高考数学必胜秘诀(14)高考数学填空题的解题策略
- 格式:doc
- 大小:406.50 KB
- 文档页数:7
高考数学填空题常胜技巧数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。
常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例1设,)1(,3)1(j m i b i i m a -+=-+=其中i ,j 为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m = 。
解:.)2(,)4()2(j m mi b a j m i m b a +-=--++=+∵)()(b a b a -⊥+,∴)()(=-⋅+b a b a ∴0)4)(2()]4()2([)2(222=-+-⋅-++-++j m m j i m m m j m m ,而i ,j 为互相垂直的单位向量,故可得,0)4)(2()2(=-+-+m m m m ∴2-=m 。
例2已知函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则实数a 的取值范围是 。
解:22121)(+-+=++=x a a x ax x f ,由复合函数的增减性可知,221)(+-=x ax g 在),2(+∞-上为增函数,∴021<-a ,∴21>a 。
⾼考数学填空题答题技巧⾼考数学怎么得⾼分提⾼⾼考数学成绩,不仅要在平时学习上好好努⼒,还要掌握⼀些答题⽅法,下⾯⼩编整理了⼀些⾼考数学答题技巧,供⼤家参考!⾼考数学填空题四⼤解题技巧⼀、直接法这是解填空题的基本⽅法,它是直接从题设条件出发、利⽤定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常⽤的⽅法。
使⽤直接法解填空题,要善于通过现象看本质,熟练应⽤解⽅程和解不等式的⽅法,⾃觉地、有意识地采取灵活、简捷的解法。
⼆、特殊化法当填空题的结论唯⼀或题设条件中提供的信息暗⽰答案是⼀个定值时,⽽已知条件中含有某些不确定的量,可以将题中变化的不定量选取⼀些符合条件的恰当特殊值(或特殊函数,或特殊⾓,图形特殊位置,特殊点,特殊⽅程,特殊模型等)进⾏处理,从⽽得出探求的结论。
这样可⼤⼤地简化推理、论证的过程。
三、数形结合法"数缺形时少直观,形缺数时难⼊微。
"数学中⼤量数的问题后⾯都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭⽰出来,以达到"形帮数"的⽬的;同时我们⼜要运⽤数的规律、数值的计算,来寻找处理形的⽅法,来达到"数促形"的⽬的。
对于⼀些含有⼏何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法通过"化复杂为简单、化陌⽣为熟悉",将问题等价地转化成便于解决的问题,从⽽得出正确的结果。
⾼考数学解题怎么得⾼分圆锥曲线题圆锥曲线中最后题往往联⽴起来很复杂导致算不出,这时你可以取特殊值法强⾏算出过程就是先联⽴,后算代尔塔,⽤下韦达定理。
⾼考数学必考题型之空间⼏何,证明过程中有⼀步实在想不出把没⽤过的条件直接写上然后得出想不出的那个结论即可。
如果第⼀题真⼼不会做直接写结论成⽴则第⼆题可以直接⽤!⽤常规法的考⽣建议先随便建⽴个空间坐标系,如果做错了,⾄少还可以得⼏分,这是⼀个投机取巧的技巧,但好⽐过⼀分不得!⼩编推荐:怎样让数学成绩提⾼空间⼏何题空间⼏何证明过程中有⼀步实在想不出把没⽤过的条件直接写上然后得出想不出的那个结论即可。
高考数学填空题答题套路和技巧考试答题,对分数影响最为关键的就是答案的正确性。
下面是为大家整理的高考数学填空题答题套路和技巧相关内容,以供参考,一起来看看!高考数学填空题答题套路和技巧1、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
2、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
3、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
4、等价转化法通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
5、图像法借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。
文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。
6、构造法在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。
高考数学答题规范1、答题工具答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。
禁止使用涂改液、修正带或透明胶带改错。
必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。
2、答题规则与程序①先填空题,再做解答题;②先填涂再解答;③先易后难。
3、答题位置按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。
4、解题过程及书写格式要求关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
