数字频率计设计与仿真
- 格式:pdf
- 大小:721.68 KB
- 文档页数:20
河北联合大学2011级本科课程设计简易数字频率计的设计姓名: 张如林学号: 201114050113班级: 11电气1班2013年12月18摘要 (1)一,概述 (2)二,方案设计 (2)1.设计题目 (2)2.设计任务和要求 (2)3.程序设计思路 (2)三,单元电路设计与Multisim仿真分析 (3)1.1Hz时基电路 (4)2.六进制计数器门控电路 (4)3.NE555施密特整形电路 (7)4.计数、锁存、驱动、显示电路 (7)5.整体仿真电路 (7)四,总原理图及元器件清单 (8)1.总原理图 (8)2.元器件清单 (9)五.结论 (10)六.心得体会 (10)七.参考文献 (11)八.附录 (12)在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。
在计算机及各种数字仪表中,都得到了广泛的应用。
在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。
1一、概述频率是周期信号每秒钟内所含的周期数值。
输入电路:由于输入的信号可以是正弦波,方波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益时,被测信号得以放大。
一、实验名称数字频率计的设计二、实验地点211楼303三、实验目的和任务(1) 了解数字电路设计的基本特点(2) 了解数字频率计电路的基本原理(3) 基本掌握ISE 软件的使用(设计输入、仿真、实现)(4) 了解可编程逻辑器件(FPGA )的一般情况(5) 基本掌握HDL 的使用四、实验内容(1) 设计出符合设计要求的解决方案(2) 设计出单元电路(3) 利用EDA 软件对各单元电路及整体电路进行仿真(4)利用EDA 软件在ELB 电子课程设计实验板实现设计(5) 观察实验结果五、项目需用仪器设备名称以及所需主要元器件PC 机、EDA教学实验系统一台,带有(SPARTAN -3A XC3S200A芯片,LED 管, 七段数码管等)的实验板一块, 跳线、下载电缆一根,函数发生器。
六、实验任务与要求频率测量范围为10Hz~10MHz,用6只数码管以kHz为单位显示测量结果;有三个带锁按键开关(任何时候都只会有一个被按下)用来选择1S、0.1S和0.01S三个闸门时间中的一个;有一个按钮开关用来使频率计复位;有两只LED,一只用来显示闸门的开与闭,另一只当计数器溢出时做溢出指示。
数字频率计的相关技术指标如下:1、位数:测量频率通过LED数码管为六位十进制数显示。
2、测试频率范围为:10HZ-10MHZ。
3、计数器溢出时要有溢出标志over。
4、需要有闸门标志gate。
5、显示工作方式:a、用BCD七段共阳极数码管显示读数,只有在读数不发生跳变时才是正确的结果。
b、采用记忆显示方法,即在一次测试结束时,显示测试结果,此显示值一直保留到下次测量显示数到来,才将上次显示更新。
用第二次测试结果,更新显示值。
6、要求被测输入信号应是符合数字电路要求的脉冲波。
七、verilog设计环境介绍VerilogVerilog HDL是目前应用最为广泛的硬件描述语言.Verilog HDL可以用来进行各种层次的逻辑设计,也可以进数字系统的逻辑综合,仿真验证和时序分析等。
完整word版,数字频率计仿真实验报告编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版,数字频率计仿真实验报告)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为完整word版,数字频率计仿真实验报告的全部内容。
上海电力学院课题名称数字频率计课题代码 201 院(系)电力与自动化工程学院专业电气工程及其自动化班级学号及姓名时间指导教师签名:教研室主任(系主任)签名:任务书一、目的1、了解并掌握电子电路的一般设计方法,具备初步的独立设计能力.2、通过查阅手册和文献资料,进一步熟悉常用电子器件的类型和特性,并掌握合理选用的原则;进一步掌握电子仪器的正确使用方法。
3、学会使用EDA软件Multisim对电子电路进行仿真设计.4、初步掌握普通电子电路的安装、布线、调试等基本技能.5、提高综合运用所学的理论知识独立分析和解决问题的能力,学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。
二、设计内容、要求及设计方案1、任务设计并制作1个数字式频率计。
2、基本要求1)被测信号为TTL脉冲信号。
2)显示的频率范围为00~99Hz。
3)测量精度为±1 Hz.4)用LED数码管显示频率数值.3、扩展部分1)输入信号为正弦信号、三角波,幅值为l0mV。
2)显示的频率范围为0000~9999Hz.3)提高测量的精度至0.1Hz.4、设计方案频率是指单位时间(1s)内信号振动的次数。
从测量的角度看,即单位时间测得的被测信号的脉冲数。
电路的方框图如图1所示。
被测信号送入通道,经放大整形后,使每个周期形成一个脉冲,这些脉冲加到主门的A输入端,门控双稳输出的门控信号加到主门的B输入端。
基于Proteus的数字频率计设计与仿真摘要:本文主要论述了利用单片机AT89C51进行频率、周期、时间间隔、占空比测量的设计过程。
该频率计采用测量N个信号波形周期的算法,充分利用单片机AT89C51中三个可编程定时/计数器,结合部分中规模数字电路,克服了基于传统测频原理的频率计的测量精度随被测信号频率的下降而降低的缺点,实现了频率、周期、时间差、占空比的高精度测量,结果的显示。
该数字频率计的硬件系统电路由前置整形电路、分频电路、基准信号源、单片机电路和数字显示电路构成。
其中单片机电路又由单片机、数据选择器、键盘、状态指示电路构成。
软件系统由主程序、键盘子程序、显示子程序、测量子程序、脉冲高、低电平宽度测量子程序构成,由汇编语言编写。
通过硬件系统和软件系统的相互配合,成功的实现了频率、周期、时间差、占空比的高精度测量,系统的自校和测量结果的显示。
