全等三角形SAS练习题(基础)
- 格式:doc
- 大小:38.50 KB
- 文档页数:3
11.2 全等三角形的判定(2) SAS1.如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2.能判定△ABC ≌△A ′B ′C ′的条件是( )(A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD= , 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.4.如图,已知BD=CD ,要根据“SAS”判定△ABD ≌△ACD , 则还需添加的条件是 。
5.如图,AD=BC ,要根据“SAS”判定△ABD ≌△BAC , 则还需添加的条件是 7.如图,AC 与BD 相交于点O ,已知OA=OC ,OB=OD , 求证:△AOB ≌△COD8.已知:如图,AB=CB ,∠1=∠2 ,△ABD 和△CBD 全等吗?说明理由。
9. 已知:如图,△ABC 中, AD ⊥BC 于D ,AD=BD , DC=DE , ∠C=50°。
求∠ EBD 的度数。
10.已知:如图,AB=AC ,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE 。
11、(能力提升)如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.。
【巩固练习】一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( )A.△ABC ≌△'''A C BB. △ABC ≌△'''A B CC. △ABC ≌△'''C A BD. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. 下列判断正确的是( )A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC ⊥ACB.EC =ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD(SSS)10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置.2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】D ;4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】BC =ED ;10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中D C BAAB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。
【巩固练习】-、选择题2.如图,已知AB= CD AD- BC,则下列结论中错误的是()A.AB // DCB. / B=Z DC. / A=Z CD.AB = BC3. 下列判断正确的是()A. 两个等边三角形全等B. 三个对应角相等的两个三角形全等C. 腰长对应相等的两个等腰三角形全等D. 直角三角形与锐角三角形不全等4. 如图,AB CD EF相交于O,且被O点平分,DF= CE BF= AE则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对B.角边角C.边边边AB丄BD于B, ED± BD于D, AB= CD1. (2015?莆田)女口图,AE// DF, AE=DF 要使△ EA3A FDB 需要添加下列选项中的B. EC=BFC. / A=ZDD. AB=BC5. 如图,将两根钢条AA' , BB'的中点O连在一起,就做成了一个测量工件,则A'B'的长等于内槽宽使AA', BB'可以绕着点O自由转动,AB,那么判定厶OAB^A OA'B'的理A.边角边6.如图,已知A.EC 丄ACA. AB=CDB.EC = ACC.ED + AB = DBD.角角边BC= ED,以下结论不正确的是(D.DC = CB12.、填空题如图,AB= CD AC= DB,Z ABD= 25°,/ AOB= 82°,则/ DCB=点D在AB上,点E在AC上, CD与BE相交于点0,且AD= AE, AB= AC,若/ B = 贝y C= .,△ AD®7.AC BD互相平分,则图中全等三角形共有(2015?虎林市校级二模)如图,已知BD=AC,那么添加一个条件后,能得11.8.9.,/ 3= 26°,则/ CBBAC= ABC^如图,20°,12.三、解答题13. (2014春?章丘市校级期中)如图A B两点分别位于一座小山脚的两端,小明想要测量A、B两点间的距离,请你帮他设计一个测量方案,测出AB的距离.并说明其中的道理.14•已知:如图,AB // CD , AB = CD .求证:AD // BC .分析:要证AD// BC只要证/ ________ =Z __________ ,又需证______ 也_______ .证明:••• AB // CD ( ),二 / ________ =/ _________ ( ),在厶 ______ 和厶_____ 中,_____ 二____ ( ),< _____ = _____ (),、---- = -------- ()‘•••△_______ A___________ ( ).二 / ________ =/ ______ ( ).•- _____ // ______ ( ).15.如图,已知AB= DC AC= DB, BE= CE求证:AE= DE.【答案与解析】一. 选择题1. 