几招教你轻松搞定高考数学填空题数学填空题只要求写出结果,不要求写出计算和推理过程,其结果必须是数值准确、形式规范、表达式(数)最简.填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.解题时,要有合理地分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.求解填空题的基本策略是要在准、巧、快上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.方法一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.适用范围:对于计算型的试题,多通过计算求结果.方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.方法二、特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.方法点津:填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件.方法三、数形结合法对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等.适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算.方法点津:图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.方法四、构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.。
高考数学中的填空题解题技巧高中生们,你们好!今天我们将会谈论高考数学部分中的填空题,这是学生在高考数学中必定要迈过的里程碑。
填空题看似简单,但是它考验学生严密的思维和深厚的数学基础。
所以我们需要精密的技巧来解答这些题目。
一、技巧1:不忽略任何已知条件解决填空题需要仔细观察题目,对于任何一个给出的条件都不容忽视。
这可以将题目的复杂程度降低很多,通过对所有已知条件的详细考察,我们可以发现问题的关键点和解决方案。
这些关键点和解决方案让我们在填写答案时隐藏它们,并将它们自然地融入答案之中。
因此,需要读.清楚题目,注意一步步推进,确定性质。
二、技巧2:使用多种方法来解决问题在解决填空题时,还应该计算比较多的策略来找到题目的解决方案。
1.利用代数运算求解通过代数的方法解决问题常常是最常见的。
首先根据已知量列出等式,然后解方程,慢慢逼近答案。
2.依据对称性解题对于存在对称性的填空题,如果我们根据对称性的特点将题目中的某些数值互相替换,那么产生的等式将变得更加简单和方便。
这种方法相对简单,但也要看具体情况是否适用。
3.深入分析求解有时候,也有一些需要更认真深入思考的填空题。
这种类型的问题通常有轻微的规律可循,需要认真分析。
我们可以借助一些分析工具来深入分析题目,找到其中隐藏的规律或者性质,从而得到解决方案。
三、技巧3:注意陷阱题的存在好的填空题就像一道迷题,学生需要认真解答每一个小题,但是常常会在不经意间掉进陷阱之中。
灵活运用自己的思维,辨别陷阱,才可以顺利地解决填空题。
在高考数学中,老师也经常用到填空题来考察学生的识别陷阱和找出解决方案的能力。
四、技巧4:多训练,勤练习最后,作为考生,需要认真训练并多做习题来提高解题水平。
多解决各种难度级别的空缺题,熟悉不同题型,这样在考试中就可以毫不费力地应对各种填空题。
结语:在高考数学中,填空题是非常重要的一部分,所以需要同学们认真对待,从各方面加强理解和训练。
如果同学们能够熟练掌握填空题的解题技巧,并且多训练,那么在高考数学中取得好成绩并不是一个难题。
高考数学填空题解题方法与策略高考数学填空题解题方法一、解填空题的常用方法和技巧1.直接推理法:直接法是从题设条件出发,通过计算、分析推理得出正确结论的方法. 解题过程中要注意优化思路、少算多思,尽量减少运算步骤,合理跳步,小题小(巧)做,以节约时间.例2:从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员、与体育委员,其中甲、乙二人不能担任文娱文员,则不同的选法共有_____(用数字作答). 解法1:分四类:①选甲不选乙有112322CC A ⋅⋅=12种;②选乙不选甲,同上有12种;③甲乙都选上有2123AC ⋅=6种;④甲乙二人都不选有33A =6种. 共有选法12+12+6+6=36种.解法2:从反面考虑,共有32542AA -=36种.点评:本题考查有限制条件的排列组合问题,两种解法显然解法2更简捷. 另外题目要求用数字作答,就不能用32542AA -等形式表示.例3:如图,平面内有三个向量OAu u u r 、 OBuuu r 、OCu u u r ,其中OAu u u r 与OBuuu r 夹角为0120,OA u u u r 与OCu u u r 的夹角为030,且||||1OA OB ==u u u r u u u r,||OC =u u u rOCu u u r=OA OBλμ+u u u r u u u r(,R λμ∈),则λμ+的值为________.解法1:∵OAu u u r 与OBuuu r 夹角为0120,OA u u u r 与OCu u u r 的夹角为030,∴OCu u u r与OBuuu r 夹角为090,∴OB OC⋅u u u r u u u r =0,即()0OB OA OB λμ⋅+=u u u r u u u r u u u r ,∴2OB OA OB λμ⋅+=u u u r u u u r u u u r ,∴102λμ-+=,即2λμ=…………①. O ABC又cos ,||||OA OCOA OC OA OC ⋅<>=⋅u u u r u u u ru u u r u u u r u u ur u u u ru u u r u u u r u u u ru u u r u u u r1λμ-∴132λμ-=…………② 由①,②解得2,4μλ==. ∴6λμ+=.解法2:以O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A,1(2B -,∴OCu u u r =OA OBλμ+u u u r u u u r=1()2λμ-, ∴12OA OC λμ⋅=-u u u r u u u r=01cos30⨯=3,则(3,)2OC μ=u u u r .