美国军方工程部水利结构强度设计手册
- 格式:pdf
- 大小:842.75 KB
- 文档页数:35
ANSI/AISC 360-05美国国家标准钢结构建筑设计规范2005年3月9日发布本规范取代下列规范:1999年12月27日颁布的《钢结构建筑设计规范:荷载和抗力系数设计法》(LRFD)、1989年6月1日颁布的《钢结构建筑设计规范:容许应力设计法和塑性设计法》、其中包括1989年6月1日颁布的附录1《单角钢杆件的容许应力法设计规范》、2000年11月10日颁布的《单角钢杆件的荷载和抗力系数设计法设计规范》、2000年11月10日颁布的《管截面杆件的荷载和抗力系数设计法设计规范》、以及代替上述规范的所有从前使用的相关版本。
本规范由美国钢结构协会委员会(AISC)及其理事会批准发布实施。
本规范由美国钢结构协会规范委员会(AISC)审定,由美国钢结构协会董事会出版发行。
美国钢结构学会One East Wacker Drive,Suite 700芝加哥,伊利诺斯州60601-1802版权©2005美国钢结构学会拥有版权保留所有权利。
没有出版人的书面允许,不得对本书或本书的任何部分以任何形式进行复制。
本规范中所涉及到的相关信息,基本上是根据公认的工程原理和原则进行编制的,并且只提供一般通用性的相关信息内容。
虽然已经提供了这些精确的信息,但是,这些信息,在未经许可的专业工程师、设计人员或建筑工程师对其精确性、适用性和应用范围进行专业审查和验证的情况下,不得任意使用或应用于特定的具体项目中。
本规范中所包含的相关材料,并非对美国钢结构协会的部分内容进行展示或担保,或者,对其中所涉及的相关人员进行展示或担保,并且这些相关信息在适用于任何一般性的或特定的项目时,不得侵害任何相关专利权益。
任何人在侵权使用这些相关信息时,必须承担由此引起的所有相关责任。
必须注意到:在使用其它机构制订的规范和标准时,以及参照相关标准制订的其它规范和标准时,可以随时对本规范的相关内容进行修订或修改并且随后印刷发行。
本协会对未参照这些标准信息材料,以及未按照标准规定在初次出版发行时不承担由此引起的任何责任。
第二卷结构工程设计规定。
第16章结构设计要求。
注释:本章已经被全部修改。
第17章结构测试和检查。
第18章基础和挡土墙。
第I部分一般要求。
1801适用范围。
1801.1 一般要求。
1801.1 一般要求。
本章提出建筑结构和基础及挡土结构挖掘和填土要求。
涉及附录第33章控制管理挖掘、缓坡和土方建筑,包括填土和筑堤。
1801.2质量标准。
标准列在本规范的第35章,第二部分“美国统一规范(UBC )标准”中。
1、检验。
1.1、UBC 标准18-1,土分类。
1.2、UBC标准18-2,膨胀指数测试。
1802质量和设计。
在挖掘、基础和基础结构中使用材料的质量和设计要符合第16、19、21、22和23章要求。
挖掘和填土按照第33章进行。
本章提供的容许支撑应力、容许应力和设计公式将使用第1612.3部分规定的容许应力设计荷载组合。
1803 土分类一膨胀土。
1803.1 一般要求。
1803.1 一般要求。
本章的目的是根据UBC标准18-1要求在表28-I-A中使用的土原料进行定义和分类。
1803.2 膨胀土。
按照UBC标准18-2的规程和表18-I-B中的土分类定值土性质。
在膨胀系数大于20的土上的建筑基础,要靠UBC标准18-2规定进行特殊设计。
如果膨胀系数随着深度变化,这种变化要包括在结构上膨胀土效应的工程分析中。
1804地基勘察。
1804.1 一般要求。
每个建筑工地的土分类按照建筑主管部门的要求定值。
建筑主管部门可以要求工程师和建筑师按照国家相同的惯例定值。
1804.2勘察。
以观察资料和在适当位置钻探或挖掘的检验材料为基础进行分类。
另外需要对地基强度、水分变化对地基支撑能力的影响、可压缩性、液化和膨胀性进行评估研究。
在地震区3和4,根据建筑主管部门要求对地震导致地基液化和地基不稳定性的评估要符合1804.5部分要求。
例外:1、建筑主管部门收到有资质的地质工程师或地质学者书写的不可能液化的评估时,可以放弃评估要求。
2005版美国钢结构设计规范摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。
极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。
两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。
这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。
在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。
关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要1介绍2基本设计理念2.1容许应力设计2.2荷载与阻力因素设计强度不足和超载32005年AISC说明书3.1 背景3.2 格式规范3.3 基本设计要求4 新规范内容布置B1 总则B简单连接B弯矩连接稳定性设计要求需求强度计算4.5 构件抗拉设计4.6 构件抗压设计4.7 构件抗弯设计4.8 构件抗剪设计4.9 构件组合受力设计和抗扭设计4.10 组合构件设计4.11 连接设计5 注释6 摘要参考文献1.介绍1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。
虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。
因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。
总之,当时的情况是非常混乱的,有时出现问题常常引发重大的经济甚至社会稳定问题。
关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。
)序言本设计规范旨在提供完善的标准设计之用。
本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。
本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。
术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。
在本条文说明文本中首次出现的术语使用了斜体。
准线图。
用于决定某些柱体计算长度系数K的列线图解。
双轴弯曲。
某一构件在两垂直轴同时弯曲。
脆性断裂。
在没有或是只有轻微柔性变形的情况下突然断裂。
柱体弧线。
表达砥柱强度和直径长度比之间关系的弧线。
临界负荷。
根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。
循环负荷。
重复地使用可以让结构体变得脆弱的额外负荷。
位移残损索引。
用于测量由内部位移引起的潜性损坏的参变量。
有效惯性矩。
构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。
同理,基于局部歪曲构件的有效宽度的惯性矩。
同理,用于设计部分组合构件的惯性矩。
有效劲度。
通过构件横截面有效惯性矩计算而得的构件劲度。
疲劳界限。
不计载荷循环次数,不发生疲劳断裂的压力范围。
一阶逆性分析。
基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。
柔性连接。
连接中,允许构件末端简支梁的一部分发生旋转,而非全部。
挠曲。
受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。
非弹性作用。
移除促生作用力后,材料变形仍然不消退的现象。
非弹性强度。
当材料充分达到屈服应力时,结构体或是构件所具有的强度。
EM1110-2-2104--水工钢筋溷凝土结构强度设计--中文稿内部资料注意保存国外水电标准译文水工钢筋混凝土结构强度设计 Strength design for reinforced-concrete hydraulic structures,美, EM1110-2-2104,2003年修订版,中国水电工程顾问集团公司编译二??五年八月1工程师手册编号:1110-2-2104 2003年8月20日修订工程与设计水工钢筋混凝土结构强度设计,EM11110-2-2104~1992年颁布,2003年第一次修订,本次修订是针对1992年6月30日颁布的EM ll10-2-2104中第3章的正文和图表。
此外~还增加了第3章的条文说明,美国陆军工程师团2编译者序《水工混凝土结构设计规范》DL,T5057-1996颁布执行近九年~为推动可靠度理论在水电工程中的应用~并为进一步修订《水工钢筋混凝土结构设计规范》,DL,T5057-1996,奠定基础~中国水电工程顾问集团公司组织翻译美国陆军工程师团的工程师手册《水工钢筋混凝土结构强度设计》,EM1110-2-2104,,2003年修订版,。
我国《混凝土结构设计规范》,GB50010-2002,在条文说明7.7中专门指出对美国混凝土学会编制的《美国混凝土结构建筑规范》ACI 318有所借鉴。
而美国陆军工程师团的工程师手册《水工钢筋混凝土结构强度设计》,EMll10-2-2104,与美国混凝土学会的《美国混凝土结构建筑规范》,ACI 318-02,二者有着紧密的联系。
EMll10-2-2104几乎处处引用ACI 318~但不重复叙述。
所以在用EMll10-2-2104时~要同时放一本ACI 138规范在手边一起用。
EMll10-2-2104反映水工结构特殊性是采用水力系数“Hƒ,l.3,对直接受拉的构件万Hƒ,l.65,~在条文说明中指出H,1.3的来历是:在过去使用允许应力设计方法时~水工结构中的混凝土构件的允许应力从0.45ƒc’'减至0.35ƒc’'而0.45/0.35大约是Hƒ值?3。
美规钢结构设计手册
美国规范中的钢结构设计手册是指《美国钢结构设计手册》(AISC Manual)和《美国建筑规范》(IBC)等文件。
钢结构设计
手册是针对在建筑和工程领域中使用钢结构的设计师、工程师和建
筑师编写的一本权威指南。
这些手册包含了关于钢结构设计的详细
规范、标准和建议,旨在确保建筑物的结构安全、稳定和符合相关
法规。
在美国,钢结构设计手册通常由美国钢结构协会(AISC)发布。
这些手册涵盖了钢结构设计的各个方面,包括材料性能、构件设计、连接设计、焊接和螺栓连接、防火设计等内容。
此外,手册还包括
了钢结构设计的相关规范和标准,例如ASCE、AWS、ASTM等。
钢结构设计手册中的内容通常是根据工程实践和相关研究成果
编写的,因此具有较高的权威性和实用性。
设计师和工程师在进行
钢结构设计时,可以根据这些手册提供的指导和规范进行设计计算
和结构分析,以确保所设计的钢结构满足安全和性能要求。
除了AISC手册之外,美国建筑规范(IBC)也包含了关于钢结
构设计的规定和要求。
这些规定通常涉及到建筑物的结构等级、荷
载标准、设计方法等方面的内容,设计师需要结合这些规定来进行
钢结构设计,以确保建筑物的结构安全可靠。
总之,美国规范中的钢结构设计手册是针对钢结构设计师和工
程师编写的权威指南,包含了丰富的规范、标准和建议,用于指导
钢结构设计的实践工作,确保所设计的钢结构满足安全和性能要求。
