物理学中的群论基础第一章剖析
- 格式:ppt
- 大小:522.00 KB
- 文档页数:5
物理学中的群论——群论基础主讲翦知渐群论教材教材与参考书教材:自编参考书群论及其在固体物理中的应用参考书:群论及其在固体物理中的应用(徐婉棠)物理学中的群论(马中骐)物理学中的群论基础(约什)群论-群论基础第章群论基础第一章群的基本概念和基本性质§1.1 集合与运算§1.2群的定义和基本性质§1.3 子群及其陪集13§1.4 群的共轭元素类§1.5 正规子群和商群§1.6 直积和半直积16§1.7 对称群§1.8 置换群§1.1集合与运算抽象代数的基本概念1集合抽象代数研究的对象什么都不是,所以什么都是集合的直乘:C=A×B,表示“C的元素是由A和B两个集合的元素构成的C A表示“一对有序元”,也称为A和B的直乘,用符号表示即:, a2,…, a i,…},B={b1, b2,…, b j,…},则集合设A={aA}B b b}则集合1C=A×B={(a i,b j)| a i∈A, b j∈B}是A与B的直乘。
定义设是两个集合若有种规则使得2映射定义:设A 与B 是两个集合,若有一种规则f ,使得A 的每一个元素在B 上都有唯一的元素与之对应,这种对应规则f 的一个映射记为就称为A 到B 的个映射,记为f :A → Bf :x → y = f ( x ) , 或写为f y f (),式中y 称为x 在B 上的象,而x 称为y 在A 上的原象。
对应规则函数对应规则:函数满射单射一一映射逆映射:f -1恒等映射:e 变换恒等映射:体系A 的一个自身映射f 称为A 的一个变换,若f 是一一映射则称为对称变换一一变换有性质:射,则称为对称变换。
变换有性质:f f -1= f -1f = e3二元运算定义:若对A 上的每对有序元(a, b ) ,在A 上有唯确定的A每一对a,b)A上有唯一确定的c与之对应,即有一规则R 使得A×A → A,则R 称为A上的一个二元运算,记为()()R:A×A → A,或R:a, b ) →c= R(a, b)一般记为c = a·b,或c = ab。
第一章第一章 抽象群概论§1 什么是群什么是群??群公理不同元素的集合不同元素的集合,,赋予一定的合成规则赋予一定的合成规则((称为群称为群““乘法乘法””—— 加、乘、对易子等对易子等)。
)。
满足下列满足下列条件条件((群公理群公理)): (1)封闭性 i g 和G g j ∈,则G g g g k j i ∈=⋅; (2)结合律 )()(k j i k j i g g g g g g ⋅⋅=⋅⋅;(3)存在唯一的单位元素e (或E )G ∈ ,对任一元素j g 有j j j e g g e g ⋅=⋅=; (4)对每一元素有逆元对每一元素有逆元,,对i g 有 1−i g ,使e g g ii =⋅−1。
阶 —— 群元的个数群元的个数::阶有限为有限群阶有限为有限群;;阶无穷为无限群阶无穷为无限群。
无限群又分无限离散和无限连续无限群又分无限离散和无限连续。
注:1. 乘法不可对易乘法不可对易,,即i j j i g g g g ⋅≠⋅。
若可对易若可对易,,则称为阿贝尔称为阿贝尔((Abel )群。
2. 若G c b a ∈,,,则G 中包含p l k c b a ,,(其中p l k ,,为整数为整数))。
例1.复数1,i ,-1,-i 组成四阶群组成四阶群。
四阶循环群 —— 由一个元素由一个元素,,i (或-i )出发出发,,由它及其幂由它及其幂次次生成整个群G ,称为循环群称为循环群。