∴2222||3)2OC μ=+=u u u r ,得2μ=±,由图可知μ>0,则2μ=,4λ=. 故6λμ+=.例4:定义在R 上的函数f(x),对于任意实数x 都有(3)f x +≤()3f x +和(2)f x +≥()2f x +,且f(1)=1,则f(2011)=________________.解:由f(x+3)≤f(x)+3得:f(2011)≤f(2008)+3,f(2008)≤f(2005)+3,f(2005)≤f(2002)+3,…,f(7)≤f(4)+3,f(4)≤f(1)+3,共进行670次,将上述同向不等式相加可得:f(2011)≤f(1)+3×670,即f(2011)≤2011. 由(2)f x +≥()2f x +得:f(2011)≥f(2009)+2,f(2009)≥f(2007)+2,f(2007)≥f(2005)+2,…,f(5)≥f(3)+2,f(3)≥f(1)+2,共进行1005次,将上述同向不等式相加可得:f(2011)≥f(1)+2×1005,即f(2011)≥2011. 从而f(2011)=2011. 例5:数列{}na 定义如下:1a =1,且当n ≥2时,21n a +(当n 为偶数时) 11n a -(当n 为奇数时)解:由题设易知0na>,又由11a=可得,当n 为偶数时,1na>,所以当n(n >1)为奇数时11nn aa -=<1. ∵32na=>1,∴n 为偶数,32n a ==21n a+,2112n a=<,∴2n 为奇数,212112n naa -==,1221n a-=>,∴12n -为偶数,212421n n aa --==+,∴24n a -=1.∴214n aa -=,即214n -=,即6n =. 例6:设函数f(x)的定义域为D ,如果对于任意的1x D ∈,存在唯一的2xD∈,使12()()2f x f x C +=(C 为常数)成立,则称函数f(x)在D 上均值为C ,下列五个函数:①4sin y x =;②3y x =;③lg y x =;④2xy =;⑤21y x =-.则满足其定义域上均值为2的所有函数的序号是_________________.解:对于①,若124sin 4sin 22x x+=,则12sin sin 1x x+=,因为2x 不唯一,①不合题意;对于②,若331222x x +=,则2x=是唯一的,②符合题意;对于③,若12lg lg 22x x +=,则42110x x =是唯一的,③符合题意;na =已知32na =,则正整数n对于④,若122222x x +=,12224x x +=,则2x 可能不存在,④不合题意;对于⑤,若12212122x x-+-=,则213xx =-是唯一的,⑤符合. 故填②③⑤.2. 特例法:当填空题的答案暗示是与变量无关的一个定值时,常可用特例法(特殊值、特殊图形、特殊位置等)迅速求解.例7:如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB mAM=u u u r u u u u r,AC nAN=u u u r u u u r ,则m + n 的值为__________.解1:∵O 是BC 的中点,∴1()2AO AB AC =+u u u r u u u r u u u r =2m AM u u u u r+2n AN u u u r ,∴,,M O N 三点共线,∴122m n+=,得2m n +=. 解2:用特例法. 取M 与B 重合,N 与C 重合,此时m = n =1,得m + n = 2 .点评:本题利用特殊位置迅速得解.3.充分应用已知结论:因为填空题不必写出解答过程,要提高解题速度,可以应用一些典型习题的重要结论或方法,心算、笔算结合,能减少运算步骤,简化计算. 例8:已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()aa a a a a ++++的值等于___________________.分析:在二项式()()nf x ax b =+的展开式中有结论:其展开式各项系数的和为(1)f ;奇数项的系数和为1[(1)(1)]2f f --;偶数项的系数和AB O NCM为1[(1)(1)]2f f +-. 解:分别令x=1、x=-1,得012345aa a a a a +++++=0,0123aa a a -+-+4a -5a =32,由此解得02416aa a ++=,13516a aa ++=-.∴024135()()aa a a a a ++++=-256.例9顶点都在一个球的面上,则此球的体积为_________________. 分析:当一个正n 棱柱各顶点都在球面上,则有结论:正n 棱柱的体对角线即为外接球的直径.解:正六棱柱的外接球的球心在正六棱柱的体对角线的中点上,如图所示.∵11112FC A F ==1F F =∴四边形11F FCC为正方形,∴1FC =∴外接球直径2R =R =∴343V R π==.例10:已知O e 的方程是2220x y +-=,O 'e 的方程是2x +2y -8x +10=0. 由动点P 向O e 和O 'e 所引的切线长相等,则动点P 的轨迹方程是_____________________.分析:有关圆的切线长有结论:若圆方程为220x y Dx Ey F ++++=(2D + 2E4F->0),则由点P(x,y)引圆的切线长为解:设P(x,y) D1得动点P 的轨迹方程为32x =. 4.观察法:通过仔细观察,抓住题设中的隐含条件或特征,挖掘出题目的内在规律进行求解. 例11:已知数列{}na 对于任意,*p q N ∈,有p q p qaa a ++=,若119a =,则36a =______________. 解:令p n =,1q =,则11n n aa a ++=,∴1119n n aa a +-==,所以数列{}na 是等差数列. ∴36136aa ==4.5.