国防部各部门负责审计的副部长(审计长/首席财务官)审计长首席助理(Principal Deputy Under Secretary of Defense (Comptroller))项目分析评估主任(Director for Program Analysis and Evaluation)负责采办、技术与后勤的副部长(Under Secretary of Defense for Acquisition, Technology and Logistics)国防研究与工程局局长(Director of Defense Research and Engineering)负责采办与技术的副部长助理(Deputy Under Secretary of Defense (Acquisition and Technology))负责后勤与物资战备的副部长助理(Deputy Under Secretary of Defense (Logistics and Material Readiness))负责三防(核生化)项目的国防部长助手(Assistant to the Secretary of Defense (Nuclear and Chemical and Biological Defense Programs))弱小企业综合利用主任(Director of Small and Disadvantaged Business Utilization)负责采办改革的副部长助理(Deputy Under Secretary of Defense (Acquisition Reform))负责先进系统与概念的副部长助理(Deputy Under Secretary of Defense (Advanced Systems and Concepts))负责环境安全的副部长助理(Deputy Under Secretary of Defense (Environmental Security))负责工业事务的副部长助理(Deputy Under Secretary of Defense (Industrial Affairs))负责各种设施的副部长助理(Deputy Under Secretary of Defense (Installations))负责科学技术的副部长助理(Deputy Under Secretary of Defense (Science and Technology)))Under Secretary of Defense for Personnel and Readiness负责人事与战备的副部长(.负责部队管理政策的助理部长(Assistant Secretary of Defense (Force Management Policy))负责卫生事务的助理部长(Assistant Secretary of Defense (Health Affairs))负责后备队的助理部长(Assistant Secretary of Defense (Reserve Affairs))负责战备的副部长助理(Deputy Under Secretary of Defense (Readiness))负责项目集成的副部长助理(Deputy Under Secretary of Defense (Program Integration))负责规划的副部长助理(Deputy Under Secretary of Defense (Planning))负责政策的副部长(Under Secretary of Defense for Policy)负责政策的副部长首席助理(Principal Deputy Under Secretary of Defense (Policy))负责国际安全事务的助理部长(Assistant Secretary of Defense (International Security Affairs))负责战略与缓解威慑的助理部长(Assistant Secretary of Defense (Strategy and Threat Reduction))负责特种作战与低强度冲突的助理部长(Assistant Secretary of Defense (Special Operations and Low-Intensity Conflict))负责政策支持的副部长助理(Deputy Under Secretary of Defense (Policy Support))负责科技安全政策的副部长助理(Deputy Under Secretary of Defense (Technology Security Policy))北约美国代表团防务顾问,Defense Advisor, U.S. Mission NATO负责情报的副部长(Under Secretary of Defense for Intelligence)负责指挥、控制、通讯与情报(C3I)的助理部长(Assistant Secretary of Defense (Command, Control, Communication s, and Intelligence))负责法律事务的助理部长(Assistant Secretary of Defense (Legislative Affairs))负责公共事务的助理部长(Assistant Secretary of Defense (Public Affairs)))of Defense Department General Counsel of the 总法律顾问(.作战试验与论证局局长(Director of Operational Test and Evaluation)负责情报监督的副部长助理(Assistant to the Secretary of Defense (Intelligence Oversight))行政管理局局长(Director of Administration and Management)基本评估办公室主任(Director of Net Assessment)总监察长办公室国防部总监察长(Inspector General of the Department of Defense): 汤马斯·金波第一副总检察长(Principal Deputy Inspector General)条令局局长(Dean of Instruction)就业机会平等委员对(EEO)高级军事官员(Senior Military Officer)负责行政管理的总监察长助理(Assistant Inspector General for Administration and Management)负责在国会等机构任联络官的总监察长助理(Assistant Inspector General,Congressional/Committee Liaison)总顾问(General Counsel)负责审计的副总监察长(Deputy Inspector General for Auditing)负责审计的总监察长第一助理(Principal Assistant Inspector General (Audit))负责审计的总监察长助理(Assistant Inspector General (Auditing))负责审计的总监察长副助理(Deputy Assistant Inspector General (Auditing))各军种各审计局(Service Audit Agencies)负责政策与监督的副总监察长(Deputy Inspector General for Policy and Oversight))Assistant Inspector General (Audit Policy Oversight)(负责审计政策监督的总监察长助理.负责审查与评估的总监察长助理(Assistant Inspector General (Inspection & Evaluations))负责调查政策和监督的总监察长助理(Assistant Inspector General (Investigation Policy & Oversight))热线处处长(Director of Hotline})反诈骗处处长(Director of ADU)定量方法处处长(Director of QMD)反旅行诈骗处处长(TAD)?数据挖掘处处长(Director of Data Mining)各军种总监察长(Service Inspector Generals)负责调查的副总监察长(Deputy Inspector General for Investigations)高级官员调查处处长(Director for Investigations of Senior Officials)军人赔偿调查处处长(Director for Military Reprisal Investigation)平民赔偿调查处处长(Director for Civilian Reprisal Investigation)国防刑事调查处处长(Director for enefense Criminal Investigative Service)国防刑事调查处副处长(Deputy Director for Defense Criminal Investigative Service)美国陆军犯罪调查司令部(en:U.S. Army Criminal Investigation Command)海军罪案调查处(en:Naval Criminal Investigative Service)空军特别调查处(en:Air Force Office of Special Investigations)负责情报的副总监察长(Deputy Inspector General for Intelligence)负责情报审查的总监察长副助理(Deputy Assistant Inspector General (Intelligence Audits))负责情报评估的总监察长副助理(Deputy Assistant Inspector General (Intelligence Evaluation)))en:National Reconnaissance Office国家侦察局(.国防情报局(enefense Intelligence Agency)国家安全局(en:National Security Agency)国家地理空间情报局(en:National Geospatial-Intelligence Agency)参谋长联席会议及其成员参谋长联系会议以及成员组织结构图参谋长联席会议主席: 海军上将迈克尔·马伦参谋长联席会议副主席: 海军陆战队上将詹姆斯·卡特莱特海军作战部长: 海军上将加里·罗海德陆军总参谋长: 陆军上将乔治·凯西空军总参谋长: 空军上将诺顿·施瓦兹海军陆战队总司令: 海军陆战队上将詹姆斯·康威联合参谋部参谋长联席会议主席助理(Assistant to the Chairman)高级军事顾问(Senior Enlisted Advisor of the Chairman)联合参谋部主任(Director, the Joint Staff)人力与人事部(J-1)(Manpower and Personnel)情报部(J-2)(Joint Staff Intelligence)作战部(J-3)(Operations)后勤部(J-4)(Logistics))Strategic Planning and Policy((J-5) 战略计划与政策部.指挥、控制通信与计算机系统部(J-6)(Command, Control, Communication s and Computer Systems)作战计划与联合部队发展部(原为作战计划与协调部)(J-7)(Operational Plans and Interoperability)部队结构、资源与评估部(J-8)(Force Structure Resources and Assessment)管理部(J-9)(Directorate of Management)海军部(Department of the Navy)海军部长Department of the Navy海军部副部长海军作战部部长海军作战部副部长海军人事局军医局海军海上系统指挥部海军空中系统指挥部海军设施工程指挥部海军补给系统指挥部空间与海军武器系统指挥部战略系统指挥部美国海军军官学校教育与训练局局长气象与海洋科学指挥部法务司令部.