爆破振动安全允许标准
- 格式:docx
- 大小:11.11 KB
- 文档页数:1
6.2 爆破振动安全允许距离6.2.1 评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准。
6.2.2 地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率;水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。
安全允许标准如表4。
6.2.3 爆破振动安全允许距离,可按式(1)计算。
311Q V K R α⎪⎭⎫⎝⎛= (1)式中:R ——爆破振动安全允许距离,单位为米(m );Q ——炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg ); V ——保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm / s ) ;K 、a ——与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数,可按表5选取,或通过现场试验确定。
表5 解区不同岩性的K 、a 值群药包爆破,各药包至保护目标的距离差值超过平均距离的10%时,用等效距离R,和等效药量q分别代替R和Q值。
R c和Q e的计算采用加权平均值法。
对于条形药包,可将条形药包以1~1.5倍最小抵抗线长度分为多个集中药包,参照群药包爆破时的方法计算其等效距离和等效药量。
6.2.46.2没有包括的一般保护对象的爆破振动安全标准,可参照6.2的规定由设计论证提出;特别重要的保护对象的安全判据和允许标准,应由专家论证提出。
城镇拆除爆破安全允许距离由设计确定。
6.2.5在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,应进行必要的爆破振动监测或专门试验,以确保保护对象的安全。
6.2.6在复杂环境中多次进行爆破作业时,应从确保安全的单响药量开始,逐步增大到允许药量,并按允许药量控制一次爆破规模。
爆破振动的控制1爆破振动速度安全允许标准根据萨道夫斯基控制爆破振动速度公式α⎪⎪⎭⎫⎝⎛=R Q K V 31 计算爆破振动速度。
式中:R —爆破振动安全距离,m ,Q —装药量,微差爆破取最大一段药量,V —振动安全速度,新浇大体积混凝土允许振动速度:龄期3d 内V=2.0cm/s (洞内2.5cm/s ),3~7d V=4.0cm/s (洞内5cm/s ),7~28d V=8cm/s (洞内10cm/s )。
按3d 允许振动速度控制。
核岛振动加速度:0.03g ; k ,a —系数,取K=250,a=1.8;K 、α值得选择如表3-1所示:表3-1K 、α取值参考根据设计要求各建筑物爆破振动要求如下表:根据爆区周围各需保护目标的结构特征及距爆区的距离,通过振动速度公式校核可得下表数据。
爆破前期通过爆破试验以及振动监测单位的振动监测数据,由小到大逐步增大最大段齐爆药量,确保核电站各项设施的正常运行。
表3-2不同保护物项的最大单响数值由上表可知:核岛660m,Q=745kg; 8AW厂房130m,Q=703kg;3天内新浇混凝土60m, Q=42.8kg;(目前爆区300m范围没有浇筑混凝土,爆破实施前应掌握爆破区域周边环境变化情况,如被保护物项发生变化,应及时调整最大单响起爆药量)。
洞外爆破按单孔单响控制最大起爆药量(单孔装药量为60kg),洞内爆破按最大起爆药量41.4kg,如单孔装药量超过允许最大起爆药量时,采用孔内分段爆破或减小孔深降低单孔装药量措施。
.2爆破振动验算按主爆区最大单响药量为60kg,用公式V=K(Q1/3/R)α进行验算,式中字符含义同上。
由此算得保护物象的振动速度值见下表:由此可知,理论计算按60kg最大齐爆药量控制符合允许振动要求,但应根据振动监测数据判断其理论计算取值的合理性,如有差异及时调整。
.3露天爆破振动防护措施(1)采用微差爆破技术,合理选取微差间隔时间及微差段数,根据施工进度实际情况合理安排,尽量多安排段的数量和延长微差时间,利用先爆孔爆破后造成附近岩体破碎和松裂为后爆孔开创内部自由面来达到降振的目的。
爆破振动安全允许距离引言:爆破振动是在爆破作业中产生的一种特殊的振动现象。
爆破振动不仅对周围的建筑物和地下设施造成一定的影响,而且可能对地震监测、地质灾害预警等相关工作带来干扰。
因此,确定爆破振动的安全允许距离是进行破岩爆破作业的重要依据之一。
本文将从爆破振动的基本原理、影响因素、国内外规范以及实际应用等方面来探讨爆破振动安全允许距离的问题。
