八年级数学下册平行四边形的证明思路破解
- 格式:docx
- 大小:456.13 KB
- 文档页数:6
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
人教版初中数学八年级下册《平行四边形的判定》说课稿一. 教材分析人教版初中数学八年级下册《平行四边形的判定》这一节的内容,主要包括平行四边形的定义、性质和判定方法。
这部分内容是学生在学习了三角形、四边形的基础上,进一步拓展和深入研究四边形的一种特殊形式。
教材通过引导学生探究平行四边形的性质,培养学生观察、思考、归纳的能力,并为后续学习几何图形的变换、解三角形等知识打下基础。
二. 学情分析初二的学生已经掌握了基本的几何知识,对四边形的概念和性质有了一定的了解。
但是,对于平行四边形的定义、性质和判定方法,还需要通过实例和活动来进一步理解和掌握。
此外,学生对于证明题的解法还不够熟练,需要老师在教学过程中进行引导和培养。
三. 说教学目标1.知识与技能目标:使学生理解平行四边形的定义,掌握平行四边形的性质,学会用平行四边形的性质判定平行四边形。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生合作学习的能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 说教学重难点1.教学重点:平行四边形的定义、性质和判定方法。
2.教学难点:平行四边形性质的证明,以及如何运用性质判定平行四边形。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、几何画板等软件,展示平行四边形的性质和判定过程,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示生活中常见的平行四边形实例,引导学生关注平行四边形的存在,激发学生的学习兴趣。
2.探究平行四边形的定义:让学生通过观察、操作,发现平行四边形的特征,从而得出平行四边形的定义。
3.学习平行四边形的性质:引导学生通过小组合作,探讨平行四边形的性质,归纳出平行四边形的性质定理。
4.判定平行四边形:让学生运用平行四边形的性质,判断给定的四边形是否为平行四边形。
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
平行四边形判定的证题思路平行四边形是最基本的、最重要的一类特殊的四边形.利用平行四边形的性质可直接证明线段和角相等;通过对平行四边形的证明,再加上一些特殊条件,可以证明出矩形、菱形、正方形等特殊的平行四边形.证明一个四边形是平行四边形,一般根据题目中已经给出的条件,选择恰当的判定方法,主要有以下几种思路.一、当已知条件出现在所证四边形的角上时,可选择“两组对角分别相等的四边形是平行四边形”或“两组对边分别平行的四边形是平行四边形”,这两个定理来证明. 例1、已知如右图,平行四边形ABCD 中,AE 、CF 分别平分∠DAB与∠BCD ,求证:四边形AECF 是平行四边形. 分析:㈠由已知条件易证∠EAF=∠ECF=∠BFC ,∴AE ∥FC ,又EC ∥AF .故本题可选择“两组对边分别平行的四边形是平行四边形”来判定. ㈡易证∠EAF=∠ECF ,又EC ∥AF ,∴∠EAF+∠AEC=180º,∠ECF+∠AFC=180º,∴∠AEC=∠AFC ,通过“两组对角相等”证明四边形AECF 是平行四边形.二、当已知条件出现在所证四边形的边上时,可选择“两组对边分别相等的四边形是平行四边形”、 “两组对边分别平行的四边形是平行四边形” 或“一组对边平行且相等的四边形是平行四边形”,这三个定理来证明.例2、已知如图2,平行四边形ABCD 中BE ⊥AC ,DF ⊥AC ,点E 、F 是垂足.求证:四边形BEDF 是平行四边形. 分析:㈠由已知易证BE ∥DF ,要证BEDF 是平行 四边形,根据“一组对边平行且相等的四边形是平行四 边形”,只要证BE=DF 即可,这可由证明△ADF ≌△CBE 或△ABE ≌△CDF 来得到.㈡易证△ADF ≌△CBE ∴DF=BE ,AF=CE ,∴AE=CF .从而可证ADE ≌△CBF∴BF=DE ,根据“两组对边分别相等的四边形是平行四边形”,结论得证.㈢易证BE ∥DF ,根据“两组对边分别平行的四边形是平行四边形”,则还需证明DE ∥BF ,由(二)可证△ADE ≌△CBF ∴∠AED =∠CFB ∴DE ∥BF .∴BEDF 是平行四边形.三、当已知条件出现在所证四边形的对角线上时,可选择“对角线互相平分的四边形是平行四边形”这个定理来证明.例3、已知如右图,E ,F 分别是平行四边形ABCD 对角线BD 所在直线上得两点,且DE=BF .求证:AE ∥CF ,AE=CF .分析:要证AE ∥CF ,AE=CF ,只需证明四边形AECF 是平行四边形.由平行四边形得性质易证OA=OC ,OB=OD ,又 DE=BF ,∴ OE=OF ,∵“对角线互相平分的四边形是平行四边形”,∴四边形AECF 是平行四边形,从而结论得证.掌握以上规律,我们解决平行四边形的判定问题时,便可少走弯路,迅速地找到适当的方法.F。