海军天文台海军打击与航空战术中心海军安全中心海军安全大队司令部海军后备队作战测试评估部队海军特种作战司令部美国海军中央司令部海军网络战司令部[5]美国驻欧海军军事海运司令部美国舰队司令部美国太平洋舰队海军设施司令部海军核动力计划局局长海军陆战队总司令海军陆战队总司令助理情报部长法务部长总审计长行政助理弱小企业综合利用主任负责研究、发展与采购的海军部长助理.海军研究办公室负责人力与后备队事务的海军部长助理负责财务管理与审计的海军部长助理负责设施与环境的海军部长助理海军部总顾问首席信息官海军军法署署长海军总监察长项目评估处处长陆军部(Department of the Army)陆军部部长(Secretary of the Army)陆军部副部长(Under Secretary of the Army)陆军总监察长(Inspector General of the Army)陆军总审计长(Army Auditor General)副部长助理(Deputy Under Secretary of the Army)负责商业转型的陆军部副部长助理(Deputy Under Secretary of the Army for Business Transformation)立法联络局局长(Chief, Legislative Liaison)公共事务局局长(Chief, Public Affairs)弱小企业综合利用办公室(Small and Disadvantaged Business Utilization Office)陆军总顾问(General Counsel of the Army))Administrative Assistant to the Secretary of the Army陆军部长行政助理(.负责采办、后勤与技术的助理部长(Assistant Secretary of the Army (Acquisition, Logistics and Technology)负责民用工程的助理部长(Assistant Secretary of the Army (Civil Works))负责财务管理与审计的助理部长(Assistant Secretary of the Army (Financial Management and Comptroller))负责设施与环境的助理部长(Assistant Secretary of the Army (Installations and Environment))负责人力与后备役事务的助理部长(Assistant Secretary of the Army (Manpower and Reserve Affairs))首席情报官(Chief Information Officer)美国陆军网络事业技术司令部/第9通信司令部(United States Army Network Enterprise Technology Command/9th Signal Command)陆军参谋部主任(Director, Army Staff)美国陆军军官学校(The en:United States Military Academy)美国陆军情报与安全司令部(United States Army Intelligence and Security Command)美国陆军测试与评估司令部(United States Army Test and Evaluation Command)美国陆军刑事调查司令部(United States Army Criminal Investigation Command)美国陆军医务司令部(United States Army Medical Command)美国陆军华盛顿卫戍区(United States Army Military District of Washington)美国陆军工程兵部队(United States Army Corps of Engineers)美国陆军后备队司令部(United States Army Reserve Command)美国陆军采办支持中心(United States Army Acquisition Support Center)陆军参谋长(Chief of Staff of the Army))Vice Chief of Staff of the Army陆军第一副参谋长(.陆军医务部部长(Surgeon General of the Army)国民警卫队局局长(Chief, National Guard Bureau)陆军后备队局局长(Chief, Army Reserve)总法律顾问(Judge Advocate General)牧师长(Chief of Chaplains)陆军总军士长(en:Sergeant Major of the Army)负责后勤的副参谋长(Deputy Chief of Staff (Logistics))(G-4)工程兵主任(Chief of Engineers)负责项目的副参谋长(Deputy Chief of Staff (Programs))(G-8)负责设施管理的助理参谋长(Assistant Chief of Staff, Installation Management)美国陆军设施管理司令部(United States Army Installation Management Command)负责人事的副参谋长(Deputy Chief of Staff (Manpower))(G-1)负责情报的副参谋长(Deputy Chief of Staff (Intelligence))(G-2)负责计划、作战与转型的副参谋长(Deputy Chief of Staff (Plans, Operations and Transformation))(G-3/5/7)美国陆军训练与条令司令部(en:United States Army Training and Doctrine Command)美国陆军装备司令部(en:United States Army Materiel Command)美国陆军司令部(en:United States Army Forces Command)美国陆军中央司令部(United States Army Central)美国陆军欧洲司令部(United States Army Europe)美国陆军北方司令部(United States Army North)美国陆军南方司令部(United States Army South))United States Army Pacific美国陆军太平洋司令部(.美国陆军特种作战司令部(United States Army Special Operations Command)军事地面部署与配给司令部(Military Surface Deployment and Distribution Command)美国陆军太空、火箭及防卫司令部/陆军战略司令部(United States Army Space and Missile and Defense Command/Army Strategic Command)第8军(Eighth Army)空军部(Department of the Air Force)空军部长(en:Secretary of the Air Force)空军部副部长(Under Secretary of the Air Force)行政助理(Administrative Assistant)审计长(Auditor General)负责采办的助理部长(Assistant Secretary of the Air Force (Acquisition))通信处处长(Director of Communication)负责财务管理与审计的助理部长(Assistant Secretary of the Air Force (Financial Management and Comptroller)}负责设施、环境与后勤的助理部长(Assistant Secretary of the Air Force (Installations, Environment and Logistics)负责国际事务的副部长助理(Deputy Under Secretary of the Air Force (International Affairs))负责人力与后备队事务的助理部长(Assistant Secretary of the Air Force (Manpower and Reserve Affairs))公共事务处处长(Director of Public Affairs)立法联络局局长(Director, Legislative Liaison))Inspector General of the Air Force空军总监查长(.空军总顾问(General Counsel of the Air Force)战斗集成局局长(Chief of Warfighting Integration)首席信息官(Chief Information Officer)空军军史局局长(Air Force Historian)测试与评估局局长(Director of Test and Evaluation)空军首席科学家(Chief Scientist of the Air Force)空军参谋部组织结构图空军参谋长(Chief of Staff)空军副参谋长Vice Chief of Staff)空军总军士长(Chief Master Sergeant of the Air Force)负责人事的副参谋长(Deputy Chief of Staff (Personnel))(A1)负责情报、监视与侦查的副参谋长(Deputy Chief of Staff (Intelligence, Surveillance and Reconnaissance))(A2)负责航空航天与信息作战、计划、需求的副参谋长(Deputy Chief of Staff (Air, Space and Information Operations, Plans and Requirements) (A3/5))负责后勤、设施以及任务支持的副参谋长(Deputy Chief of Staff (Logistics, Installations and Mission Support))(A4/7)负责战略计划与项目的副参谋长(Deputy Chief of Staff (Strategic Plans and Programs))(A8)学术分析、评估与教程处处长(Director for Studies Analyses, Assessments and Lessons Learned)(A9)牧师长(Chief of Chaplains))Judge Advocate General总法律顾问(.空军后备队局局长(Chief, Air Force Reserve)安全局局长(Chief of Safety空军军医局局长(Surgeon General of the Air Force)空军国民警卫队局局长(Director, Air National Guard)空军战斗司令部(Air Combat Command)空军教育与训练司令部(Air Education and Training Command)空军装备司令部(Air Force Material Command)空军后备队司令部(Air Force Reserve Command)空军航天司令部(Air Force Space Command)空军特种作战司令部(Air Force Special Operations Command)空军信息司令部(Air Force Cyber Command)空军机动司令部(Air Mobility Command)空军太平洋司令部(Pacific Air Forces)空军欧洲司令部(U.S. Air Forces in Europe)。