关键词:数字频率计;周期;单片机Digital Frequency Measure Design and Simulation Based on ProteusAbstract:This article mainly discusses the design process of us ing single-chip AT89C51to measure frequency, cycle, time interval and duty cycle. U s ing the algorithm of measur ing N signal cycle, mak ing full use of the three programmable timer / counter of single-chip AT89C51, combined with some digital circuits, t he frequency meter overcome s the shortcomings of the measurement accuracy reduces with the reduction of the frequency of the measured signal by t he frequency meter based on the principle of traditional measurement of frequency , achieves high-precision measurements of the frequency, cycle, time difference and duty cycle, displays the results. The hardware system circuit s of the digital frequency meter is made up of the pre-shaping circuit, sub-frequency circuit, reference signal source, single-chip circuit, digital display circuit and DC power supply regulator circuit. Of it, the s ingle-chip circuit consists of single-chip, data selector and keyboards. The s oftware system is made up of main program, keyboard s ubroutine, display subroutine, measurement subroutine, pulse high and low level width measurement subroutine, prepared by the assembly language. T hrough the cooperat ion with each other of the h ardware system and software system,t he frequency meter successfully achieves high-precision measurements of frequency,cycle, time difference, and duty cycle, finishes s ystem calibration and the display of measurement results.Keywords:d igital frequency meter;cycle; single-chip1绪论·1.1课题研究的意义随着科学技术的发展,尤其是单片机技术和半导体技术的高速发展,频率计的研究及应用越来越受到重视,这样对频率测量设备的要求也越来越高。
基于Proteus的数字频率计设计与仿真摘要:本文主要论述了利用单片机AT89C51进行频率、周期、时间间隔、占空比测量的设计过程。
该频率计采用测量N个信号波形周期的算法,充分利用单片机AT89C51中三个可编程定时/计数器,结合部分中规模数字电路,克服了基于传统测频原理的频率计的测量精度随被测信号频率的下降而降低的缺点,实现了频率、周期、时间差、占空比的高精度测量,结果的显示。
该数字频率计的硬件系统电路由前置整形电路、分频电路、基准信号源、单片机电路和数字显示电路构成。
其中单片机电路又由单片机、数据选择器、键盘、状态指示电路构成。
软件系统由主程序、键盘子程序、显示子程序、测量子程序、脉冲高、低电平宽度测量子程序构成,由汇编语言编写。
通过硬件系统和软件系统的相互配合,成功的实现了频率、周期、时间差、占空比的高精度测量,系统的自校和测量结果的显示。
关键词:数字频率计;周期;单片机Digital Frequency Measure Design and Simulation Based on ProteusAbstract:This article mainly discusses the design process of us ing single-chip AT89C51to measure frequency, cycle, time interval and duty cycle. U s ing the algorithm of measur ing N signal cycle, mak ing full use of the three programmable timer / counter of single-chip AT89C51, combined with some digital circuits, t he frequency meter overcome s the shortcomings of the measurement accuracy reduces with the reduction of the frequency of the measured signal by t he frequency meter based on the principle of traditional measurement of frequency , achieves high-precision measurements of the frequency, cycle, time difference and duty cycle, displays the results. The hardware system circuit s of the digital frequency meter is made up of the pre-shaping circuit, sub-frequency circuit, reference signal source, single-chip circuit, digital display circuit and DC power supply regulator circuit. Of it, the s ingle-chip circuit consists of single-chip, data selector and keyboards. The s oftware system is made up of main program, keyboard s ubroutine, display subroutine, measurement subroutine, pulse high and low level width measurement subroutine, prepared by the assembly language. T hrough the cooperat ion with each other of the h ardware system and software system,t he frequency meter successfully achieves high-precision measurements of frequency,cycle, time difference, and duty cycle, finishes s ystem calibration and the display of measurement results.Keywords:d igital frequency meter;cycle; single-chip1绪论·1.1课题研究的意义随着科学技术的发展,尤其是单片机技术和半导体技术的高速发展,频率计的研究及应用越来越受到重视,这样对频率测量设备的要求也越来越高。