八年级下册数学平行四边形难题平行四边形是几何学中一个非常重要的图形,它有许多重要的性质和应用。
在初二下学期的平行四边形单元中,学生们将学习如何证明平行四边形的性质和判定,以及解决一些相关的几何问题。
为了更好地帮助学生掌握这个单元的知识点,下面列举了一些常见的易错题和难题。
一、易错题1、已知平行四边形ABCD的对角线AC和BD相交于点O,AC=4,BD=2,则AB的取值范围是?这道题是一道易错题,很多学生会认为AB的取值范围是2<AB<4。
然而,这个答案是错误的。
因为在平行四边形ABCD中,对角线AC和BD互相平分,即AO=CO=2,BO=DO=1,根据三角形的三边关系,可以得到AB的取值范围是1<AB<5。
2、已知平行四边形ABCD的对角线AC和BD相交于点O,且AC垂直于AB,BD垂直于CD,AC=4,BD=3。
求平行四边形ABCD的面积。
3、这道题是一道易错题,很多学生会认为平行四边形ABCD的面积是12。
然而,这个答案是错误的。
因为在平行四边形ABCD中,对角线AC和BD互相平分,即AO=CO=2,BO=DO= 5,根据勾股定理可以得到AB= 5。
根据三角形的面积公式可以得到平行四边形ABCD的面积是25。
二、难题1、已知平行四边形ABCD的对角线AC和BD相交于点O,且AC垂直于AB,BD垂直于CD,AC=4,BD=3。
求平行四边形ABCD的周长。
这道题是一道难题,需要学生灵活运用平行四边形的性质和判定来解决。
在解决这道题时,需要先根据已知条件求出AB的长度,再利用平行四边形的对边相等的性质求出平行四边形ABCD的周长。
由于这道题涉及到的知识点较多,很多学生难以全面掌握并灵活运用。
2、已知平行四边形ABCD的对角线AC和BD相交于点O,且OA=OC,OB=OD。
求证:平行四边形ABCD是矩形。
这道题是一道难题,需要学生通过证明两条对角线互相平分来证明平行四边形是矩形。
平行四边形及其性质【学习目的】1.理解平行四边形的概念,掌握平行四边形的性质定理和断定定理.2.能初步运用平行四边形的性质进展推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 理解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等〞。
“夹在两条平行线间的垂线段相等〞.【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD〞,读作“平行四边形ABCD〞.要点诠释:平行四边形的根本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:〔1〕平行四边形的性质定理中边的性质可以证明两边平行或者两边相等;角的性质可以证明两角相等或者两角互补;对角线的性质可以证明线段的相等关系或者倍半关系.〔2〕由于平行四边形的性质内容较多,在使用时根据需要进展选择.〔3〕利用对角线互相平分可解决对角线或者边的取值范围的问题,在解答时应联络三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的间隔:〔1〕定义:两条平行线中,一条直线上的任意一点到另一条直线的间隔,叫做这两条平行线间的间隔 .注:间隔是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1.如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即〔AO+OB+AB〕-〔BO+OC+BC〕=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC =4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2.平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,假如△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD 的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2〔AD+CD〕=2×40=80〔cm〕.