水工钢筋混凝土结构强度设计规范( EM 1110-2-2104)2003年修订版美国陆军工程师团工程师手册编号: 1110-2-2104 2003年8月20日修订工程与设计水工钢筋混凝土结构强度设计规范1.本次修订是针对1992年6月30日颁布EM 1110-2-2104 规范中第3章的正文和图表。
此外,还增加了第3章的条文说明。
2.在发布之前作此修订作此修订,供参考之用。
米歇尔.J.沃尔什(主编)美国陆军工程师团目录第一章前言 (5)1-1 用途 (5)1-2 适用性 (5)1-3 参考文献 (5)1-4 背景 (6)1-5 一般规定 (7)1-6 范围 (7)1-7 计算机程序 (7)1-8 废除 (8)第二章配筋的细部设计 (9)2-1 概述 (9)2-2 质量 (9)2-3 锚固、钢筋锚固和接头 (9)2-4 吊钩与弯钩 (9)2-5 钢筋间距 (9)2-6 钢筋的混凝土保护 (10)2-7 搭接 (10)2-8 温度和收缩钢筋 (11)第三章强度及适用性 (12)3-1 总则 (12)3-2 稳定性分析 (12)3-3 强度要求 (13)3-4 钢筋的设计强度 (16)3-5 最大受拉钢筋 (16)3-6 偏差与开裂的控制 (17)3-7 墙的最小厚度 (17)第三章强度及适用性条文说明 (18)C.3-1 总则 (18)C.3-2 稳定性分析 (20)C.3-3强度要求 (21)第四章弯曲和轴向荷载 (25)4-1 设计假定和一般规定 (25)4-2 受弯和受压能力——仅对受拉钢筋 (25)4-3 受弯和受压能力——受拉和受压钢筋 (27)4-4 受弯和受拉能力 (28)4-5 双轴弯曲和轴向荷载 (29)第五章剪力 (31)5-1 抗剪强度 (31)5-2 特殊直线构件的抗剪强度 (31)5-3 弧形构件的抗剪强度 (32)5-4 经验方法 (32)附件 A 符号 (33)附件 B 弯曲荷载和轴向荷载的公式推导 (34)附录 C 验证实例 (42)附录 D 设计举例 (47)附录 E 相互作用图 (55)附录 F 具有双向弯曲的轴向荷载的实例 (57)第一章前言1-1 用途本手册采用强度设计法为水工钢筋混凝土结构设计提供指南。
EM1110-2-210430June1992 US Army Corpsof EngineersENGINEERING AND DESIGNStrength Designfor Reinforced-ConcreteHydraulic StructuresDEPARTMENT OF THE ARMY EM1110-2-2104US Army Corps of EngineersCECW-ED Washington,DC20314-1000Engineer ManualNo.1110-2-210430June1992Engineering and DesignSTRENGTH DESIGN FORREINFORCED-CONCRETE HYDRAULIC STRUCTURES1.Purpose.This manual provides guidance for designing reinforced concrete hydraulic structures by the strength-design method.Plain concrete and prestressed concrete are not covered in this manual.2.Applicability.This manual applies to all HQUSACE/OCE elements,major subordinate commands,districts,laboratories,and field operating activities having civil works responsibilities.FOR THE COMMANDER:Colonel,Corps of EngineersChief of Staff______________________________________________________________________________ This manual supersedes ETL1110-2-312,Strength Design Criteria for Reinforced Concrete Hydraulic Structures,dated10March1988and EM1110-2-2103,Details of Reinforcement-Hydraulic Structures,dated21May1971.EM1110-2-210430Jun92CHAPTER1INTRODUCTION1-1.PurposeThis manual provides guidance for designing reinforced-concrete hydraulic structures by the strength-design method.1-2.ApplicabilityThis manual applies to all HQUSACE/OCE elements,major subordinate commands, districts,laboratories,and field operating activities having civil works responsibilities.1-3.Referencesa.EM1110-1-2101,Working Stresses for Structural Design.b.EM1110-2-2902,Conduits,Culverts,and Pipes.c.CW-03210,Civil Works Construction Guide Specification for Steel Bars,Welded Wire Fabric,and Accessories for Concrete Reinforcement.d.American Concrete Institute,"Building Code Requirements and Commentary for Reinforced Concrete,"ACI318,Box19150,Redford Station, Detroit,MI48219.e.American Concrete Institute,"Environmental Engineering Concrete Structures,"ACI350R,Box19150,Redford Station,Detroit,MI48219.f.American Society for Testing and Materials,"Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement,"ASTMA615-89,1916Race St.,Philadelphia,PA19103.g.American Welding Society,"Structural Welding Code-Reinforcing Steel,"AWS D1.4-790,550NW Le Jeune Rd.,P.O.Box351040,Miami,FL33135.h.Liu,Tony C.1980(Jul)."Strength Design of Reinforced Concrete Hydraulic Structures,Report1:Preliminary Strength Design Criteria," Technical Report SL-80-4,US Army Engineer Waterways Experiment Station,3909Halls Ferry Road,Vicksburg,MS39180.i.Liu,Tony C.,and Gleason,Scott.1981(Sep)."Strength Design of Reinforced Concrete Hydraulic Structures,Report2:Design Aids for Use inthe Design and Analysis of Reinforced Concrete Hydraulic Structural Members Subjected to Combined Flexural and Axial Loads,"Technical Report SL-80-4,US Army Engineer Waterways Experiment Station,3909Halls Ferry Road, Vicksburg,MS39180.EM1110-2-210430Jun92j.Liu,Tony C.1981(Sep)."Strength Design of Reinforced Concrete Hydraulic Structures,Report3:T-Wall Design,"Technical Report SL-80-4,US Army Engineer Waterways Experiment Station,3909Halls Ferry Road, Vicksburg,MS39180.1-4.Backgrounda.A reinforced concrete hydraulic structure is one that will be subjected to one or more of the following:submergence,wave action,spray, chemically contaminated atmosphere,and severe climatic conditions.Typical hydraulic structures are stilling-basin slabs and walls,concrete-lined channels,portions of powerhouses,spillway piers,spray walls and training walls,floodwalls,intake and outlet structures below maximum high water and wave action,lock walls,guide and guard walls,and retaining walls subject to contact with water.b.In general,existing reinforced-concrete hydraulic structures designed by the Corps,using the working stress method of EM1110-1-2101,have held up extremely well.The Corps began using strength design methods in1981 (Liu1980,1981and Liu and Gleason1981)to stay in step with industry, universities,and other engineering organizations.ETL1110-2-265,"Strength Design Criteria for Reinforced Concrete Hydraulic Structures,"dated15September1981,was