目录1. 引言 (1)2.设计任务书 (2)3. 数字频率计基本原理 (3)3.1 设计思路 (3)3.2 原理框图 (3)4. 设计步骤及实现方法 (4)4.1 信号拾取与整形 (4)4.2 计数电路 (5)4.3锁存电路 (6)4.4 译码显示电路 (7)4.5 时钟电路及波形设计 (9)5 总体电路图及工作原理 (13)6 元器件的检测与电路调试缺点分析 (14)7 心得体会 (15)参考文献 (16)1. 引言数字频率计是一种基础测量仪器,在许多情况下,要对信号的频率进行测量,利用示波器可以粗略测量被测信号的频率,精确测量则要用到数字频率计。
本设计项目可以进一步加深我们对数字电路应用技术方面的了解与认识,进一步熟悉数字电路系统设计与调试的方法和步骤。
2.设计任务书1、设计题目:数字频率计2、设计出一个数字频率计,其技术指标如下:( 1 )频率测量范围: 10 ~ 9999Hz 。
( 2 )输入电压幅度 >300mV 。
( 3 )输入信号波形:任意周期信号。
( 4 )显示方式:4位十进制数显示。
( 5 )电源: 220V 、 50Hz 。
3、给定仪器设备及元器件示波器、音频信号发生器、逻辑笔、万用表、数字集成电路测试仪、直流稳压电源。
4.电路原理要求简单,便于制作调试,元件成本低廉易购。
3. 数字频率计基本原理3.1 设计思路(1)利用光电开关管做电机转速的信号拾取元件,在电机的转轴上安装一圆盘,在圆盘上挖一小洞,小洞上下分别对应着光发射和光接受开关,圆盘转动一圈既光电管导通一次,利用此信号做为脉冲计数所需。
(2)计数脉冲通过计数电路进行有效的计数,按照设计要求每一秒种都必须对计数器清零一次,因为电路实行秒更新,所以计数器到译码电路之间有锁存电路,在计数器进行计数的过程中对上一次的数据进行锁存显示,这样做不仅解决了数码显示的逻辑混乱,而且避免了数码显示的闪烁问题。
(3)对于脉冲记数,有测周和测频的方式。
摘要本论文主要介绍应用Multisim2001软件进行数字频率计的设计与仿真。
数字频率计是用数字显示被测信号频率的仪器,广泛应用于机械振动的频率、转速、声音的频率以及产品的计件等等。
Multisim操作简单方便,易于学习和掌握。
应用Multisim2001软件可以进行电子电路的设计与仿真。
本论文通过数字频率计的设计与仿真反映了应用Multisim2001软件进行电子电路的设计与仿真提高了电子电路设计的效率,节省了设计者的时间、设备。
关键词:数字频率计 Multisim 设计与仿真目录前言第一章 Multisim2001软件简单介绍1.1 Multisim2001简介1.2 Multisim2001的用户界面1.2.1 菜单栏1.2.2 工具栏1.2.3 Multisim2001对元器件的管理1.3 在Multisim2001软件上绘制仿真电路1.3.1 绘制仿真电路的过程1.3.2 在Multisim2001软件上创建电路图第二章课题设计2.1 主要技术要求2.2 设计方案图2.3 电路简述2.4单元电路的设计与仿真致谢参考文献附件:附录图1 在Mutilsim中设计的总电路图附录图2 被侧信号100Hz时的仿真结果图附录图3 被侧信号45Hz时的仿真结果图前言数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。
电子计算机的飞速发展有效地解决了这个问题。
Multisim软件的良好信誉以及Multisim的卓越表现使之很快成为众多EDA用户的首选软件。
Multisim操作简单方便,易于学习和掌握。
并且能弥补设备种类和数量不足,充分扩展学生的思维空间,给他们更大的自由发挥的天地。
使学生可以根据不同需要无限制地进行各种电路分析实验,验证实验,常规实验,设计实验。
数字频率计设计一、实验目的1、了解等精度测频的方法和原理。
2、掌握如何在FPGA 内部设计多种功能模块。
3、掌握VHDL 在测量模块设计方面的技巧。
二、实验原理所谓频率就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T(也称闸门时间)内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T由上面的表示式可以看到,若时间间隔T 取1s,则f=N。
由于闸门的起始和结束的时刻对于信号来说是随机的,将会有一个脉冲周期的量化误差。
进一步分析测量准确度:设待测信号脉冲周期为Tx,频率为Fx,当测量时间为T=1s时,测量准确度为δ=Tx/T=1/Fx。
由此可知这种直接测频法的测量准确度与被测信号的频率有关,当待测信号频率较高时,测量准确度也较高,反之测量准确度较低。
因此,这种直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。
若要得到在整个测量频段内的测量精度保持不变的要求,应该考虑待精度频率测量等其它方法。
等精度频率测频的实现方法,可以用图23-1 所示的框图来实现。
三、实验内容本实验要完成的任务就是设计一个频率计,系统时钟选择核心板上的20M 的时钟,闸门时间为1s(通过对系统时钟进行分频得到),在闸门为高电平期间,对输入的频率进行计数,当闸门变低的时候,记录当前的频率值,并将频率计数器清零,频率的显示每过2 秒刷新一次。
被测频率通过一个拨动开关来选择是使用系统中的数字时钟源模块的时钟信号还是从外部通过系统的输入输出模块的输入端输入一个数字信号进行频率测量。
当拨动开关为高电平时,测量从外部输入的数字信号,否则测量系统数字时钟信号模块的数字信号。
其实现框图如下图在本实验中,用到的模块有数字信号源模块、拨动开关模块、20M 系统时钟源模块、数码管显示模块等。
其中数码管、数字信号源、拨动开关与FPGA的连接电路和管脚连接在以前的实验中都做了详细说明,这里不在赘述。