图解法:有些填空题涉及的问题可以转化为数与形的结合,数以形而直观,形以数而入微,利用图形往往直观易懂,又可节省时间.例12:已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为______________. 解法1:设双曲线方程为22221x y a b -=,顶点(,0)a ,焦点(,0)c ,渐近线0bx ay +=,则有2==ab c,6=3ce a==. 解法2:如图,A 、F 则||||||||OF FC OA AB =,即632c a ==. 6.等价转化法:通过命题的等价转换,将所给命题转化为熟悉的或容易解决的命题形式. 例13:若函数()f x =R ,则a 的取值范围为____________________.解:函数()f x =的定义域为R ,即222x ax a--≥1对x R ∈恒成立,等价于22xax a--≥0对x R ∈恒成立.∴Δ=2(2)4a a--≤0⇒(1)a a +≤0,∴-1≤a ≤0 .例14:函数|cos ||cos 2|()y x x x R =+∈的最小值是__________________.分析:本题关键在于去掉绝对值符号. 由2cos 22cos 1x x =-=22|cos |1x -,可设|cos |t x =,将原函数转化为关于变量t的函数,最后利用转化的思想将问题转化为关于求解t 的绝对值的函数的最小值问题. 解:令|cos |t x =∈[0,1],则2|21|y t t =+-.当12t ≤≤时,221y tt =+-=2192()48t +-,得22y ≤≤;当02t ≤<时,221y tt =-++=2192()48t --+,得928y ≤≤.∴y 的最小值是2.训练题1. (1) 把10个相同的小球放入三个盒子中,每个盒子至少放一个球,则不同的放法种数是__________________.(2) 方程x + y + z = 15的非负整数解的个数是_____________.(3) 把10个相同的小球放入三个编号为①、②、③的三个盒子中,要求放入各盒的个数不少于它们的编号数,则共有不同的放法_________________种.2. 给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}x m =. 在此基础上给出下列关于函数f (x) = | x – {x}|的四个命题:①函数y = f (x)的定义域是R ,值域是1[0,]2;②函数y = f (x)的图像关于直线x =2k (k ∈Z)对称;③函数y = f (x)是周期函数,最小正周期是1;④函数y = f (x)在11[,]22-上是增函数. 则其中真命题是____________(写出所有真命题的序号).3. 定义一种新运算“⊗”如下:当a b ≥时,a b a ⊗=;当a b <时,2a b b ⊗=. 对于函数f (x) = [(–2)x ⊗]2)x x ⋅-⊗,(2,2)x ∈-(“⋅”和“-”仍是通常的乘法和减法). 把f (x)的图像按向量ar 平移后得到g (x)的图像,若g (x)为奇函数,则ar=_______________.4. 在四棱锥P —ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP = MC , 则点M 在正方形ABCD 内的轨迹为下图中的______________.ABC D PAB C DAB C DAB C DABCD甲乙丙丁5. 给出下列定义:连接平面点集内两点的线段上的点都在该点集内,则这种线段的最大长度就叫做该平面点集的长度. 已知平面点集M 由不等式组 2220x x --≤10x y -+≥ 给出,则M 的长度是__________________.0y ≥6. 已知M 是△ABC 内的一点,且AB AC ⋅=u u u r u u u r30BAC ∠=,定义:f (M) = (m , n , p ), 其中m 、n 、p 分别是△MBC 、△MCA 、△MAB 的面积,若 f (P) =1(,,)2x y ,则14x y+的最小值是_________________.7. 在数列{}na 中,若()111,231n n n a aa n +==+≥,则该数列的通项na =__________.8. 口袋里装有m 个红球和n 个白球,4m n >≥,现从中随机摸出两个球,若摸出的两个球是同色的概率等于摸出的两个球是异色的概率,则满足关系40m n +≤的数组(,)m n 的个数有____________个.9. 已知椭圆2211612x y +=的长轴为12A A ,短轴为12B B 。
高三数学应试技巧快速应对数学填空题在高三的数学考试中,填空题是重要的组成部分,虽然每道题的分值可能不如大题,但它们数量较多,累积起来的分数不容小觑。
掌握有效的应试技巧,能够帮助我们在有限的时间内准确、快速地完成填空题,从而为整个数学考试打下良好的基础。
一、认真审题是关键拿到一道填空题,不要急于动笔,首先要认真阅读题目,理解题意。
很多同学在考试时因为紧张或者粗心,没有看清题目就开始答题,结果导致错误。
比如,题目中要求的是“最大值”,但因为没看清,答成了“最小值”;或者题目中给出的是区间“(0, 1)”,却看成了“0, 1”。
在审题时,要特别注意题目中的关键词、限制条件和隐含信息。
比如,“正整数”“实数”“单调递增/递减”等关键词,会对答案的范围和性质产生重要影响。
同时,对于一些复杂的题目,可以多读几遍,将题目中的条件和要求梳理清楚,必要时可以在草稿纸上简单地列出。
二、巧用特殊值法特殊值法是应对填空题的一个非常有效的技巧。
当题目中给出的条件具有一般性时,我们可以通过选取特殊值来简化问题,快速得出答案。
例如,对于函数问题,如果题目没有给出具体的函数表达式,只是给出了函数的一些性质,我们可以选取一些常见的函数,如一次函数 y = x、二次函数 y = x²等,来进行分析和计算。