the first document providing guidance issued by the Corps concerning the use of strength design methods for hydraulic structures. The labor-intensive requirements of this ETL regarding the application of multiple load factors,as well as the fact that some load-factor combination conditions resulted in a less conservative design than if working stress methods were used,resulted in the development of ETL1110-2-312,"Strength Design Criteria for Reinforced Concrete Hydraulic Structures,"dated10March 1988.c.The revised load factors in ETL1110-2-312were intended to ensure that the resulting design was as conservative as if working stress methods were used.Also,the single load factor concept was introduced.The guidance in this ETL differed from ACI318Building Code Requirements and Commentaryfor Reinforced Concrete primarily in the load factors,the concrete stress-strain relationship,and the yield strength of Grade60reinforcement.ETL1110-2-312guidance was intended to result in designs equivalent to those resulting when working stress methods were used.d.Earlier Corps strength design methods deviated from ACI guidance because ACI318includes no provisions for the serviceability needs ofhydraulic structures.Strength and stability are required,but serviceability in terms of deflections,cracking,and durability demand equal consideration. The importance of the Corps’hydraulic structures has caused the Corps to move cautiously,but deliberately,toward exclusive use of strength design methods.e.This manual modifies and expands the guidance in ETL1110-2-312with an approach similar to that of ACI350R-89.The concrete stress-strain relationship and the yield strength of Grade60reinforcement given in ACI318 are adopted.Also,the load factors bear a closer resemblance to ACI318andare modified by a hydraulic factor,H,to account for the serviceabilityfneeds of hydraulic structures.f.As in ETL1110-2-312,this manual allows the use of a single load factor for both dead and live loads.In addition,the single load factor method is required when the loads on the structural component includereactions from a soil-structure stability analysis.1-5.General RequirementsReinforced-concrete hydraulic structures should be designed with the strength design method in accordance with the current ACI318,except as hereinafter specified.The notations used are the same as those used in the ACI318Code and Commentary,except those defined herein.1-6.Scopea.This manual is written in sufficient detail to not only provide the designer with design procedures,but to also provide examples of their application.Also,derivations of the combined flexural and axial load equations are given to increase the designer’s confidence and understanding.b.General detailing requirements are presented in Chapter 2.Chapter3presents strength and serviceability requirements,including load factors and limits on flexural reinforcement.Design equations for members subjected to flexural and/or axial loads(including biaxial bending)are given in Chapter 4.Chapter5presents guidance for design for shear,including provisions for curved members and special straight members.The appendices include notation,equation derivations,and examples.The examples demonstrate:load-factor application,design of members subjected to combined flexural and axial loads,design for shear,development of an interaction diagram,and design of members subjected to biaxial bending.puter ProgramsCopies of computer programs,with documentation,for the analysis and designof reinforced-concrete hydraulic structures are available and may be obtained from the Engineering Computer Programs Library,US Army Engineer Waterways Experiment Station,3909Halls Ferry Road,Vicksburg,Mississippi39180-6199. For design to account for combined flexural and axial loads,any procedurethat is consistent with ACI318guidance is acceptable,as long as the load factor and reinforcement percentage guidance given in this manual is followed. 1-8.RecissionCorps library computer program CSTR(X0066),based on ETL1110-2-312,is replaced by computer program CASTR(X0067).Program CASTR is based on this new engineer manual.CHAPTER2DETAILS OF REINFORCEMENT2-1.GeneralThis chapter presents guidance for furnishing and placing steel reinforcement in various concrete members of hydraulic structures.2-2.QualityThe type and grade of reinforcing steel should be limited to ASTM A615(Billet Steel),Grade60.Grade40reinforcement should be avoided since its availability is limited and designs based on Grade40reinforcement,utilizing the procedures contained herein,would be overly conservative.Reinforcement of other grades and types permitted by ACI318may be permitted for special applications subject to the approval of higher authority.2-3.Anchorage,Bar Development,and SplicesThe anchorage,bar development,and splice requirements should conform toACI318and to the requirements presented below.Since the development length is dependent on a number of factors such as concrete strength and barposition,function,size,type,spacing,and cover,the designer must indicate the length