《电子仿真技术》实训报告题目简易数字频率计的设计、仿真所在学院电子信息工程学院专业班级***学生姓名 *** 学号***指导教师 ***完成日期 * 年* 月* 日一.设计思路(1)电路简述所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。
可见数字频率计主要由闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。
数字频率计的主要功能是测量周期信号的频率。
频率是单位时间(1S )内信号发生周期变化的次数。
如果我们能在给定的1S 时间内对信号波形计数,数值保持及自动清零,并将计数结果在显示器上显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。
可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键。
(2)任务目标利用multisim9.0软件设计一个简易数字频率计,其基本要求是:1. 被测信号的频率范围1KHZ~100MHZ(理想频率范围);2. 被测信号可以为正弦波、三角波或方波信号;3. 四位数码管显示所测频率,并用发光二极管表示单位。
简易数字频率计仿真设计报告班级学号姓名平时成绩答辩成绩报告成绩总分122039304 杨现涛30122039310 郭慧泽30目录一、设计要求 (2)二、设计过程 (2)三、元器件清单 (3)四、电路连线图 (4)放大整形电路图 (4)单脉冲发生器电路图 (4)闸门电路电路图 (5)计数部分电路图 (5)译码显示电路图 (6)整体电路图 (7)五、实验(仿真结果) (8)六、出现的问题及解决方法 (8)一)设计要求1)设计一个单脉冲发生器,其脉冲宽度t 与手动按钮时间长短无关,与两次按钮的时间间隔无关,仅与时钟脉冲频率有关,且有下列关系:t=1/f12)设计一个四位十进制计数器,实现0000-9999计数。
3)将上述两种电路图组成一个简易数字式频率计。
实现如图效果: F2 F1 0-1 1清零信号1清11111清零清零信号二、设计过程根据实验要求,要完成数字式频率计的设计任务就要了解其中包含的电路以及用到的知识及元器件。
首先经过查阅资料了解数字是频率计的原理和工作过程,下面简单介绍一下数字是频率计。
数字式频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物频率进行测 量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经 过传送带的产品数量等等,这些物理量的变化情况可以有关传感器先转变成周 期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出 来。
闸门电路译码显示电路闸门控制信号产生的电路(t )计数电路其次是了解本次试验设计的频率计的工作原理和具体工作过程,本次的频率计基本上与以往的频率计大同小异,首先要设计的是一个放大整形电路,通过采用555多谐振荡器件把输入到频率计的各种波形整形成标准的方波以便进行取样计数。
然后设计的是一个闸门控制信号产生电路,使其输入1hz基准频率能够产生一个脉冲宽度为1s的单脉冲,同时该电路接上一个0-1手动按钮,按下按钮该电路能够发出两种信号,一种为宽度为1s的单脉冲控制闸门的开启,开启时间为1s,另一种为清零信号,输入到计数器中,使计数器清零。
数字频率计设计报告一内容提要:数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.本文粗略讲述了我在本次实习中的整个设计过程及收获。
二设计内容及要求:要求设计一个简易的数字频率计,其信号是给定的脉冲信号,是比较稳定的。
1.测量信号:方波;2.测量频率范围: 1Hz~999Hz ;3.显示方式: 3位十进制数显示;4.时基电路由 555 定时器产生;三设计思路及原理:数字频率计由四部分组成:时基电路、闸门电路、逻辑控制电路以及可控制的计数、译码、显示电路。
由555 定时器,分级分频系统及门控制电路得到具有固定宽度T的方波脉冲做门控制信号,时间基准T称为闸门时间.宽度为T的方波脉冲控制闸门的一个输入端B.被测信号频率为fx,周期Tx.到闸门另一输入端A.当门控制电路的信号到来后,闸门开启,周期为Tx的信号脉冲和周期为T的门控制信号结束时过闸门,于输出端 C 产生脉冲信号到计数器,计数器开始工作,直到门控信号结束,闸门关闭.单稳1的暂态送入锁存器的使能端,锁存器将计数结果锁存,计数器停止计数并被单稳2暂态清零. (简单地说就是:在时基电路脉冲的上升沿到来时闸门开启,计数器开始计数,在同一脉冲的下降沿到来时,闸门关闭,计数器停止计数.同时,锁存器产生一个锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率.而在锁存信号的下降沿到来时逻辑控制电路产生一个清零信号将计数器清零,为下一次测量做准备,实现了可重复使用,避免两次测量结果相加使结果产生错误.) 若T=1s,计数器显示fx=N(T时间内的通过闸门信号脉冲个数) 若T=0.1s,通过闸门脉冲个数位N时,fx=10N,(闸门时间为0.1s时通过闸门的脉冲个数).也就是说,被测信号的频率计算公式是fx=N/T.由此可见,闸门时间决定量程,可以通过闸门时基选择开关,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.被测信号频率通过计数锁存可直接从计数显示器上读出.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.因此,可得出数字频率计的原理框图如下:四:设计分析1.时基电路其基本电路图如左:I555定时器组成的振荡器(即脉冲产生电路),要求其产生1S高电平的脉冲.振荡器的频率计算公式为:T1=(R30+R31)*C*ln2,因此,我们可以计算出各个参数通过计算确定了R30取30k欧姆,R31取10k欧姆,电容取47uF.这样我们得到了比较稳定的一秒时基信号。
数字频率计的设计和仿真石岩蟒摘要:以单片机为核心器件,实现了数字频率计的设计,并在Proteus软件仿真环境下搭建仿真电路,采用Kell软件进行软硬联调,成功地实现了数字频率计的仿真。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
电子计数测频有两种方式,一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,即周期测频法。
直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量[1]。
本次设计的频率测量系统以单片机AT89C52为核心,采用汇编语言和直接测量方法,成功地实现了宽领域,高精度的数字频率计的设计和仿真。