再比如,对于几何问题,如果题目中给出的图形是不确定的,我们可以通过选取特殊的图形,如等边三角形、正方形等,来帮助我们解决问题。
需要注意的是,在使用特殊值法时,要确保特殊值的选取具有代表性和合理性,不能随意选取,否则可能会得出错误的答案。
三、善于利用排除法排除法在填空题中也经常能发挥重要作用。
当我们对题目中的答案不是很确定时,可以通过排除一些明显错误的选项,来提高答对的概率。
比如,对于一些选择题,如果选项中存在一些与题目条件矛盾的选项,或者计算结果明显不合理的选项,我们可以先将其排除。
在使用排除法时,要对基础知识有扎实的掌握,能够准确判断选项的对错。
数学填空题的方法和技巧数学填空题是一种选择题,通常是在数学考试中遇到的题型之一。
完成数学填空题需要一定的技巧和方法,以下是一些建议:1. 理解问题:首先,你需要仔细阅读题目,确保你完全理解了问题的要求。
2. 分析选项:在开始解题之前,分析所有选项可以帮助你更好地理解问题。
有些选项可能明显错误,你可以立即排除它们。
3. 使用合适的方法:根据问题的类型,选择合适的方法或公式来解决问题。
例如,如果是一个几何问题,可能需要使用相关的几何公式或定理。
4. 推理和计算:使用逻辑推理和计算技巧来解决具体问题。
这可能涉及到基础的数学运算,如加、减、乘、除等。
5. 检查答案:完成问题后,检查你的答案是否符合问题的要求。
如果可能的话,尝试用另一种方法解决问题,以验证你的答案是否正确。
6. 注意细节:在填写答案时,注意细节是非常重要的。
例如,确保你填写了正确的单位,并注意答案的格式和书写方式。
7. 练习和复习:通过大量的练习和复习,提高解决数学填空题的能力。
熟悉不同的题型和解题方法可以帮助你更好地应对各种问题。
8. 合理猜测:如果你对问题的答案不确定,合理猜测也是一种有效的策略。
基于问题和选项提供的信息,尝试猜测可能的答案。
9. 时间管理:在考试中,时间是非常宝贵的资源。
合理分配时间,确保你有足够的时间来仔细阅读问题和解决问题。
10. 保持冷静:遇到难题时,保持冷静的心态是非常重要的。
不要因为一个问题而影响整个考试的表现。
遵循以上建议,掌握数学填空题的解题技巧和方法,提高解决问题的能力和准确性。
同时,也要不断练习和总结经验,提高自己的数学水平。
方法与技巧Җ㊀山东㊀刘㊀进1㊀题型特点填空题是介于选择题与解答题之间高考数学题的重要题型,是一种只要求写出结果,不要求写出解答过程的客观性试题.从形式上分为单空题和多(两)空题.对于多(两)空题,两空可以是并列关系也可以是递进关系;从填写的内容上分为定量型和定性型,高考题多以定量型问题出现.这类题型要求考生填写数值㊁数集或数量关系等,结果要求化为最简形式.定性型要求填写具有某种性质的对象或给定对象的某种性质,这类题型往往出现创新性问题,如开放性试题.填空题与选择题虽同属客观性试题,但和选择题有很大的不同.由于填空题不像选择题那样设有备选提示,所以作答时既有不受诱误之利处,又有缺乏提示之不足,对考生独立思考和作答,在能力要求上会高一些.因此填空题的答对率一直低于选择题的答对率.填空题也有别于解答题,填空题只需要填写结果,不需要解答过程,而解答题不仅需要最后的结论,也要有详尽的解答过程和步骤,以免因缺少步骤或跳步而失分.从分值的 性价比 来看,每个填空题5分,而每个解答题的最高分值是12分,每个填空题的分值大约是解答题最高分值的40%.从填写结果来看,填空题的结果仅是一个数字㊁字母㊁式子或范围等,而解答题需要 洋洋洒洒 偌大篇幅来写出解答过程和步骤,因而填空题分值 性价比 要远高于解答题.填空题是数学高考命题改革的试验田,往往有创新型的填空题出现.因而填空题是高考数学题中具有较高区分度的题型,是考生的 兵家必争之地 .高考成也填空题败也填空题,答好填空题对于整份试卷的分值起着至关重要的作用.2㊀解答策略填空题作为 小题 ,作答的原则是 小题不能大做 ;作答的基本策略是准㊁巧㊁快,合情推理㊁优化思路㊁少算多思是快速㊁准确解答填空题的基本要求;解题的基本方法有直接法㊁特殊化法㊁数形结合法㊁整体代换法和化归转化法等.解答填空题时,除了直接法外,对于带有一般性命题的填空题,可以采用特例法.和图形㊁曲线等有关的命题可以考虑数形结合法.有时候常常需要几种方法综合使用,才能迅速求出正确的结果.2.1㊀直接法直接法是解答填空题最基本㊁常用的方法,它是直接从题设条件出发,利用有关性质或结论㊁公式等知识,通过变形㊁推理㊁运算等过程,直接得到结果.在计算过程中,要根据题目的特点灵活处理,注意一些解题规律和技巧,将计算过程简化,这是准确㊁快速解答填空题的关键.例1㊀圆台上㊁下底面的圆周都在一个直径为10的球面上,其上㊁下底面半径分别为4和5,则该圆台的体积为.㊀㊀图1从题设中的数量关系可以看出,圆台下底面为球的大圆(如图1所示),则圆台的高h =52-42=3.故该圆台的体积为V =13πˑ(42+52+4ˑ5)ˑ3=61π.根据题设中数量关系特征,得到 圆台下底面为球的大圆 是快速解答的关键.例2㊀已知双曲线C 的渐近线方程为y =ʃ2x ,写出双曲线C 的一个标准方程:.由y =ʃ2x ,得x ʃy 2=0,双曲线C 的方程为x 2-y 24=λ(λʂ0).不妨取λ=1,则双曲线C 的一个标准方程x 2-y 24=1.本题是结论开放型填空题,答案不唯一,这里利用了双曲线系方程,从而使问题得到快速㊁简捷地解决.2.2㊀特殊化法当填空题的题设条件中含有某些不确定的量,但其结论唯一,或题设条件中提供的信息暗示答案是一个定值时,可以从题设变化的不定量中选取符合条件的恰当特殊值(特殊函数㊁特殊角㊁特殊数列㊁特殊位置㊁特殊点㊁特殊方程㊁特殊模型等)进行处理,从而得出探求的结论.例3㊀若正方形一条对角线所在直线的斜率为71方法与技巧2,则该正方形的两条邻边所在直线的斜率分别为,.如图2所示,在平面直角坐标系中,不妨设正方形A B C D 的中心O (0,0),A (1,2),B (-2,1),D (2,-1),则k A B =1-2-2-1=13,k A D =-1-22-1=-3.