of embedment required for bar development on the contract drawings. For similar reasons,the drawings should show the splice lengths and special requirements such as staggering of splices,etc.The constructionspecifications should be carefully edited to assure that they agree with reinforcement details shown on the drawings.2-4.Hooks and BendsHooks and bends should be in accordance with ACI318.2-5.Bar Spacinga.Minimum.The clear distance between parallel bars should not beless than1-1/2times the nominal diameter of the bars nor less than1-1/2times the maximum size of coarse aggregate.No.14and No.18bars should not be spaced closer than6and8inches,respectively,center to center.When parallel reinforcement is placed in two or more layers,theclear distance between layers should not be less than6inches.In horizontal layers,the bars in the upper layers should be placed directly over the barsin the lower layers.In vertical layers,a similar orientation should be used.In construction of massive reinforced concrete structures,bars in a layer should be spaced12inches center-to-center wherever possible tofacilitate construction.b.Maximum.The maximum center-to-center spacing of both primary and secondary reinforcement should not exceed18inches.EM1110-2-210430Apr922-6.Concrete Protection for ReinforcementThe minimum cover for reinforcement should conform to the dimensions shown below for the various concrete sections.The dimensions indicate the clear distance from the edge of the reinforcement to the surface of the concrete.MINIMUM CLEAR COVER OF CONCRETE SECTION REINFORCEMENT,INCHESUnformed surfaces in contact with foundation4Formed or screeded surfaces subject to cavitation orabrasion erosion,such as baffle blocks and stillingbasin slabs6Formed and screeded surfaces such as stilling basinwalls,chute spillway slabs,and channel liningslabs on grade:Equal to or greater than24inches in thickness4Greater than12inches and less than24inchesin thickness3Equal to or less than12inches in thicknesswill be in accordance with ACI Code318.NOTE.In no case shall the cover be less than:1.5times the nominal maximum size of aggregate,or2.5times the maximum diameter of reinforcement.2-7.Splicinga.General.Bars shall be spliced only as required and splices shall be indicated on contract drawings.Splices at points of maximum tensilestress should be avoided.Where such splices must be made they should be staggered.Splices may be made by lapping of bars or butt splicing.pped Splices.Bars larger than No.11shall not be lap-spliced. Tension splices should be staggered longitudinally so that no more than halfof the bars are lap-spliced at any section within the required lap length.If staggering of splices is impractical,applicable provisions of ACI318should be followed.c.Butt Splices(1)General.Bars larger than No.11shall be butt-spliced.BarsNo.11or smaller should not be butt-spliced unless clearly justified bydesign details or economics.Due to the high costs associated with butt splicing of bars larger than No.11,especially No.18bars,carefulEM1110-2-210430Apr92consideration should be given to alternative designs utilizing smaller bars. Butt splices should be made by either the thermit welding process or an approved mechanical butt-splicing method in accordance with the provisions contained in the following paragraphs.Normally,arc-welded splices shouldnot be permitted due to the inherent uncertainties associated with welding reinforcement.However,if arc welding is necessary,it should be done in accordance with AWS D1.4,Structural Welding Code-Reinforcing Steel.Butt splices should develop in tension at least125percent of the specified yield ,of the bar.Tension splices should be staggered longitudinally strength,fyat least5feet for bars larger than No.11and a distance equal to the required lap length for No.11bars or smaller so that no more than half ofthe bars are spliced at any section.Tension splices of bars smaller than No.14should be staggered longitudinally a distance equal to the required lap length.Bars Nos.14and18shall be staggered longitudinally,a minimum of5feet so that no more than half of the bars are spliced at any one section.(2)Thermit Welding.Thermit welding should be restricted to bars conforming to ASTM A615(billet steel)with a sulfur content not exceeding0.05percent based on ladle analysis.The thermit welding process should bein accordance with the provisions of Guide Specification CW-03210.