关键词:数字频率计单片机Proteus仿真Kell仿真一、设计思路该频率计首先以信号放大整形后的方波脉冲作为控制闸门信号,然后采用计数器和锁存器对不同频率范围的信号直接进行计数来完成分频功能,分频后的信号由接口电路送给单片机,由单片机的计数器对其进行计数,最后将计数结果通过运算转变为原信号的频率数值,最后通过动态显示电路显示数值。
由于单片机内部振荡频率很高,所以一个机器周期的量化误差相当小,可以有效的提高低频信号的测量准确性。
本设计以单片机AT89C52为核心,通过译码、分频、计数等电路,以及软件程序的编写,实现脉冲频率的显示。
整体设计思路可用框图1表示。
框图中,各部分的作用及所采用的器件说明如下。
二、计数测量部分包括计数器电路和数据锁存器电路计数器电路采用了74LS590芯片完成计数功能。
对于频率较小的输入脉冲可以只让一个74LS590芯片发挥作用,即计数的个数小于256时则只有一74LS590芯片进行计数,对于频率较大的输入脉冲需要让两个74LS590芯片发挥作用,即计数个数大于256小于65535时两个74LS590芯片分别进行高八位、低八位计数。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易频率计的设计仿真及制作初始条件:本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统设计。
用数码管显示频率计数值。
要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求)1、课程设计工作量:1周内完成对简易频率计的设计、仿真、装配及调试。
2、技术要求:①设计一个频率计。
要求用4位7段数码管显示待测频率,格式为0000Hz。
②测量频率范围:10~9999Hz。
③测量信号类型:正弦波、方波和三角波。
④测量信号幅值:0.5~5V。
⑤设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1S。
⑥确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。
3、查阅至少5篇参考文献。
按《武汉理工大学课程设计工作规范》要求撰写设计报告书。
全文用A4纸打印,图纸应符合绘图规范。
时间安排:1) 2010 年 6 月 26~27 日,查阅相关资料,学习设计原理。
2) 2010 年 6 月 28~30 日,方案选择和电路设计仿真。
3) 2010 年 7 月 1~3 日,电路调试和设计说明书撰写。
4) 2010 年 7 月 4 日上交课程设计成果及报告,同时进行答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日简易频率计的设计仿真及制作目录1 Protues软件介绍 (3)2 设计要求......... (4)2.1整体功能要求 (4)2.2系统结构要求 (4)2.3测试指标 (4)3单元电路设计及分析 (5)3.1 数字频率计的基本原理 (5)3.2 数字频率的设计 (6)3.2.1 放大整形电路 (6)3.2.2 时基电路 (6)3.2.3 逻辑控制电路 (7)3.2.4 输出实现电路 (8)4整体电路的设计仿真及调试 (10)4.1整机电路图 (10)4.2 元件清单 (12)5课程设计心得 (14)6参考文献 (15)7成绩评定表 (16)1 Protues 软件介绍Proteus 是目前最好的模拟单片机外围器件的工具,它可以仿真51 系列、AVR,PIC 等常用的MCU 及其外围电路(如LCD,RAM,ROM,键盘,马达,LED,AD/DA,部分SPI 器件,部分IIC 器件...)。
数字频率计VHDL程序与仿真一、功能:频率计。
具有4位显示,能自动根据7位十进制计数旳成果,自动选择有效数据旳高4位进行动态显示。
小数点表达是千位,即KHz。
二、源程序及各模块和重要语句旳功能libraryieee;use ieee.std_logic_1164.all;useieee.std_logic_unsigned.all;entity plj isport(start:instd_logic;--复位信号clk :in std_logic; --系统时钟clk1:in std_logic; --被测信号yy1:out std_logic_vector(7 downto 0);--八段码w1 :out std_logic_vector(3 downto 0));--数码管位选信号endplj;architecturebehavofPLj issignalb1,b2,b3,b4,b5,b6,b7:std_logic_vector(3 downto0);--十进制计数器signalbcd:std_logic_vector(3 downto0); --BCD码寄存器signal q:integer range 0to 49999999;--秒分频系数signal qq : integer range0 to499999; --动态扫描分频系数signal en,bclk:std_logic; --使能信号,有效被测信号signal sss:std_logic_vector(3downto 0); --小数点signal bcd0,bcd1,bcd2,bcd3 :std_logic_vector(3 downto0);--寄存7位十位计数器中有效旳高4位数据beginsecond:process(clk) --此进程产生一种持续时间为一秒旳旳闸门信号beginif start='1' then q<=0;elsif clk'event and clk='1' thenif q<49999999 then q<=q+1;else q<=49999999;end if;end if;ifq<49999999 and start='0' then en<='1';else en<='0';end if;end process;and2:process(en,clk1) --此进程得到7位十进制计数器旳计数脉冲beginbclk<=clk1 anden;endprocess;com:process(start,bclk) --此进程完毕对被测信号计脉冲数beginifstart='1' then--复位b1<="0000";b2<="0000";b3<="0000";b4<="0000";b5<="0000";b6<="0000";b7<="0000";elsif bclk'event andbclk='1' thenifb1="1001"then b1<="0000"; --此IF语句完毕个位十进制计数ifb2="1001"then b2<="0000"; --此IF语句完毕百位十进制计数if b3="1001" thenb3<="0000"; --此IF语句完毕千位十进制计数ifb4="1001" then