图2本题选取了符合题设的正方形做为特殊的一种状态来求解,运用特殊化法处理特别有效.例4㊀如图3所示,在әA B C 中,已知D 是A C边的中点,E 是A B 边与点A 较近的三等分点,B D与C E 交于点M,N 是B C 的中点,若MN ң=m A B ң+nA C ң,则m -n 的值为.图3如图4所示,不妨取A B ʅA C ,以A 点为坐标原点㊁A C 所在的直线为x 轴㊁A B 所在的直线为y 轴建立平面直角坐标系,设A C =2a ,B (0,3q ),则A (0,0),C (2a ,0),D (a ,0),E (0,q ).故直线B D 的方程为3q x +a y -3a q =0,①直线E C 的方程为q x +2a y -2a q =0.②联立①②,解得x =45a ,y =35q ,所以M (45a ,35q ).图4又因为N 是B C 的中点,所以N (a ,32q ),MN ң=(15a ,910q ).又因为MN ң=m A B ң+nA C ң=m (0,3q )+n (2a ,0)=(2a n ,3qm ),所以15a =2a n ,910q =3q m ,ìîíïïïï解得m =310,n =110,所以m -n =15.本题将图形特殊化处理进行求解,减小了运算量.利用特殊化解答有关填空题具有避免小题大做的优势.2.3㊀数形结合法对于一些具有几何背景的填空题,若能根据题目中的条件,画出符合题设的辅助图形,通过图形的直观性分析㊁判断,即可快速得出正确的结论.例5㊀已知f (x )=|x -1|+|x +1|-12|x |,若函数g (x )=f (x )-b 恰有四个零点,则实数b 的取值范围为.f (x )=-32x ,x ɤ-1,2+12x ,-1<x ɤ0,2-12x ,0<x <1,32x ,x ȡ1,ìîíïïïïïïïïïï作出函数f (x )的图象,如图所示.图5令g (x )=0,则f (x )-b =0,即f (x )=b .因为函数g (x )恰有四个零点,所以结合图5可知32<b <2.本题通过作出函数的图象,利用数形结合求解.值得注意的是,结果要求的是取值范围,所以最终要填的是区间或集合.若填32<b <2,则是不能得分的.81方法与技巧2.4㊀构造法对于构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化计算或推理,使问题得到较为快捷的解决.例6㊀已知实数x 1,x 2满足x 1e x 1=e3,x 2(l n x 2-2)=e 5,则x 1x 2=.对x 1e x 1=e3两边取自然对数,得l n x 1+x 1=3.①对x 2(l n x 2-2)=e 5两边取自然对数,得l n x 2+l n (l n x 2-2)=5,即l n x 2-2+l n (l n x 2-2)=3.②这样方程①②的结构相同.设f (x )=l n x +x ,则f ᶄ(x )=1x+1>0,f (x )在(0,+ɕ)上单调递增,所以方程f (x )=3的解只有一个,所以x 1=l n x 2-2,所以x 1x 2=(l n x 2-2)x 2=e 5.若方程f (a )=0和f (b )=0呈现同构特征,则a ,b 为方程f (x )=0的两个根.本题充分利用指数㊁对数式的互化,将两个方程化为同构形式,然后构造函数,利用导数研究函数单调性进行求解,其中将两个方程化为同构形式是解题的关键所在.例7㊀已知x ȡy ȡ1,且x +y ɤ2(1+z ),则1x+zy的最小值为.由x +y ɤ2(1+z )得z ȡx +y -22,所以1x +z y ȡ1x +x +y -22y =12+x 2y +1x -1y=12+x 2y +y -x x y =12+x 2y -1 x -y x yȡ12+x 2y -yx -y x y =12+x 2y -1+y x =-12+(x 2y +y x )ȡ-12+2x 2y y x=-12+2,当且仅当z =x +y -22,y =1,x 2y =y x ,ìîíïïïïïï即x =2,y =1,z =2-12时,等号成立.故1x +z y 的最小值为-12+2.本题应用不等式的性质㊁放缩法求解.在不等式变形的基础上,构造基本不等式模型,最终利用基本不等式求得最值.2.5㊀等价转化法等价转化法就是将问题等价转化为熟悉的㊁易于解决的问题,从而得出正确的结果.例8㊀若关于x的不等式a x -b <0的解集是(1,+ɕ),则关于x 的不等式a x +b x -2>0的解集是.根据不等式与相应方程的关系可知,不等式解集的端点就是相应方程的根.因为关于x的不等式a x -b <0的解集是(1,+ɕ),所以1就是方程a x -b =0的根,且a <0,所以a -b =0,即a =b .由a x +b x -2>0,得x +1x -2<0,即等价转化为(x +1)(x -2)<0,解得-1<x <2,故解集为(-1,2).本题运用两次等价转化,一是将不等式a x -b <0解集的端点1转化为方程a x -b =0的根,二是将分式不等式x +1x -2<0等价转化为一元二次不等式(x +1)(x -2)<0,充分体现了等价转化方法的运用.3㊀注意事项解答填空题不要求解题过程,从而结论是判断是否正确的唯一标准.因此,解答填空题时要注意如下几个方面.1)认真审题,明确要求,思维严谨㊁缜密,计算有据㊁准确.2)填写结果要书写规范,如分式的分母不含根式,角的单位度与弧度不能混写,特殊角的函数要写出函数值,近似计算要达到精确度要求等.3)填写结果要完整,如函数的解析式要写出定义域,求三角函数的定义域㊁单调区间等,不能漏写k ɪZ ,应用题不要忘记写单位,求轨迹要排除不满足条件的点等.4)填写结果要符合教材要求,如分数书写常用分数线,而不用斜线形式;求不等式的解集㊁求函数定义域㊁值域,结果写成集合或区间形式,不能只用几个数字或式子表示.(作者单位:山东省日照实验高级中学)91。