循环群必是阿贝尔群环群必是阿贝尔群。
n 阶循环群可表为{23,,...n a a a a e =}。
例2.所有实数组合所有实数组合,,加法运算下成群加法运算下成群。
全体正实数在乘法运算下成连续群全体正实数在乘法运算下成连续群。
例3.定轴转动定轴转动::Π<Θ≤20,)2(SO 无限连续群无限连续群。
特例 —— 转角为m 倍nπϑ2=构成n 阶群n C ;定点转动定点转动((三维空间转动三维空间转动)):),,(γβαR ,)3(SO 群。
物理学中的群论第⼀章线性代数物理学中的群论第⼀章线性代数声明:这是我根据黄飞⽼师上课内容记的笔记(易懂)。
教材:马中骐的物理学中的群论书(不好懂,所以我没看)。
希望对学群论的⼈有所帮助。
这两章线性代数考试不会考,但⾮常重要,后⾯都在⽤。
1.1节线性空间和⽮量基1.⽮量基有加法和数乘、⼀组线性⽆关的客体2.⽮量3.m维线性空间:就是定义了加法和数乘m个基⽮量对应m维简单来说,线性空间就是⽮量空间,线性空间中只有加法和数乘(即只有两个⽮量相加、数乘),但是没有⽮量乘法,也没有长度这样的概念。
如果在线性空间中引⼊点乘,长度、垂直的概念,此时称为内积空间。
线性空间性质:4.实线性空间:5.⽮量、基⽮量的矩阵表⽰⽮量矩阵表⽰:列矩阵基⽮量矩阵表⽰:、、按基⽮量展开,其第个分量为基⽮量矩阵表⽰是只有⼀个分量为1,其他分量为零的列矩阵。
6.线性空间的维数1)线性相关、线性⽆关2)线性空间的维数线性空间的维数:线性空间中线性⽆关的⽮量的最⼤个数。
m 维线性空间中,线性⽆关的⽮量数⽬不能⼤于m 。
⽮量基是线性⽆关的,m 维线性空间中任何 m 个线性⽆关的⽮量都可以作为⼀组⽮量基。
7.线性空间的⼦空间⼦空间就是在m 维线性空间中,有⽐m 维数⼩的个数的线性⽆关⽮量的所有的线性组合,构成⼀个n 维线性空间。
⽐如三维空间中,两个基⽮量的所有线性组合构成x-y 平⾯,是⼆维线性空间,是⼦空间。
我们通常说的⼦空间是⾮平庸的⼦空间,不包括零空间和全空间。
8.两个⼦空间的和两个⼦空间的和:两个⼦空间和的所有⽮量及这些⽮量的线性组合的集合, 记作;注意并⾮和的所有⽮量的集合,因为除了将这些⽮量放在⼀块以外,还需要将它们线性组合。
例如,构成的⼦空间和构成的⼦空间的和是整个三维空间。
9.两个⼦空间的交两个⼦空间的交:,例如,构成的⼆维⼦空间和构成的⼀维⼦空间的交是零空间(零⽮量构成的空间)。
10.两个⼦空间的直和两个⼦空间的直和:若是、的和(即),且下⾯三个等价的条件中任意⼀条成⽴:则称为两个⼦空间和的直和,记作 ,此时与称为中互补的⼦空间。
物理学中的群论及其应用物理学是自然科学中最具基础性和深刻性的科学之一,与其他学科相比,它具有其独特的数学基础。
在物理学中,群论是一种强大的工具,被广泛应用于描述和解决物理现象。
一、群论的基础知识群是一种数学结构,它描述了一组对象在某种形式下的对称性质。
在群论中,对称性是一个核心概念。
对于一个集合G,如果它满足以下几个性质:闭合性、结合律、存在单位元素和逆元素,则称为群。
群论的基础是群的代数和几何性质,其中最基本的是群的阶和群的子群。
群的阶指的是群中元素的个数,它是群的基本类别。
而群的子群是指群中的一些元素形成的子集合成的群,它是群的一个重要概念。
群的子群可以帮助我们理解它的对称性质。
二、群论的应用1、晶体学在晶体学中,群论是非常重要的。
晶体是指一个重复的具有长程序的固体结构,晶体的对称性质可以用群论来描述。