一、爆破振动的基本原理爆破振动是指由于爆炸产生的冲击波在地下岩体或者建筑物中的传播而引起的振动现象。
爆炸产生的冲击波在地下岩体中传播时,会产生一定的振动。
这种振动会沿着冲击波的传播方向向外扩散,并在传播过程中逐渐减弱。
爆炸振动的特点主要有以下几个方面:(一)爆炸振动的频率范围较宽,通常在1Hz至100Hz之间。
(二)爆炸振动的振幅在炸药能量消耗过程中逐渐减小。
(三)由于地质力学条件的差异,不同地层中的岩石对爆破振动的传播和衰减有着不同的响应。
(四)受到限制的爆破振动传播会在地下岩石中产生反射和折射,导致振动能量的分散。
爆破振动产生的主要原因是爆炸产生的冲击波在地下岩石中的传播。
冲击波与岩石之间的相互作用会引起岩石的破碎和变形,从而产生振动。
爆破振动的强度与冲击波的能量、冲击波的传播距离以及地质条件等因素有关。
二、影响爆破振动的因素爆破振动的强度与很多因素有关,主要包括:(一)爆炸药量和炸药性质:爆炸药量越大,爆破振动的强度越大;不同性质的炸药对振动的影响也不同,一般来说,爆速较高的炸药会产生较强的振动。
(二)爆破距离:爆破振动的强度随着爆破距离的增加而逐渐减小。
(三)岩石性质:不同类型的岩石对振动的响应有所差异,例如,花岗岩、片麻岩等硬岩比石灰岩、页岩等软岩对振动的响应更为敏感。
(四)地质条件:不同地区的地质条件的差异也会影响爆破振动的强度,例如,岩层的厚度、断裂带的存在等。
(五)爆破设计参数:爆破设计参数包括孔的布置、装药量、装药方式、引爆顺序等,这些参数的选择会直接影响爆破振动的强度。
爆破振动速度与破坏程度的关系【分享】:来自炸药及爆炸作用书籍,版权属于原作者,仅仅分享,如有不妥,告知删除。
爆破振动速度与破坏程度的关系1 爆破振动强度的衡量标准爆破地震破坏的强弱程度称为振动强度或振动烈度。
振动强度可用地面运动的各种物理量来表示,如质点振动速度、位移、加速度和振动频率等。
但是,通过对大量爆破振动量测数据研究后得出,用质点振动速度来衡量爆破振动强度更为合理。
理由是:(1)质点振速与应力成正比,而应力又与爆源能量成正比,因此振速即反映爆源能量的大小。
(2)以质点振速衡量振动强度的规律性较强,且不受频率变化的影响,美国矿业局用回归分析法处理了美国、加拿大和瑞典三国的实测数据,这三组数据是使用不同仪器在不同施工条件下建成的住宅中试验量测所得。
结果得出一条质点振速不随频率而变化的等值直线。
这充分说明,以质点振速作为安全判据,可适用于不同的测量仪器,不同的测量方法和不同的爆破条件。
(3)质点振动速度与地面运动密切相关。
分析大量实测数据表明,结构的破坏与质点振动速度的相关关系比位移或加速度的相关关系更为密切。
(4)质点振动速度不受地面覆盖层类型和厚度的影响,而地面运动的多数参数则都会受到影响。
例如在低弹性模量的土壤中,应力波传播速度低;随覆盖层厚度增加,振动频率明显下降,地面质点位移就会增大。
在不同类型和不同厚度和覆盖层中进行的试验结果表明,虽然地面运动的多数参数会随着覆盖层厚度的变化而变化,但对于引起结构破坏的质点振动速度却未受到明显影响;因此,将质点振动速度作为衡量爆破振动安全判据是有利的。
目前我国也和大多数国家一样,以质点振动速度作为衡量爆破振动烈度的判据。
一般情况下,把爆破振动速度控制在《爆破安全规程》规定的范围内,可以保证正常房屋不致受到破坏。
特殊环境下实施爆破时可以根据房屋的实际抗震能力及设计抗震烈度值来确定其爆破振动速度的极限值(表1)。
表1 抗震烈度与相应的地面质点运动速度值2 爆破振动速度与破坏程度的关系岩石开始破坏的振动速度是50~100cm/s。
爆破振动安全允许距离爆破振动是由于爆炸产生的振动波传播到周围地质体而引起的地面振动现象。
在工程施工中,爆破振动会对周围环境和结构物产生一定的影响和危害,因此需要对爆破振动进行控制和安全允许距离的确定。
爆破振动的安全允许距离是指在进行爆破作业时,周围建筑物和设施不会受到破坏或损害的最小距离。
根据国家相关标准和规范,确定爆破振动的安全允许距离需要考虑以下几个方面的因素:1. 周围建筑物和设施的性质和结构强度:不同的建筑物和设施对振动的敏感程度不同,而且其结构强度也不同。
对于结构比较脆弱或者对振动敏感的建筑物和设施,其安全允许距离应该相对较大。
2. 爆破参数和振动波特性:爆破参数主要包括爆炸药量、爆炸距离和爆炸深度等,这些参数直接影响到振动波的传播特性。
一般情况下,爆炸药量越大、爆炸距离越小、爆炸深度越浅,振动波的能量会越大,安全允许距离也就应该相对较大。
3. 地质和地下水条件:地质条件和地下水的存在会对振动波的传播产生较大的影响。
对于岩层坚硬且无地下水存在的地区,振动波的传播能力较强,因此安全允许距离相对较小;而对于岩层松软或者含有地下水的地区,振动波的传播能力较弱,安全允许距离应该相对较大。