b4<="0000";--此IF语句完毕万位十进制计数if b5="1001" THENb5<="0000"; --此IF语句完毕十万位十进制计数if b6="1001" thenb6<="0000"; --此IF语句完毕百万位十进制计数if b7="1001" then b7<="0000"; --此IF语句完毕千万位十进制计数elseb7<=b7+1;endif;else b6<=b6+1;end if;else b5<=b5+1;endif;else b4<=b4+1;end if;else b3<=b3+1;end if;elseb2<=b2+1;endif;else b1<=b1+1;end if;endif;end process;process(clk) --此进程把7位十进制计数器有效旳高4位数据送入bcd0~3;并得到小数点信息beginif rising_edge(clk)thenif en='0' thenif b7>"0000" then bcd3<=b7;bcd2<=b 6; bcd1<=b5;bcd0<=b4; sss<="1110";elsif b6>"0000" thenbcd3<=b6; bcd2<=b5;bcd1<=b4;bcd0<=b3; sss<="1101";elsifb5>"0000"thenbcd3<=b5;bcd2<=b4; bcd1<=b3;bcd0<=b2;sss<="1011";ﻩelse bcd3<=b4; bcd2<=b3; bcd1<=b2; bcd0<=b1; sss<="1111";end if;end if;end if;end process;weixuan:process(clk) --此进程完毕数据旳动态显示beginif clk'event and clk='1' thenif qq< 99999 then qq<=qq+1;bcd<=bcd3; w1<="0111";ﻩif sss="0111" thenyy1(0)<='0';ﻩelseyy1(0)<='1';ﻩﻩend if;elsif qq<199999 then qq<=qq+1;bcd<=bcd2; w1<="1011";ﻩif sss="1011" then yy1(0)<='0';ﻩelseyy1(0)<='1';ﻩend if;elsifqq<299999then qq<=qq+1;bcd<=bcd1; w1<="1101";ﻩif sss="1101"then yy1(0)<='0';ﻩelse yy1(0)<='1';end if;elsif qq<399999 thenqq<=qq+1;bcd<=b cd0; w1<="1110";ifsss="1110" thenyy1(0)<='0';else yy1(0)<='1';end if;else qq<=0;end if;end if;end process;m0:process(bcd) --译码begincasebcd iswhen"0000"=>yy1(7 downto1)<="0000001";when "0001"=>yy1(7 downto1)<="1001111";when"0010"=>yy1(7 downto1)<="0010010";when "0011"=>yy1(7 downto 1)<="0000110";when "0100"=>yy1(7 downto 1)<="1001100";when "0101"=>yy1(7downto1)<="0100100";when "0110"=>yy1(7 downto 1)<="1100000";when "0111"=>yy1(7 downto1)<="0001111";when"1000"=>yy1(7downto 1)<="0000000";when "1001"=>yy1(7 downto 1)<="0001100";when others=>yy1(7 downto1)<="1111111";end case;endprocess;end behav;三、程序仿真图注:仿真中秒分频为50000,动态显示旳分频系数也相应调小。
简易频率计的设计与仿真目录:一、简易频率计的设计要求及任务分析1、设计要求2、任务分析二、简易频率计的设计1、整形电路的设计和仿真2、时基控制电路的设计和仿真3、计数器、锁存器、显示器的设计和仿真三、总结四、心得体会五、参考文献简易频率计的设计与仿真一、简易频率计的设计要求及任务分析1、设计要求(1)设计原理和原理图分析计算(2)仿真过程说明(3)误差分析(4)总结(5)频率范围为1—9999Hz2、任务分析所谓频率就是指周期信号在单位时间内变化的次数。
若在一定时间间隔T内测得周期性信号的重复变化次数为N,则频率可表示为f=N/T(Hz)。
根据设计要求,数字频率计主要由以下几部分组成:放大整形电路、时基电路、闸门控制脉冲、计数器、锁存器、显示器等。
具体组成结构图如图一。
图一简易频率计的组成框图被测信号v x经放大整形电路变成计数器所要求的方波信号,其频率与被测信号v x的频率f x相同。
时基电路是由555定时器构成的振荡器组成,其功能为产生标准时间为1秒的脉冲。
当1s信号来到时,闸门电路开通,被测脉冲信号通过闸门电路,成为计数器的计数脉冲,计数器开始计数直到1s信号结束时闸门电路关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为M,则被测信号频率f=M Hz。
控制脉冲的作用是产生锁存脉冲,使显示器上的数字稳定。
二、简易频率计的设计由于设计的电路较复杂,所以将整个电路的设计分为三个部分:放大整形电路、时基控制电路(包括时基电路、闸门控制电路)、计数显示电路(包括计数器、锁存器、显示器),最后再将各部分组合连接在一起。
1、整形电路的设计和仿真整形电路由信号发生器与整形电路组成,输入信号先经过限幅器,在经过施密特触发器整形,当输入信号幅度较小时,限幅器的二极管均截止,不起限幅作用。
由555组成的施密特触发器对经过限幅器的信号进行整形得到标准的方波信号。
线路图如图二,波形图如图三。
图二整形电路元件图图三整形电路波形图注:图中正弦波形为输入信号,方波脉冲为输出信号。
数字频率计设计与仿真1 引言在现代电子技术中,频率是基本的参数之一,并与许多电子参量的测量方案和测量结果有密切的关系。
因此我们对于频率的认识显得就更为重要。
频率的测量方法有很多,其中数字频率计具有测量精度高、使用方便和测量迅速等优势,是目前测量频率的主要手段。
Multisim 是以Windows 为基础的一种仿真工具,适合用于数字电路或者模拟电路的设计工作。
它有直观的捕捉和强大的仿真功能,能够轻松,快速,高效对电路图进行设计和验证。