对于晶体物理学家来说,群论是一种有效的工具,可以帮助他们推导出新的晶体结构,并且预测物理特性,如折射率和电导率等。
2、量子力学在量子力学中,群论被用来描述美那空间中的对称性质。
对于一个物理系统,如果它在某个对称操作下不变,则称为该物理系统具有对称性。
例如,对于一个在三维空间中的量子态,我们可以用SU(3)群描述其对称性质。
3、场论场论是研究物质中的场和它们之间相互作用的物理学分支。
场论中群论被用于描述场的对称性质。
在场的变换下,场的表现形式会发生改变,但是物理定律保持不变。
这种对称性被称为规范对称性,它是一种非常重要的群论应用。
4、粒子物理学在粒子物理学中,群论是必不可少的。
粒子物理学家研究基本粒子的性质和相互作用,这涉及到对称性和群论的应用。
在标准模型理论中,SU(3)×SU(2)×U(1)群被用来描述基本粒子的相互作用。
三、结论群论在物理学中具有重要的地位,它不仅是物理学的理论基础之一,也是物理学家解决问题的重要工具之一。
群论依赖于代数和几何性质,可以帮助我们理解物理系统中的对称性质。
《群论》提纲第一章引言:对称性与群1.1操作,不变,对称1.2物理中的对称性1.2.1经典理论相对性原理伽利略的相对性原理;爱因斯坦的相对性原理;爱因斯坦的广义相对性原理;相互作用的规范理论对称性和守恒律Noether定理;守恒量(运动积分)与动力学方程的求解;一个例子,地球围着太阳转:角动量和Laplace-Runge-Lenz矢量守恒对称性与相互作用由对称性出发确定相互作用1.2.2量子理论Wigner定理;量子理论中新的对称性;对称性与谱结构;量子场理论中的对称性1.3对称性与群用群描述对称性;伽利略相对性原理与伽利略群;爱因斯坦相对性原理与洛伦兹群;Noether定理与群。
地球围着太阳转的问题中的群与守恒量:SO(3)群与角动量,SO(4)群与Laplace-Runge-Lenz矢量;洛伦兹群的表示与物质场方程;规范相互作用的规范群;群与原子、分子的谱;群与基本粒子的分类;晶体的对称群。
第二章群1对称性与群1.1对称操作一个分立几何对称性的例子:正三角形一个连续几何对称性的例子:圆1.2群的定义群的一个基于操作的定义2群,抽象群伽罗华和他的群2.1数学结构2.2群作为一种代数结构:抽象群三个群的例子:正三角形的旋转群,一个矩阵群,一个时钟数构成的群;它们都是群吗?它们同一个群吗?抽象化;抽象群的定义;更精确些的定义;Cayley的乘法表。
2.3群的例子{e};{1,−1};{e,σ};整数、实数和复数的加法群:Z+,R+和C+;非零实数和复数的乘法群:R×和C×;矢量空间V中的所有线性变换构成的群GL(V)(GL(n,K));置换构成的群:对称群和它的子群置换群;分式线性变换构成的群;运动群;转动群;伽利略群;洛伦兹群;晶体的点阵平移群。
2.4更多的代数结构交换群;半群(semi-group);有单位元的半群;交换半群;圈(loop);环(ring);域(field)2.5群元,生成元有限群的生成元;连续群的生成元。
第一章 群的基本知识二十一世纪以来,特别是爱因斯坦(Einstein )发现相对论之后,对称性的研究在物理学中越来越重要。
对称性帮助人们求得物理问题的解,也帮助人们寻求新的运动规律。
物理学家不仅研究了空间和时间的对称性,而且找到了许多内部对称性,如强作用的SU(2)同位旋对称,SU(3)色和味的对称,弱电统一的SU(2)XU(1)的对称,偶偶核的U(6)动力学对称等等。
