进行分离,常用的方法有免疫吸附分离、免疫磁珠分离等。
免疫吸附分离是利用抗体与特定抗原间的特异性相互作用,将目标物质从混合物中吸附分离出来。
免疫磁珠分离是将磁性微珠与特异性抗体结合,形成抗原-抗体-磁珠复合物,通过外加磁场使复合物在液相中快速沉降,实现目标物质的分离。
此外,生物分离工程还可以应用到各种类型的生物体中,如微生物、植物和动物细胞等。
不同的生物体要素和目标物质的特性决定了最适合使用的分离方法。
生物分离工程在生物工业、医药制造和农业领域具有广泛应用,如制药过程中的药物提取和纯化、农田灌溉水的净化等。