高考数学选择题填空题答题技巧高考数学选择题填空题答题技巧高考数学选择题和填空题占据了高考数学试卷的一大部分,其难度和考查的知识点都围绕着课本上的基础知识,因此每年考前数学知识的复习可以说是极为重要的功课之一。
本篇文档总结了我在高考前数学备考过程中通过各种途径学习、查阅资料和分析历年高考题得到的一些数学选择题和填空题答题技巧,供大家参考。
一、选择题1. 方程求解对于含绝对值、含分式等非标准形式的方程,可以将其化成标准形式后再进行求解。
对于一些题目中可能出现的“无解”“有无穷解”等特殊情况,应根据题目中的条件进行分类讨论分析,而不能直接套公式进行计算。
2. 几何图形几何图形中常见的相似三角形、圆、平行四边形等知识点需要掌握,并要注意利用数量关系、角度关系等方法进行计算。
考生要熟练掌握推导角、解三角形、应用勾股定理等基本定理和公式,以便在考试中快速选出正确答案。
3. 统计概率概率计算中需要注意题目要求事件的概率、概率相加、概率相乘等知识点,并要注意辨别条件概率和全概率,根据已知信息进行概率计算,尽可能减少计算出错的概率。
4. 函数对于函数的定义、性质、图像等知识点,要熟悉并能快速判断定义域、值域、单调性、奇偶性等基本特征。
对于各种类型的函数定义及其相应的图像、性质和变形,要多做题多练习,掌握其特点及其计算方法。
5. 确定答案在选择题中,选择正确的答案是最基本也是最关键的一道工序,因此考生在练习时要注意以下几点:(1)对于填充选项的选择,要先读完所有的答案,把所有有把握的选上,再比较一下答案,最后再选择相对正确的答案。
(2)看完题目,先不断推演、反复思考,确定答案时,要注意清晰思维,不能急躁决策,要慢慢揣摩题目的思路。
(3)将题意概括,从后面往前面分析问题,在每个选项中对应推导过程,答案往往就呼之欲出。
(4)对于有定镇或估算的题目,要先经过初步的计算估算得到答案后选择相对正确的选项。
以上是对选择题的一些技巧总结,考生在备考过程中要理解这些技巧并灵活使用。
高考数学必胜秘诀(14)高考数学填空题的解题策略数学填空题在前几年江苏高考中题量一直为4题,从去年开始增加到6题,今年虽然保持不变,仍为6题,但分值增加,由原来的每题4分增加到每题5分,在高考数学试卷中占分达到了20%。
它和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考查目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。
根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
近几年出现了定性型的具有多重选择性的填空题。
在解答填空题时,由于不反映过程,只要求结果,所以对正确性的要求比解答题更高、更严格,《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”。
为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
(一)数学填空题的解题方法1、直接法:直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的,称为直接法。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,自觉地、有意识地采取灵活、简捷的解法。
例1、乒乓球队的10名队员中有3名主力队员,派5名参加比赛。
3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。
解:三名主力队员的排法有33A 种,其余7名队员选2名安排在第二、四位置上有27A 种排法,故共有排法数33A 27A =252种。
例2、102(2)(1)x x +-的展开式中10x 的系数为 。
解:10201019281010210101010(2)(1)(242)(1)x x C x C x C x C x +-=+++⋅⋅⋅+-得展开式中10x 的系数为010C -2104C +=179。
例3、已知函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则实数a 的取值范围是 。
解:22121)(+-+=++=x a a x ax x f ,由复合函数的增减性可知,221)(+-=x ax g 在),2(+∞-上为增函数,∴021<-a ,∴21>a 。
2、特殊化法:当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。
这样可大大地简化推理、论证的过程。
例4、在∆ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a 、b 、c 成等差数列,则=++CA CA cos cos 1cos cos解法一:取特殊值a =3, b =4, c =5 ,则cosA =,54cosC =0, =++C A C A cos cos 1cos cos 45。
解法二:取特殊角A =B =C =600 cosA =cosC =21,=++C A C A cos cos 1cos cos 45。
例5、如果函数2()f x x bx c =++对任意实数t 都有(2)(2)f t f t +=-,那么(1),(2),(4)f f f 的大小关系是。
解:由于(2)(2)f t f t +=-,故知()f x 的对称轴是2x =。
可取特殊函数2()(2)f x x =-,即可求得(1)1,(2)0,(4)4f f f ===。
∴(2)(1)(4)f f f <<。
例6、已知SA ,SB ,SC 两两所成角均为60°,则平面SAB 与平面SAC 所成的二面角为。
解:取SA=SB=SC ,则在正四面体S -ABC 中,易得平面SAB 与平面SAC 所成的二面角为1arccos 3。