从七十年代起,又开展了超对称性的研究。
群论是研究对称性问题的数学基础,因此,它越来越受到物理学工作者的重视。
1.1 群定义 1.1 设G 是一些元素的集合,}{},,{g g G == .在G 中定义了乘法运算。
如果G 对这种运算满足下面四个条件:(1) 封闭性。
即对任意G g f ∈,,若h fg =,必有G h ∈。
(2) 结合律。
对任意G h g f ∈,,,都有())(gh f h fg =.(3) 有唯一的单位元素。
有G e ∈,对任意G f ∈,都有f fe ef ==(4) 有逆元素。
对任意G f ∈,有唯一的G f∈-1,使e ff f f ==--11 则称G 为一个群。
e 称为群G 的单位元素,1-f称为f 的逆元素。
例1 空间反演群。
设E 和I 对三维实空间3R 中向量→r 的作用为 →→→→-==r r I r r E ,即E 是保持→r 不变的恒等变换,I 是使→r 反演的反演变换,定义群的乘法为从右到左连续对→r 作用。
集合{}I E ,构成反演群,其乘法表见表1.1.例2 n 阶置换群n S ,又称n 阶对称群。
将n 个元素的集合},,2,1{n X =映为自身的置换为 ,2121⎪⎪⎭⎫ ⎝⎛=n m n m m P 其中n m m m ,,,21 是n ,,2,1 的任意排列,P 表示把1映为1m ,2映为2m ,n 映为n m 的映射。
显然置换只与每列的相对符号有关,与第一行符号的顺序无关,如⎝⎛2421 ⎪⎪⎭⎫3143= ⎝⎛2324 ⎪⎪⎭⎫4113。
粒子物理中的群论与代数结构粒子物理学是研究基本粒子及其相互作用的科学,其核心目标是揭示宇宙最基本的结构和规律。
在这个过程中,群论和代数结构发挥了至关重要的作用。
群论用于描述对称性,而对称性在物理现象中起着极其重要的作用。
本文将探讨群论与代数结构在粒子物理中的应用,梳理它们的基础概念,并结合实际案例进行详细分析。
一、群论基础1.1 群及其性质首先,定义一个群(Group):群是一个集合 G 和一个二元运算*,使得以下条件成立:封闭性:对于任意a, b ∈ G,有a * b ∈ G。
结合性:对于任意a, b, c ∈ G,有 (a * b) * c = a * (b * c)。
单位元:存在一个元素e ∈ G,使得对于任意a ∈ G,有 e * a = a * e = a。
可逆性:对于每个a ∈ G,存在一个元素b ∈ G,使得 a * b = b * a = e。
这种代数结构为我们提供了处理对称性和其他物理现象的数学工具。
1.2 对称性在物理学中,对称性是指某些性质在变化下仍然保持不变。
常见的对称性包括平移、旋转、反射等。
这些对称性的存在使得物理定律更加简洁,并引导我们理解粒子相互作用的本质。
1.3 规范对称性规范对称性是粒子物理中的一个重要概念,特别是在描述基本相互作用时(如电磁力、弱力和强力)。
在这种框架下,自由度通过规范变换所导致的不变性关系被引入,并导致了新的粒子的产生,例如媒介子。
二、群论在粒子物理中的应用2.1 标准模型中的对称群标准模型(Standard Model)是粒子物理中的一套理论,它通过使用对称性描述了电磁力、弱力和强力。
标准模型利用李群(Lie group)表示这些基本相互作用的对称性,其主要包含以下部分:U(1) 对称性:描述电磁相互作用。
SU(2) 对称性:描述弱相互作用。
SU(3) 对称性:描述强相互作用。
这些对称群之间的关系及其对应的破缺将基本粒子的性质及其相互作用联系在一起。