在实际的工程施工中,可以通过以下几种方法来确定爆破振动的安全允许距离:1. 爆破振动预测模型:通过振动传播理论和数值模拟方法,可以建立爆破振动的传播模型,预测爆破振动的传播特性和能量衰减规律。
根据模型计算结果和相关标准,可以确定出不同爆破参数下的安全允许距离。
2. 野外振动监测:在进行爆破作业前后,可以在周围建筑物和设施附近设置振动监测点,实时监测和记录振动波的传播情况,获得实测的振动参数。
通过对监测数据的分析和比较,可以确定具体的安全允许距离。
3. 类似工程案例参考:根据以往类似的工程案例和经验,可以参考已有的安全允许距离进行决策。
当然,这种方法需要考虑相关工程的相似性和可比性,在确定安全允许距离时应该谨慎。
爆破安全允许振动距离报告一、引言爆破在矿山、建筑拆除和基础工作等领域有着广泛的应用,但由于爆破作业会产生振动,引起周围环境的震动和噪音,从而对周围建筑物和设施造成潜在的损害。
因此,确定爆破安全允许振动距离是必要的,可以确保爆破作业的安全性和周围环境的保护。
二、爆破振动距离计算方法爆破振动距离的计算可参考GB6722-2024《建筑物振动危害分类与防护标准》的相关规定。
根据该标准,爆破振动距离可通过以下公式计算:D=(A/E)^(1/3)其中,D为振动距离(米),A为最大振动速度(mm/s),E为岩石等级系数。
三、爆破振动距离的影响因素1.爆破药量和类型:爆破药量和类型直接影响着爆破振动的强度,药量大、类型炸药的爆破振动能量将更大,振动距离也会相应增加。
2.爆破距离和深度:离爆破点越近的建筑物,所受到的振动影响也越大。
同时,爆破距离和爆破深度也会对振动距离产生影响。
3.岩石的地质条件:不同的岩石类型和结构对振动传播具有不同的阻尼效应,因此,地质条件也是影响振动距离的重要因素之一四、爆破振动距离的安全要求为了确保爆破作业的安全性和周围环境的保护,根据GB6722-2024的要求,一般情况下,振动速度超过50mm/s的振动传播距离不得超过100米。
当建筑物的振动敏感性较高时,振动速度超过25mm/s的振动传播距离不得超过50米。
五、爆破振动距离的监测和控制措施为了确保爆破作业时的振动距离符合安全要求,应采取以下措施:1.定期监测:爆破作业前后,对周围建筑物、设施和地质环境进行振动监测,及时了解振动距离和强度的情况。
2.合理设置爆破参数:根据具体情况调整爆破药量、类型、距离和深度等参数,以确保振动距离符合安全要求。
3.需要时采取防护措施:当爆破作业的振动距离超出安全要求时,可以采取降低药量、增加重质岩石、采用减振器等防护措施,保护周围建筑物和设施的安全。
六、结论爆破安全允许振动距离是确保爆破作业安全和周围环境保护的重要依据。
爆破振动安全允许距离范本爆破振动是指由于爆破作业产生的震动波动。
在工程施工、矿山爆破等领域中,爆破振动安全允许距离范本被广泛应用。
本文将对爆破振动安全允许距离范本进行详细介绍,包括定义、计算方法、影响因素等方面的内容,并结合实际案例进行分析,以便读者更好地理解和应用相关知识。
一、爆破振动安全允许距离范本的定义爆破振动安全允许距离范本是指在爆破作业中,为了保证周围建筑物或设施不受到爆破振动的损害,需要设置的合理安全距离。
该距离范本是根据国际标准和经验公式计算得出的,对于不同类型的建筑物或设施具有相应的数值要求。
二、爆破振动安全允许距离范本的计算方法1. 爆破振动速度限值法根据国际标准,爆破振动速度限值是衡量爆破振动强度的重要参数。
常用的爆破振动速度限值法有美国和欧洲的相关标准。
根据这些标准的要求,可以计算出在不同距离下的允许振动速度限值。
2. 爆破振动位移限值法爆破振动位移限值是另一种衡量爆破振动强度的参数。
根据国际标准和经验公式,可以计算出在不同距离下的允许振动位移限值。
根据爆破振动速度限值和振动位移限值,可以综合计算出在不同距离下的爆破振动安全允许距离范本。
三、爆破振动安全允许距离范本的影响因素1. 爆破药量爆破药量是影响爆破振动强度的重要因素之一。
通常情况下,爆破药量越大,产生的振动强度也越大。
2. 爆破距离爆破距离是指爆破点与建筑物或设施之间的距离。
爆破距离越近,振动强度也会增大。
3. 岩石性质岩石的性质也会对爆破振动强度产生一定的影响。
不同类型的岩石因其物理力学性质的不同,对振动的传播和衰减表现也不同。
四、爆破振动安全允许距离范本的应用案例分析下面以一个具体的案例来进行分析,以便读者更好地理解和应用爆破振动安全允许距离范本。
假设某矿山进行爆破作业,需要确定矿山周围建筑物的安全允许距离。
根据矿山爆破经验公式和相关标准,可以计算出在不同距离下的爆破振动速度限值和位移限值。
假设该矿山爆破药量为100kg,爆破距离为10m,岩石性质为石灰岩。