∴平行四边形ABCD的周长为80cm.【总结升华】此题考察了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD的对角线AC.BD相交于点O,EF过点O且与AB.CD分别相交于点E.F,连接EC.〔1〕求证:OE=OF;〔2〕假设EF⊥AC,△BEC的周长是10,求平行四边形ABCD的周长.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△FDO和△EBO中∵OD OBFOD EOFDO EBBO ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO≌△EBO〔AAS〕,∴OE=OF;〔2〕解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD的周长=2〔BC+AB〕=20.3.如图,口ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,口ABCD的周长比△ABD的周长多10cm.∠BDE=35°.〔1〕求∠C的度数;〔2〕求AB和AD的长.〔1〕由于DE是AB边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,【思路点拨】根据平行四边形的性质得到∠C=55°;〔2〕由DE是AB边的垂直平分线,得到DA=DB,根据平行四边形的性质得到AD=BC,AB=DC,由于口ABCD的周长为52,于是得到AB+AD=26,根据口ABCD的周长比△ABD的周长多10,得到BD=16,AD=16〔cm〕,于是求出结论.【答案与解析】解:〔1〕∵DE是AB边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD,∴∠C=∠A=55°;〔2〕∵DE是AB边的垂直平分线,∴DA=DB,∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣〔AB+AD+BD〕=10,∴BD=16,∴AD=16〔cm〕,∴AB=26﹣16=10〔cm〕.【总结升华】此题主要考察了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4.如图1,P为Rt△ABC所在平面内任一点〔不在直线AC上〕,∠ACB=90°,M为AB 的中点.操作:以PA.PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.〔1〕请你猜测与线段DE有关的三个结论,并证明你的猜测;〔2〕假设将“Rt△ABC〞改为“任意△ABC〞,其他条件不变,利用图2操作,并写出与线段DE有关的结论〔直接写答案〕.【思路点拨】〔1〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;〔2〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可.【答案与解析】DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB〔SAS〕,∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.〔2〕解:DE∥BC,DE=BC.【总结升华】此题考察了平行四边形性质和断定,全等三角形的性质和断定,平行线的性质和断定的综合运用.举一反三:【变式】:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.〔1〕求证:∠ADE=∠CDF;〔2〕假如∠B=120°,求证:△DMN是等边三角形.【答案】证明:〔1〕∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.〔2〕证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5.如图1,直线m∥n,点A.B在直线n上,点C.P在直线m上;〔1〕写出图1中面积相等的各对三角形:△CAB与△PAB.△BCP与△APC.