【答案】A;【解析】解:••• AE// FD,•••/ A=Z D,•/ AB=CD•AC=BD在厶AEC和厶DFB中,f AE=DF-ZA=ZD,AC=DBk•△EAC^A FDB( SAS ,故选:A.2. 【答案】D;【解析】连接AC或BD证全等.3. 【答案】D;4. 【答案】C;【解析】△ DOF^A COE △ BOF^A AOE △ DOB^A COA.5. 【答案】A;【解析】将两根钢条AA' , BB'的中点O连在一起,说明OA= OA', OB= OB',再由对顶角相等可证•6. 【答案】D;【解析】△ ABC^^ EDC Z ECD^Z ACB=Z CA聊/ ACB= 90°,所以ECL AC, ED + AB = BC+ CD= DB.二. 填空题7. 【答案】66°;82 °【解析】可由SSS证明厶ABC^A DCB Z OBC=Z OCB= 41 , 所以Z DCB=2Z ABC= 25°+ 41 °= 66°8. 【答案】4;【解析】△ AOD^A COB △ AOB^A COD △ ABD^A CDB △ ABC^A CDA.9. 【答案】BC=AD ;【解析】解:添加BC=AD ,r AC=BD•••在△ ABC 和厶BAD 中」BC=AD ,i AB 二AB•△ ABC ◎△ BAD ( SSS),故答案为:BC=AD .10. 【答案】56°;【解析】Z CBE= 26°+ 30°= 56° .11. 【答案】20°;【解析】△ ABE^A ACD( SAS12. 【答案】△ DCB △ DAB【解析】注意对应顶点写在相应的位置上.三. 解答题13. 【解析】解:如图所示:在AB下方找一点O,连接BO并延长使BO=B O,连接AQ并延长使AO=A O,在厶AOB和厶A OB中:f AO=OA?“ ZAOB=ZA V0B y,QB 二OB'•••△AOB2A A OB ( SAS, ••• AB=A B ,量出A B'的长即可.14. 【解析】3, 4;ABD CDB已知;1, 2;两直线平行,内错角相等;ABD CDBAB, CD已知;/ 1 = 7 2,已证;BD= DB公共边;ABD CDB SAS3 , 4,全等三角形对应角相等;AD, BC内错角相等,两直线平行15. 【解析】证明:在厶ABC^n^ DCB中AB = DCAC = DBBC =CB• △ABC^A DCB(SSS•••7 ABC=7 DCB 在厶ABE和△ DCE中AB = DCABC = DCBBE =CE•••△ ABE^A DCE( SAS ••• AE= DE.。
O D C B AP E D C BA 11.2三角形全等的判定(二)课后练习设计:吉裕艳 夏晓芳 审核:冒光明 班级______姓名_________学号____得分_______1.△ABC 和△A′B ′C ′中若AB=A′B ′,B C = B ′C ′ ,则补充条件 ________________可得到△ABC ≌△A′B ′C ′. 2.如图,AB 、CD 相交于O ,且AO =OB 观察图形,图中已具备的另一个相等的条件是 , 联想SAS 公理,只需补充条件 ,则有△AOC ≌△BOD 。
第2题图3.下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D , BC=EFB. AB=BC ,∠B=∠E , BE=EFC. AB=EF ,∠A=∠D , AC=DFD. BC=EF ,∠C=∠F , AC=DF4.下面命题错误的是( )A .边长相等的两个等边三角形全等B .两条直角边对应相等的两个直角三角形全等C .有两条边对应相等的两个等腰三角形全等D .形状和大小完全相同的两个三角形全等5.如图所示,△ABD 和△CBD 都是等边三角形,AC 与BD 交于点O ,图中全等三角形的对数有( ) A.2对 B.4对 C.6对 D.8对第5题图 第6题图6.如图所示,已知AB=AC ,PB=PC ,下面结论:(1)EB=EC ;(1)AD ⊥BC ;(3)AE 平分∠BEC ;(4)∠PBC =∠PCB ,其中正确的是( )A.1个B.2个C.3个D.4个7.如图,∠DAB =∠CAE ,AB =AE ,AD =AC ,求证:BC =DE.ODC B A ED CB A21C B AE DF E D C B A 8.已知,如图所示,BE=DF ,AE=CF ,AE ∥CF ,求证:AD ∥BC9.已知如图所示,AB=AD ,BC=DE ∠1=∠2,求证:(1)AC=AE (2)∠CAE =∠CDE10.如图,△ABC 为等边三角形,点M 、N 分别在BC 、AC 上,且BM=CN ,AM 与BN 交于Q 点,当点M 在BC 上移动时,∠AQN 的的大小是否变化?证明你的结论。
1、如图,AB=AC ,BD=CD ,求证:∠1=∠2.
2.如图, DA DB = ,AC BC =。
求证:DAC
DBC ∆≅∆
3、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .
4、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.
5.如图,点E,F在BD上,且AB=CD,BF=DE,AE=CF,AC与BD相交于点O.求证:AE∥CF.
6、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.
⑴请你添加一个条件,使△DEC≌△BFA;
⑵在⑴的基础上,求证:DE∥BF.
C B A 7、如图6,已知AB=A
D ,AC=A
E ,∠1=∠2,求证∠ADE=∠B.
8、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?
9.如图,已知在ABC △中,AB AC =,12∠=∠.
求证:AD BC ⊥,BD DC =.