图1-1 频率计方框图数字频率计是一种最基本的测量仪器,是通信设备、计算机应用、音频视频设备等等科研生产领域里不测或缺的测量设备之一,是一种用十进制数字显示被测信号的频率的数字的测量仪器,迄今为止已经有几十年的发展历史,频率计的基本功能是用来测量三角波信号、正弦波信号及方波信号等单位时间内变化的物理量。
因而其实际运用范围是很广泛的。
在早期,人们对于数字频率计的研究主要表现在扩大测量范围和提高精确度,而这些技术现在已日却成熟,现在人们对数字频率计又提出很多新的要求,例如价格低,操作方便,高精度,高稳定度甚至还包括数据处理和分析功能。
较老的频率计是输主门 十进制计数器显示器主门触发器 十进制计数器时基振荡器 输入放大器多芯片同步十进制技术,新型频率计要求芯片的数量要少,这样器件越少的话对于频率计的技术就会更准确,误差也会越小。
一个基本的频率计的方框图如图1-1所示。
而本课题涉及的主要内容是对输入信号的整形,闸门电路控制输入信号,以及对脉冲的计数,锁存和译码,通过该项设计可以将数字电路和模拟电路的理论知识运用到实际的设计中去,具有方便快捷,容易测量等特点。
2 选择测量方式信号频率指的是信号在单位时间内周期信号变化的次数,其表达式可写为f=N/T ,其中f 指被测信号的频率,N 为信号所累计的脉冲的个数,T 是产生N 个脉冲所需要的时间参数。
该表达式其所记录的结果就是被测信号的频率。
基于VHDL的数字频率计的设计与仿真设计1 引言1.1 设计背景随着计算机技术和半导体技术的发展,传统的硬件电路电路设计方法已大大落后于当今技术的发展,一种崭新的、采用硬件描述语言的硬件电路设计方法已经兴起,这是电子设计自动化(EDA)领域的一次重大变革。
目前,广泛使用的硬件描述语言VHDL(Very Speed Integrated Circuit Hardware Description Language)和Verilog HDL;它们先后被批准为国际标准语言。
据统计,目前在美国硅谷约有90%以上的ASIC 和FPGA采用硬件描述语言进行设计,VHDL的应用已成为当今以及未来EDA解决方案的核心,而且是复杂数字系统设计的核心。
数字频率计[1]是电子测量与仪表技术最基础的电子仪表类别之一,它是一种用十进制数字显示被测信号频率、周期、占空比的数字测量仪器,是在数字电路中的一个典型应用;实际的硬件设计的多功能数字频率计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差,随着复杂可编程逻辑器件(CPLD)的广泛应用,以EDA工具作为开发手段,运用VHDL语言,将使整大大简化,提高整体个系统的性能和可靠性;它是计算机、通信设备、音频视频等科研生产领域不可缺少的测量仪器。
采用VHDL编程设计实习的多功能数字频率计,具有体积小,可靠性高,功耗低的特点;整个系统非常精简,且具有灵活的现场可更改性。
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,而且它是数字电压必不可少的部件。
当今数字频率计不仅是作为电压表,计算机,天线电广播通讯设备,工艺过程自动化装置、多种仪表仪器与家庭电器等许多电子产品中的数据信息输出显示器反映到人们眼帘。
集成数字频率计由于所用元件少、投资少、体积小、功耗低,且可靠性高、功能强、易于设计和研发,使得它具有技术上的实用性和应用的广泛性。
不论从我们用的彩色电视机、电冰箱、DVD还有我们现在家庭常用到的数字电压表数字万用表等等都包含有频率计。
数字频率计设计与仿真1 引言在现代电子技术中,频率是基本的参数之一,并与许多电子参量的测量方案和测量结果有密切的关系。
因此我们对于频率的认识显得就更为重要。
频率的测量方法有很多,其中数字频率计具有测量精度高、使用方便和测量迅速等优势,是目前测量频率的主要手段。
Multisim 是以Windows 为基础的一种仿真工具,适合用于数字电路或者模拟电路的设计工作。
它有直观的捕捉和强大的仿真功能,能够轻松,快速,高效对电路图进行设计和验证。
图1-1 频率计方框图数字频率计是一种最基本的测量仪器,是通信设备、计算机应用、音频视频设备等等科研生产领域里不测或缺的测量设备之一,是一种用十进制数字显示被测信号的频率的数字的测量仪器,迄今为止已经有几十年的发展历史,频率计的基本功能是用来测量三角波信号、正弦波信号及方波信号等单位时间内变化的物理量。
因而其实际运用范围是很广泛的。
在早期,人们对于数字频率计的研究主要表现在扩大测量范围和提高精确度,而这些技术现在已日却成熟,现在人们对数字频率计又提出很多新的要求,例如价格低,操作方便,高精度,高稳定度甚至还包括数据处理和分析功能。
较老的频率计是输主门 十进制计数器显示器主门触发器 十进制计数器时基振荡器 输入放大器多芯片同步十进制技术,新型频率计要求芯片的数量要少,这样器件越少的话对于频率计的技术就会更准确,误差也会越小。
一个基本的频率计的方框图如图1-1所示。
而本课题涉及的主要内容是对输入信号的整形,闸门电路控制输入信号,以及对脉冲的计数,锁存和译码,通过该项设计可以将数字电路和模拟电路的理论知识运用到实际的设计中去,具有方便快捷,容易测量等特点。
2 选择测量方式信号频率指的是信号在单位时间内周期信号变化的次数,其表达式可写为f=N/T ,其中f 指被测信号的频率,N 为信号所累计的脉冲的个数,T 是产生N 个脉冲所需要的时间参数。
该表达式其所记录的结果就是被测信号的频率。
如在1s 的时间内记录了100个脉冲,则该被测信号的频率就是100HZ 。
对于频率的测量方法大体可以分为两种:一种是直接测频法,就是在一定的测量时间内测量被测信号的脉冲个数,因此又可称为计数法。
该方法是将被测信号经过脉冲形成电路以后加到闸门电路的一个输入端,只有在闸门被开通的T 秒时间内,被测信号的脉冲才被送到十进制计数器里进行计数。
如果在闸门打开的时间为T ,计数器在T 的时间内得到的计数数值为N 1,则被测信号的频率f= N 1/T ,如图2-1所示就是直接测频法的测量原理。
图 2-1 直接测频法测量原理对于直接测频法,信号的频率越高,误差就越小;而信号的频率越低,测量误差反而越大。
所以直接测频法适合用于对高频信号的测量,频率越高,测量精度也越高。
被测信号 计数值N 1标准闸门 T另一种是间接测频法,例如周期测频法。
周期测量法是把被测信号用来控制闸门的开闭,将标准时基脉冲信号通过闸门电路加到计数器上,闸门电路在外来信号的一个周期内被打开,则计数器所得到的计数数值就是标准时基脉冲外信号的周期值,然后再求周期值的倒数,这样就可以得到所测信号频率值了。
首先将被测的信号通过二分频后,得到一个高电平时间内是一个信号周期为T 的方波信号;然后用另一个周期T 1的高频方波信号来作为计数脉冲信号,在一个信号周期为T 的时间内对周期为T 1信号进行计数,如图2-2所示为间接测频法的测量原理图。