△ACO与△BOP__________________;〔2〕如图①,A.B.C为三个顶点,点P在直线m上挪动到任一位置时,总有__________△PAB 与△ABC的面积相等;〔3〕如图②,一个五边形ABCDE,你能否过点E作一条直线交BC〔或者延长线〕于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】〔1〕找出图①中同底等高的三角形,这些三角形的面积相等;〔2〕因为两平行线间的间隔是相等的,所以点C.P到直线n间的间隔相等,也就是说△ABC 与△PAB的公一共边AB上的高相等,所以总有△PAB与△ABC的面积相等;〔3〕只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:〔1〕∵m∥n,∴点C.P到直线n间的间隔与点A.B到直线m间的间隔相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB.△BCP与△APC,△ACO与△BOP;〔2〕∵m∥n,∴点C.P到直线n间的间隔是相等的,∴△ABC与△PAB的公一共边AB上的高相等,∴总有△PAB与△ABC的面积相等;〔3〕连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】此题主要考察了三角形的面积及平行线的性质,利用平行线间的间隔相等得到同底等高的三角形是解题的关键.创作人:历恰面日期:2020年1月1日。
n m平行四边形的性质—— 平行线间的距离及等面积问题设计人:遵义市第五十三中学 龙文艳一、教材分析:平行线间的距离处处相等是人教版八年级下册第十八章第一节《平行四边形》中平行四边形的性质的一个推论,在等面积问题以及一些相似问题的运用中,这个知识点运用比较广泛,尤其是将一些不便于求解面积的图形问题转化为便于求解的图形问题时,常常会用到这一知识点。
在本教学设计中,我对这堂课进行了教材整合,我将平行线间涉及三角形面积的问题归纳在一起在这一堂课中展示,这样,便于解题方法的总结。
本节课就平行四边形的性质而推导得出平行线间的距离处处相等,然后将涉及这一知识点的相关三角形的面积问题加以整合,在教学过程中,我把对学生的数学转化思想的培养作为重点.二、教学目标:1、让学生在探究归纳中,理解并掌握平行线间距离处处相等的性质;2、通过实例,教会学生运用“平行线间的距离处处相等”来解决一般三角形的面积问题;3、在图形的变换中,体会数学中的转换思想,培养学生的逻辑思维能力.三、教学重难点:重点:将一些不便于求解面积的三角形问题转化为便于求解的三角形问题的方法; 难点:在图形的转化过程中,体会并运用数学几何图形的转化思想.四、教学过程: (一)情境创设:如图,山坡上有两棵树,它们在直线AB 上,你能测量出两棵树距离有多远吗?(二)出示学习目标4、理解并掌握平行线间距离处处相等的性质;5、会运用平行线间距离处处相等解决一般三角形的面积问题;6、在图形的变换中体会数学中的转换思想. (三)自主学习: 1、知识准备:(1)三角形的面积公式是 。
(2)点到直线的距离是指过这个点所作直线的垂线段的 。
(3)两平行线间的距离是指 ,如图,m ∥n ,则直线m 与直线n 之间的距离是 。
(4)平行四边形中,对边 .同时,每一组对边都是另一组对边之间的平行线段,因此上述结论可以这样说:平行线之间的平行线段相等.2、解决情境创设中的问题。
八年级下册数学平行四边形难题平行四边形是在数学中常见的几何形状之一,它具有特殊的性质和规律。
在本文中,我们将介绍一些关于平行四边形的难题,帮助大家更好地理解和运用这个概念。
1. 平行四边形的基本性质平行四边形指的是具有两对平行边的四边形。
首先,我们来看一道简单的题目:题目:在平行四边形ABCD中,若AB = 5cm,BC = 8cm,且∠BAD = 60°,求DC的长度。
解析:根据平行四边形的性质,我们知道对边是相等的,即AD = BC = 8cm。
同时,根据三角形的角度和为180°的性质,我们可以计算出∠ADB = 180° - 60° - 90° = 30°,再利用正弦定理可以求得DC的长度。
2. 平行四边形的面积计算平行四边形的面积计算方法与矩形相同,即面积等于底边乘以高。
下面是一个稍微复杂些的问题:题目:在平行四边形ABCD中,AB = 6cm,AD = 8cm,且∠ADC = 120°,求平行四边形ABCD的面积。
解析:我们可将平行四边形分成两个三角形和一个梯形。
首先,利用正弦定理可以计算出∠DAB = 180° - 120° = 60°。
然后,我们可以通过计算三角形的面积来求得梯形ABCD的面积。
这里使用的公式是:面积 = 底边乘以高除以2。
通过计算两个三角形的面积之和,再减去梯形内部的三角形的面积,即可得到平行四边形ABCD的面积。
3. 平行四边形的角度性质平行四边形的角度和为360°,其中对角线之间交叉的角是互补角。
我们来看一个与角度性质相关的问题:题目:在平行四边形ABCD中,已知∠A = 100°,求∠BCD 的度数。
解析:根据平行四边形的角度性质,我们可以得出∠ABC = 180° - ∠A = 80°。
由平行四边形的性质可知∠BCD = 180° - ∠ABC = 100°。