A C
2 1
3 4
10. 如图,CF BE =, DC AB =, C B ∠=∠ ,求证:DCE ABF ∆≅∆
11.如图,点C 是BD 的中点 ,EC AC =, , ECB ACD ∠=∠ ,求证:EDC ABC ∆≅∆
12.如图,点M ,N 在线段AC 上,AM =CN ,AB ∥CD ,AB =CD.求证:∠1=∠2.。
全等三角形S A S专题练习全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。
5.如图,AD=BC,要根据“SAS”判定△ABD≌△BAC,则还需添加的条件是6.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.解:∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵∴△ABD≌△ACD()7.如图,AC与BD相交于点O,已知OA=OC,OB=OD,第1题第3题第4题第6题第5题求证:△AOB≌△COD证明:在△AOB和△COD中∵∴△AOB≌△COD( )8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE 。
10.已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。
求∠ EBD的度数。
第7题【经典练习】1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△C B A ''',那么你加的条件是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B '2.下列各组条件中,能判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ;CA=CD B.CA=CD ;∠C=∠F ;AC=EFC .CA=CD ;∠B=∠E D.AB=DE ;BC=EF ,两个三角形周长相等 3.已知△ABC 的6个元素,则下面甲乙丙三个三角形中,和△ABC 全等的图形是( )A.甲和乙B. 乙和丙C. 没有乙D. 没有甲4.如图工作师傅做门时,常用木条EF 固定矩形门框ABCD ,使其不变形这种做法根据是( ).A 、两点之间线段最短B 、矩形的对称性C 、矩形的四个角都是直角D 、三角形的稳定性5.如果△ABC ≌△DEF ,且△ABC 的周长95cm ,A 、B 分别与D 、E 对应并且AB=30cm ,DF=25 cm ,那么BC 的长等于( )A .40cmB .35cmC .30cmD .25cm 6.如图,AB ∥DE ,CD=BF ,若△ABC ≌△DEF ,还需要补充的条件可以是( )A .AC=EFB .AB=DEC .∠B=∠ED .不用补充 7.如图,∠CAB =∠DBA ,AC=BD ,则下列结论中,不正确的是( )A 、BC=ADB 、CO=DOC 、∠C =∠D D 、∠AOB=∠C +∠DAC B 50°50°72° a bcab c 甲D A C A D FE8.如图,AB=AC ,若AD 平分∠BAC ,则AD 与BC9.阅读理解题:如图:已知AC ,BD 相交于O,OA=OB ,OC=OD. 那么△ABC 与△BAD 全等吗?请说明理由.△ABC 与△BAD 全等吗?请说明理由.小明的解答: 21∠=∠AOD ≌△BOC而BAD=△AOD+△ADB △ABC=△BOC+△AOB所以△ABC ≌△BAD(1)你认为小明的解答有无错误;(2)如有错误给出正确解答;10.如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究11.如图,AE 是,BAC 的平分线∠AB=AC(1)若D 是AE 上任意一点,则△ABD ≌△ACD (2)若D 是AEBCDOA=OOD=OD12.如图,已知AB=AC ,EB=EC ,请说明BD=CD 的理由13. 如图,△ABC ,△BDF 为等腰直角三角形。
11.2 三角形全等的判定(SAS)◆课堂测控测试点 SAS1.如图,∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需要加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB2.不能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,BC=B′C′,∠B=∠B′B.∠B=135°,∠C′=135°,AB=B′C′,BC=C′A′C.AB=BC=CA,A′B′=B′C′=C′A′,∠A=∠A′D.AB=A′B′,AC=A′C′,∠A=∠A′=135°3.如图,点D在AB上,点E在AC上,且AD=AE,AB=AC,•若∠B=•20•°,•则∠C=_____.4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.◆课后测控5.如图,∠1=∠2,BC=EF,那么需要补充一个直接条件________(•写出一个即可),才能使△ABC≌△DEF.(第5题) (第6题) (第7题)6.如图,已知AB=AE,AC=AD,只要找出∠____=∠_____或∠____=∠____,就可证得△_____≌△______.7.如图,AD=AE,BE=CD,∠1=∠2,则∠B=_____,图中有____对三角形全等,请写出来_______.8.如图,已知AB⊥BD于B,ED⊥BD于D,点C在BD上,AB=CD,BC=ED,则∠ACE=_______.9.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC10.如图,已知AD是△ABC的中线,在AD及其延长线上截取DE=DF,•连结CE,BF。