(3)Mechanical Butt Splicing.Mechanical butt splicing shall be made by an approved exothermic,threaded coupling,swaged sleeve,or other positive connecting type in accordance with the provisions of Guide SpecificationCW-03210.The designer should be aware of the potential for slippage in mechanical splices and insist that the testing provisions contained in this guide specification be included in the contract documents and utilized in the construction work.2-8.Temperature and Shrinkage Reinforcementa.In the design of structural members for temperature and shrinkage stresses,the area of reinforcement should be0.0028times the gross cross-sectional area,half in each face,with a maximum area equivalent toNo.9bars at12inches in each face.Generally,temperature and shrinkage reinforcement for thin sections will be no less than No.4bars at12inchesin each face.b.Experience and/or analyses may indicate the need for an amount of reinforcement greater than indicated in paragraph2-8a if the reinforcement is to be used for distribution of stresses as well as for temperature and shrinkage.c.In general,additional reinforcement for temperature and shrinkage will not be needed in the direction and plane of the primary tensile reinforcement when restraint is accounted for in the analyses.However,the primary reinforcement should not be less than that required for shrinkage and temperature as determined above.2-3EM 1110-2-2104Change 120 Aug 033-3. Required Strengtha. General. Reinforced concrete hydraulic structures and hydraulic structural members shall be designed to have a required strength, , to resist dead and live loads in accordance with the following provisions. The hydraulic factor is to be applied in the determination of required nominal strength for all combinations of axial load, moments and shear (diagonal tension). In particular, the shear reinforcement should be designed for the excess shear, the difference between the hydraulic factored ultimate shear force, , and the shear strength provided by the concrete, , where h U the uh V c V φφ is the concrete resistance factor for shear design. Therefore, the design shear for the reinforcement, , is given bys V ⎟⎟⎠⎞⎜⎜⎝⎛−≥φφc uh s V V V 3.1 (3.1)b. Single Load Factor Method. In the single load factor method, both the dead and live loads are multiplied by the same load factor.()L D U +=7.1 (3.2)whereU = factored loads for a nonhydraulic structureD = internal forces and moments from dead loadsL = internal forces and moments from live loads()[]L D H U f h +=7.1 (3.3)where= factored loads for a hydraulic structure h U = hydraulic factor.f HFor hydraulic structures the basic load factor, 1.7, is multiplied by a hydraulic factor, , f H where , except for members in direct tension. For members in direct tension, = 1.65. Other values may be used subject to consultation with and approval from CECW-ED. 3.1=f H f HAn exception to the above occurs when resistance to the effects of unusual or extreme loads such as wind, earthquake or other forces of short duration and low probability of occurrence are included in the design. For those cases, one of the following loading combinations should be used:3-2EM 1110-2-210430Jun 92CHAPTER 4FLEXURAL AND AXIAL LOADS4-1.Design Assumptions and General Requirementsa.The assumed maximum usable strain εc at the extreme concretecompression fiber should be equal to 0.003in accordance with ACI 318.b.Balanced conditions for hydraulic structures exist at a crosssection when the tension reinforcement ρb reaches the strain corresponding to its specified yield strength f y just as the concrete in compression reaches its design strain εc .c.Concrete stress of 0.85f ′c should be assumed uniformly distributedover an equivalent compression zone bounded by edges of the cross section and a straight line located parallel to the neutral axis at a distance a =β1c from the fiber of maximum compressive strain.d.Factor β1should be taken as specified in ACI 318.e.The eccentricity ratio e ′/d should be defined as (4-11)*e ′d M u /P u dh /2d where e ′=eccentricity of axial load measured from the centroid of thetension reinforcement4-2.Flexural and Compressive Capacity -Tension Reinforcement Onlya.The design axial load strength φP n at the centroid of compressionmembers should not be taken greater than the following:(4-12)φP n (max)0.8φ0.85f ′c (A g ρbd )f y ρbd b.The strength of a cross section is controlled by compression if the load has an eccentricity ratio e ′/d no greater than that given by Equation 4-3and by tension if e ′/d exceeds this value.______________________________________________________________________________*P u is considered positive for compression and negative for tension.EM 1110-2-210430Jun 92(4-13)e ′b d 2k b k 2b 2k b ρf y0.425f ′c where(4-14)k b βE εE s εc f yc.Sections controlled by tension should be designed so(4-15)φP n φ0.85f ′c k u ρf y bd and(4-16)φM n φ0.85f ′c k u ρf ye′d 1bd 2where k u should be determined from the following equation:(4-17)k u1d.Sections controlled by compression should be designed so(4-18)φP n φ0.85f ′c k u ρf s bdand(4-19)φM n φf′c k u ρf s e ′d 1bd 2EM 1110-2-210430Jun 92where(4-20)f su ≥f y and k u should be determined from the following equation by direct or iterative method:(4-21)k 3u 1k 2u E s εc ρe ′0.425f ′c d k uβ1E s εc ρe ′0.425f ′c d 0e.The balanced load and moment can be computed using eitherEquations 4-5and 4-6or Equations 4-8and 4-9with k u =k b ande ′b e ′d =d.The values of e ′b /d and k b are given by Equations 4-3and 4-4,respectively.4-3.Flexural and Compressive Capacity -Tension and Compression Reinforcementa.The design axial load strength φP n of compression members should not be taken greater than the following:(4-22)φP n (max)0.8φ0.85f ′c A g ρρ′bd f y ρρ′bdb.The strength of a cross section is controlled by compression if the load has an eccentricity ratio e ′/d no greater than that given by Equation 4-13and by tension if e ′/d exceeds this value.