图2-2 间接测频法的测量原理如果在T 时间内的计数值为N 2,可以得到:T 2=N 2*T 1 ,f 2=1/T 2=1/(N 2*T 1)=f 1/N 2由上述表达式可知:N 2绝对误差是N 2=N+1,N 2相对误差是δN2=(N 2-N)/N=1/N ,T 2相对误差是δT2=(T 2-T)/T=(N 2*T 1-T)/T=f/f 1。
由T 2的相对误差可知,周期测量误差是与信号频率成正比的,但是却与高频的标准计数信号频率成反比例。
当f 1是常数时,被测的信号频率越低误差越小,测量精度也就可以越高。
本章小结:通过对上述频率测量的两种原理和方法的比较可以很明确的看出来周期测量法适合对频率较低信号的测量,而计数法则适合于对频率较高信号的测量,选择测量方法不仅要考虑此因素,还要考虑测量时候的实现难易程度,因为用周期测量法所得到数据还需要通过f=1/T 求倒运算才可以得出信号的频率,而求倒数运算很难用中小规模数字集成电路来实现,因此周期测量法不适合本实验。
而计数法所得到的测量数据,被测信号信号二分频 高频信号T在闸门时间为一秒的时间内不需要进行任何换算,数码管所显示的数字就是被测信号的频率。
所以,本设计采用计数法测量,即直接测频法。
3 设计原理及整体电路分析直接测频法的设计原理框图如图3-1所示。
图3-1 设计原理框图首先有个被测信号fx ,但此信号可以是任意形状,例如正选波,三角波和各种不规则的波行,然后就必须把这个波变成规则的矩形脉冲波,这时侯需要一个整形电路,经过整形电路后就会形成与被测信号同频率的矩形脉冲,再将脉冲送入闸门电路。
555振荡器由555定时器构成的,其作用是产生一个标准的时基信号,作为闸门开通的基准时间,作为计数器的时钟信号,计数器开始记录时钟的个数,这样就达到了测量频率的目的。
闸门电路是由一个与非门组成,在闸门电路开通的情况下,开始计被测信号中有多少个上升沿,当计数完后,此时数码管显示计数完成后的数字。
锁存器作用是把计数器在1s 结束时的计数值进行锁存,从而使显示器上获得稳定的测量值,因为计数器在1秒时间内要完成很多输入脉冲,如果不加锁存器,显示器上的值会随输入的变化而变化,不便于读数。
控制电路里面要产生计数清零信号和锁存控制信号,如下图3-2所示 整形电路 脉冲形成 闸门电路 计数电路锁存电路控制电路 时基电路 555振荡器 BCD 码七段显示被测信号图3-2 控制电路示意图本章小结:在设计电路时,自己认为最重要的部分应该是时基电路和整形电路,整形电路是为了得到同频率的标准矩形方波,而时基电路是为了产生标准的时基信号,只有这两部分设计仿真成功,电路设计就完成了一半,这都整个电路仿真是否起着决定的作用4单元电路设计4.1 脉冲形成电路脉冲形成电路是由信号发生器和整形电路组成的,当输入一个信号是正弦波或是三角波或其他周期变化的波形,先经过一个由二极管组成的双向限幅器,再经过由555组成的施密特触发器进行整形,最后得到标准的矩形脉冲信号。
电路图如图4-1所示。
施密特触发器限幅器图4-1 脉冲形成电路限幅器起一个滤波作用。
只有当输入信号在一定范围内时才能完全通过限幅器,这时输出电压才会随着输入电压变化而变化。
而当输入信号超过这一范围时,输出电压或保持不变或二极管截止。
555定时器构成施密特触发器的电路图如图4-2所示,波形图如图4-3所示。
图4-2 555定时器构成施密特触发器图4-3 构成施密特触发器输入输出波形图4-2中,V CO(5)端接10nF,起滤波作用,以提高电压的稳定性,清0端4接高电平V CC,将两个比较器输入端6和2连在一起,作为施密特触发器的输入端。
其工作波形如图4-3所示。
当Ui<1/3Vcc时,输出V o为高电平。
当1/3Vcc<Vi<2/3Vcc,状态保持不变。
当Vi≥2/3Vcc时,输出V o=V Ol,状态发生一次翻转。
Vi由最大值逐步下降,当Vi下降至Vi≤1/3Vcc时,使输出V o= V oH,状态又发生一次翻转。
由此可见该电路上限触发电平为V t+=2/3Vcc,下限触发电平为V t-=1/3Vcc。
4.2 时基电路时基电路是由555定时器构成的多谢振荡器,如图4-4所示,工作波形如图4-5所示,它的功能是产生标准的一秒脉冲。
图中V CC (8)和RST(4)接高电平,CON(5)接10nF 的电容,起滤波作用,将THR(6)和TRI(2)连在一起,作为输入信号的Ui输入端,三极管T D输出端DIS(7)通过通过电阻R6(10.7KΩ)接到电源V CC。
电路接通电源时,由于555定时器内部电容C还未充电,V CC通过555定时器电阻(R1+R2)对电容C充电,电路进入暂稳态。
在暂稳态期间,随着电容C的充电,V CON的电位不断升高,当V CON≥2/3Vcc时,这时电路输出V0翻转为低电平,电路发生一次自动翻转。
在此同时,555定时器内部的三极管T D导通,电容C放电,电路进入另一暂稳态。
然而随着电容C的继续放电,V CON的电位逐渐下降,当下降到V CON≤1/3Vcc时,电路又一次发生自动翻转。
此后,如此反复,形成多谐振荡。
电路充电时,得到的暂稳态持续时间为t1 = 0.7(R6+R7)C3电容放电时,得到的暂稳态持续时间为t2 = 0.7 R7C3从而得到,电路输出矩形脉冲的周期为T = t1+t2 = 0.7(R6+2R7)C3图4-4 时基电路图4-5 工作波形4.3 闸门电路闸门电路是由一个与非门组成,如下图4-6闸门电路的作用是控制计数器的输入脉冲,标准时间信号一秒脉冲到来时,闸门开通,这时,脉冲形成电路的被测信号脉冲通过闸门进入计数器,从而计数;当标准时间脉冲结束时,闸门关闭,这时被测信号无法通过闸门,也就无法计数。
图4-6 闸门电路4.4 计数器计数器采用74LS90异步计数器,当一秒脉冲到来时,闸门开通,被测信号通过闸门计数器计数,标准时间脉冲结束时闸门关闭,如图4-7为74LS90引脚图。
图4-7 74LS90引脚图之所以采用74LS90计数器,是因为它有很多好处,其一74LS90计数器是一种中规模二一五进制计数器,功能表如表4-1所示。
它可以灵活的构成8421BCD和5421BCD 码计数器,分别是Q A接B,Q D接A。
表4-1 74LS90功能表复位输入输出R1 R2 S1 S2 Q D Q C Q B Q AH H L X L L L LH H X L L L L LX X H H H L L HX L X L 计数L X L X 计数L X X L 计数X L L X 计数表中H为高电平、L为低电平、×为不定状态。
其二74LS90计数器设有专用置“0”端R1、R2和置位(置“9”)端S1、S2。
其三74LS90计数器多种分频方式,即五分频,十分频,六分频,九分频,其中,十分频中又有8421码十分频和5421码十分频。
4.5 锁存器本课题锁存器的作用是将计数器在一秒结束时的计数值进行锁存,使在显示器上获得稳定的数值。
选用8D锁存器74LS273可以完成上述锁存器,要想完成锁存功能必须使清除端保持高电平,引脚图如4-8所示其中1D~8D为数据输入端,1Q~8Q为数据输出端,11脚CLK为锁存控制端。