求证:BF∥CE.11.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD,•求证:AB=CD.12.已知:如图,AE=CF,AD∥BC,AD=CB,求证:△ADF≌△CBE.◆拓展测控13.(变式题)如图(1),A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF.•由上题结论可知:△AFC≌△DEB.探究:如果将BD沿着AD边的方向平行移动,如图(2),(3)时,•其余条件不变,结论是否成立,如果成立,请选择其中一个图形予以证明;如果不成立,•请说明理由.答案:1.B (点拨:夹∠1,∠2的另一边分别为AC 和BD ) 2.C (点拨:没有对应边相等)3.20° (点拨:根据已知条件可得△ABE ≌△ACD ,有∠B=∠C ) 4.证明:∵BE=CF ,∴BE+EF=CF+EF , 即BF=CE .在△ABF 和△DCE 中,,,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE (SAS ),∴AF=DE .[总结反思]两边及其夹角对应相等的两个三角形全等. 5.AC=DF (点拨:根据夹角选择边)6.EAD BAC BAE CAD AED ABC (点拨:依据两边找夹角) 7.∠C 两 △ABD ≌△ACE △ABE ≌△ACD(点拨:可直接得△ABD ≌△ACE ,从而∠B=∠C ,AB=AC ,进而由SAS 可得△ABE•≌△ACD ) 8.90° (点拨:易知△ABC ≌△CDE ,有∠A=∠DCE ,因为∠A+∠ACB=90°,•所以∠DCE+∠ACB=90°,故∠ACE=90°)9.C (点拨:由∠1=∠2得∠BAD=∠CAE ,即可运用SAS ,同时注意有两边和其中一边的对角对应相等的两个三角形不一定全等) 10.证明:∵AD 为中线,∴BD=CD ,在△BDF 和△CDE 中,,,,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CDE (SAS ). ∴∠F=∠CED ,∴BF ∥CE .[解题规律]直接运用SAS 可证△BDF ≌△CDE ,注意隐含条件对顶角相等的运用. 11.证明:∵OP 是∠AOC 和∠BOD 的平分线, ∴∠AOP=∠COP ,∠BOP=∠DOP . ∴∠AOB=∠COD .在△AOB 和△COD 中,,,.OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ),∴AB=CD .[解题技巧]运用等式性质得夹角∠AOB=∠COD 是证明的关键. 12.∵AE=CF ,∴AE-EF=CF-EF ,即AF=CE . 又∵AD ∥CB (已知),∴∠A=∠C . 在△ADF 和△CBE 中,,,,AD CB A C AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CBE (SAS ),[解题规律]间接的已知条件必须进行加工,如本题中AE=CF 不能直接用,•可运用等式性质加工成AF=CE .13.解:(2),(3)中结论依然成立,选择(3)证明. ∵AB=CD ,∴AB+BC=CD+BC ,即AC=DB . ∵DE ∥AF ,∴∠A=∠D .在△AFC 和△DEB 中,,,AF DE A D AC DB =⎧⎪∠=∠⎨⎪=⎩∴△AFC ≌△DEB (SAS ).[解题方法]对于探究结论的题可解题方法是:(1)图形在运动过程中,•哪些量发生了变化,哪些量是没有变化,原来的等线段,等角还是否存在,是解题关键;(2)几种变化得到的之间存在必然的内在联系,证明的方法必然相似.。
AC.=C A AB,=B A AC,A C AB,A B ,:1''⊥'⊥'如图、已知 求证:△ABC ≌△AB ’C ‘
2、已知:如图,△ABC 中,点E 、F 分别在AB 、AC 边上,点D 是BC 边中点,且 DF ∥AB,BE=DF .求证: △BED ≌△DFC
3、已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4
4、已知:如图 , AB=DC ,AD=BC , ∠DAB=∠BCD ,求证:△ABD ≌△CDB
5、已知:如图,AB=AC,AE 平分∠BAC.求证:∠DBE=∠DCE .
6、已知:如图,AB=CD , AE=DF , AB ∥CD .D 、E 、F 、A 在同一条直线上。
求证:△ABE ≌△DCF
第1题
第2题 第3题
第4题 第5题
7、已知:如图,∠1=∠2,BD=CD,求证:AD是∠BAC的平分线.
8、已知:如图,AD是BC上的中线,且DF=DE.求证:BE∥CF.
9、已知:如图, AC=DF,AC∥FD,AB=DE,求证:△ABC≌△DEF
10、已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.
求证:AC∥DF
11、已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB 第8题
第9题
第10题
第11题第7题
12、如图,点C是AB中点,CD∥BE,且CD=BE,试探究AD与CE的关系。
B E
第12题。