例7、已知,m n 是直线,,,αβγ是平面,给出下列命题:①若,αγβγ⊥⊥,则α∥β;②若,n n αβ⊥⊥,则α∥β;③若α内不共线的三点到β的距离都相等,则α∥β;④若,n m αα⊂⊂≠≠,且n ∥β,m ∥β,则α∥β;⑤若,m n 为异面直线,n ⊂≠α,n ∥β,m ⊂≠β,m ∥α,则α∥β。
则其中正确的命题是。
(把你认为正确的命题序号都填上)解:依题意可取特殊模型正方体AC 1(如图),在正方体AC 1中逐一判断各命题,易得正确的命题是②⑤。
3、数形结合法:对于一些含有几何背景的填空题,若能根据题目条件的特点,作出符合题意的图形,做到数中思形,以形助数,并通过对图形的直观分析、判断,则往往可以简捷地得出正确的结果。
例8、已知向量a =)sin ,(cos θθ,向量b =)1,3(-,则|2a -b |的最大值是解:因|2|||2a b ==,故向量2a 和b 所对应的点A 、B 都在以原点为圆心,2为半径的圆上,从而|2a -b |的几何意义即表示弦AB 的长,故|2a -b |的最大值为4。
例9、如果不等式x a x x )1(42->-的解集为A ,且}20|{<<⊆x x A ,那么实数a 的取值范围是 。
解:根据不等式解集的几何意义,作函数24x x y -=和函数x a y )1(-=的图象(如图),从图上容易得出实数a 的取值范围是[)+∞∈,2a 。
例10、设函数 f (x )=13x 3+12ax 2+2bx +c .若当 x ∈(0,1)时,f (x )取得极大值;x ∈(1,2)时,f (x )取得极小值,则 b -2a -1的取值范围是 .解:f ´(x )= x 2+ax +2b ,令f ´(x )=0,由条件知,上述方程应满足:一根在(0,1)之间,另一根在(1,2)之间,∴⎩⎪⎨⎪⎧f ´(1)<0f ´(0)>0f ´(2)>0,得⎩⎨⎧a +2b +1<0b >0a +b +2>0 ,在aob坐标系中,作出上述区域如图所示,而b -2a -1的几何意义是过两点P(a ,b )与A(1,2)的直线斜率,而P(a ,b )在区域内,由图易知k PA ∈(14,1).4、等价转化法:通过“化复杂为简单、化陌生为熟悉”将问题等价转化成便于解决的问题,从而得到正确的结果。
例11、不等式23+>ax x 的解集为),4(b ,则=a _______,=b ________。
解:设t x =,则原不等式可转化为:,0232<+-t at ∴a > 0,且2与)4(>b b 是方程0232=+-t at 的两根,由此可得:36,81==b a 。
例12、不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是 。
解:题设条件等价于点(0,1)在圆内或圆上,或等价于点(0,1)到圆42)(22+=+-a y a x ,∴31≤≤-a 。
5、构造法:根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助于它认识和解决问题的一种方法。
A BCDA 1B 1C 1D 1例13、如图,点P 在正方形ABCD 所在的平面外,PD ⊥ABCD ,PD=AD ,则PA 与BD 所成角的度数为 。
解:根据题意可将此图补形成一正方体,在正方体中易求得PA 与BD 所成角为60°。
例14、4个不同的小球放入编号为1,2,3,4的4个盒中,则只有1个空盒的放法共有 种(用数字作答)。
解:符合条件的放法是:有一个盒中放2个球,有2个盒中各放1个球。
因此可先将球分成3堆(一堆2个,其余2堆各1个,即构造了球的“堆”),然后从4个盒中选出3个盒放3堆球,依分步计算原理,符合条件的放法有2344144C A =(种)。
例15、椭圆 x 29 + y 24 =1 的焦点F 1、F 2,点P 是椭圆上动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是解:构造圆x 2+y 2=5,与椭圆 x 29 + y 24 =1 联立求得交点x 02 = 95⇒x 0∈(- 355,355)6、分析法:根据题设条件的特征进行观察、分析,从而得出正确的结论。
例16、如右图,在直四棱柱1111ABCD A BC D -中,当底面四边形满足条件 时,有111AC B D ⊥(填上你认为正确的一个条件 即可,不必考虑所有可能性的情形)。
解:因四棱柱1111ABCD A B C D -为直四棱柱,故11AC 为1AC 在面1111A B C D 上的射影,从而要使111AC B D ⊥,只要11B D 与11AC 垂直,故底面四边形1111A B C D 只要满足条件11B D ⊥11AC 即可。
例17、以双曲线2213x y -=的左焦点F ,左准线l 为相应的焦点和准线的椭圆截直线3y kx =+所得的弦恰好被x 轴平分,则k 的取值范围是 。
解:左焦点F 为(-2,0),左准线l :x =-32,因椭圆截直线3y kx =+所得的弦恰好被x 轴平分,故根据椭圆的对称性知,椭圆的中心即为直线3y kx =+与x 轴的交点3(,0)k-,由32k-<- ,得0 < k < 32。
(二)减少填空题失分的检验方法 1、回顾检验例18、满足条件παπα<≤--=且21cos 的角α的集合为 。
错解:,2134cos ,2132cos-=-=ππ .3432ππα或=∴ 检验:根据题意,答案中的34π不满足条件παπ<≤-,应改为32π-;其次,角α的取值要用集合表示。
故正确答案为}.32,32{ππ- 2、赋值检验。
若答案是无限的、一般性结论时,可赋予一个或几个特殊值进行检验,以避免知识性错误。
例19、已知数列}{n a 的前n 项和为1232++=n n S n ,则通项公式n a = 。
错解:,16]1)1(2)1(3[123221-=+-+-⋅-++=-=-n n n n n S S a n n n.16-=∴n a n检验:取n=1时,由条件得611==S a ,但由结论得a 1=5。