(4-23)e′b d 2k bk 2bc 2k b ρf y 0.425f ′c ρ′f ′s 0.425f ′c The value k b is given in Equation 4-4and f ′s is given in Equation 4-16with k u =k b .c.Sections controlled by tension should be designed soEM 1110-2-210430Jun 92(4-24)φP n φ0.85f ′c k u ρ′f ′s ρf y bd and(4-25)φM n φf ′c k u ρ′f ′s ρf ye ′d 1bd 2where(4-26)f ′sE s εy ≤f y and k u should be determined from the following equation by direct or iterative methods:(4-27)k 3u 1β1k 2u f y 0.425f ′c ρd ′d 1ρe ′d 2β11k u f y β10.425f ′cd ′d 1ρe ′d 0d.Sections controlled by compression should be designed so(4-28)φP n φ0.85f ′c k u ρ′f ′s ρf s bdEM 1110-2-210430Jun 92and(4-29)φM nφ0.85f ′c k uρ′f ′s ρf se ′d1bd 2where(4-30)fsu≥f yand(4-31)f ′su≤fyand k u should bedetermined from the following equation by direct or iterative methods:(4-32)k 3u 21k 2u E sεc0.425f ′cρρ′ρ′1k uβ1E sεc 0.425f ′cρd ′d1Design for flexure utilizing compression reinforcement is discouraged.However,if compression reinforcement is used in members controlled bycompression,lateral reinforcement shall be provided in accordance with the ACI Building Code.e.The balanced load and moment should be computed usinge ′b Equations 4-14,4-15,4-16,and 4-17with k u =k b and e ′d =.The values of e ′b /d and k b are given by Equations 4-13and 4-4,respectively.4-4.Flexural and Tensile Capacity a.The design axial strength φP n of tensile members should not be takengreater than the following:EM 1110-2-210430Jun 92(4-33)φP n (max)0.8φρρ′f y bdb.Tensile reinforcement should be provided in both faces of the memberif the load has an eccentricity ratio e ′/d in the following range:1≥e ′d≥0The section should be designed so(4-24)φP nφρf yρ′f ′s bdand(4-25)φM nφρf yρ′f ′s1e ′d bd 2with(4-26)f ′s f≥f yand k u should be determined from the following equation:(4-27)k uc.Sections subjected to a tensile load with an eccentricity ratioe ′/d <0should be designed using Equations 4-5and 4-6.The value of k u is(4-28)k u1d.Sections subject to a tensile load with an eccentricity ratioe ′/d <0should be designed using Equations 4-14,4-15,4-16,and 4-17if A ′s >0and c >d ′.4-5.Biaxial Bending and Axial Loada.Provisions of paragraph 4-5shall apply to reinforced concrete members subjected to biaxial bending.b.For a given nominal axial load P n =P u /φ,the followingnondimensional equation shall be satisfied:(4-29)(M nx /M ox )K(M ny /M oy )K ≤1.0whereM nx ,M ny =nominal biaxial bending moments with respect to the x and yaxes,respectively M ox ,M oy =uniaxial nominal bending strength at P n about the x and yaxes,respectivelyK = 1.5for rectangular members= 1.75for square or circular members= 1.0for any member subjected to axial tensionc.M ox and M oy shall be determined in accordance with paragraphs 4-1through 4-3.CHAPTER 5SHEAR5-1.Shear StrengthThe shear strength V c provided by concrete shall be computed in accordance with ACI 318except in the cases described in paragraphs 5-2and 5-3.5-2.Shear Strength for Special Straight MembersThe provisions of this paragraph shall apply only to straight members of box culvert sections or similar structures that satisfy the requirements of 5-2.a and 5-2.b.The stiffening effects of wide supports and haunches shall beincluded in determining moments,shears,and member properties.The ultimate shear strength of the member is considered to be the load capacity that causes formation of the first inclined crack.a.Members that are subjected to uniformly (or approximately uniformly)distributed loads that result in internal shear,flexure,and axial compression (but not axial tension).b.Members having all of the following properties and constructiondetails.(1)Rectangular cross-sectional shapes.(2)/d between 1.25and 9,wherenis the clear span.(3)f ′c not more than 6,000psi.(4)Rigid,continuous joints or corner connections.(5)Straight,full-length reinforcement.Flexural reinforcement shallnot be terminated even though it is no longer a theoretical requirement.(6)Extension of the exterior face reinforcement around corners suchthat a vertical lap splice occurs in a region of compression stress.(7)Extension of the interior face reinforcement into and through thesupports.c.The shear strength provided the concrete shall be computed as(5-1)V c11.5ndbdEM 1110-2-210430Apr 92at a distance of from the face of the support.d.The shear strength provided by the concrete shall not be takengreater than(5-2)V c212n d bd __and shall not exceed 10f ′c bd.5-3.Shear Strength for Curved MembersAt points of maximum shear,for uniformly loaded curved cast-in-place memberswith R/d > 2.25where R is the radius curvature to the centerline of the member:(5-3)V cbd __The shear strength shall not exceed 10f ′c bd.5-4.Empirical ApproachShear strength based on the results of detailed laboratory or field testsconducted in consultation with and approved by CECW-ED shall be considered a valid extension of the provisions in paragraphs 5-2and 5-3.。