经典长方体表面积的计算
- 格式:doc
- 大小:33.50 KB
- 文档页数:6
长方体的表面积计算原理揭秘知识点总结长方体是一种常见的几何图形,具有六个面,其中每个面都是矩形。
计算长方体的表面积是一项基本的几何计算任务,下面将介绍长方体表面积计算的原理以及相关的知识点。
一、长方体的定义长方体是一个立方体的特殊情况,它具有三个不同长度的边。
其中一个边被称为长,另一个边被称为宽,最后一个边被称为高。
长方体的六个面都是矩形,而不是正方形。
二、长方体表面积计算原理长方体的表面积是由六个矩形的面积之和构成的。
根据矩形的面积计算公式,矩形的面积等于它的长乘以宽。
因此,长方体的表面积计算公式可以表示为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)其中,长、宽、高分别表示长方体的三个边长。
三、表面积计算示例为了更好地理解长方体表面积的计算原理,以下以一个实际的长方体为例进行计算示例。
假设长方体的长为5cm,宽为3cm,高为2cm。
根据表面积计算公式,可以得到:表面积 = 2 × (5 × 3 + 5 × 2 + 3 × 2)= 2 × (15 + 10 + 6)= 2 × 31= 62平方厘米因此,这个长方体的表面积为62平方厘米。
四、长方体表面积计算的注意事项在计算长方体表面积时,需要注意以下几点:1. 单位一致性:确保所有边长的单位统一,以避免计算结果的误差。
例如,如果一个边长的单位为厘米,其他边长也应该使用厘米作为单位。
2. 尺寸精度:在实际测量中,尽量使用更精确的尺寸数据,以提高计算结果的准确性。
3. 结果的单位:表面积的单位应该与边长单位的平方对应。
例如,如果边长的单位为厘米,表面积的单位应为平方厘米。
五、应用举例长方体的表面积计算在日常生活和工作中有着广泛的应用。
以下举几个例子来说明应用场景:1. 包装设计:在设计包装盒或包裹时,需要准确计算长方体的表面积,以确保所使用的纸板或材料的适当尺寸。
有关正方体与长方体的表面积与体积计算正方体和长方体是我们生活中常见的几何体形状之一。
它们既有共同之处,也存在一些差异。
本文将探讨正方体和长方体的表面积和体积计算方法。
一、正方体的表面积计算公式正方体是一种拥有六个完全相等的平面的立方体。
每个面都是一个正方形。
我们可以使用下面的公式来计算正方体的表面积:表面积 = 正方形的边长 ×正方形的个数由于正方体的每个面都是正方形,所以边长相同。
假设正方体的边长为a,则表面积可以简化为:表面积 = 6a²二、长方体的表面积计算公式长方体有六个面,其中有两个相对面是相同的。
我们可以使用下面的公式来计算长方体的表面积:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)三、正方体的体积计算公式正方体的体积是指正方体所包含的三维空间量。
我们可以使用一个简单的公式来计算正方体的体积:体积 = 正方体的边长³四、长方体的体积计算公式长方体的体积也是指长方体所包含的三维空间量。
我们可以使用下面的公式来计算长方体的体积:体积 = 长 ×宽 ×高五、例题分析现在我们来看两个例子,一个是正方体的表面积和体积计算,另一个是长方体的表面积和体积计算。
例题一:求一个边长为6cm的正方体的表面积和体积。
解:根据上述公式,可以得出该正方体的表面积为6 × 6 × 6 = 216平方厘米,体积为6³ = 216立方厘米。
例题二:求一个长方体,长为10cm,宽为5cm,高为8cm的表面积和体积。
解:根据上述公式,可以得到该长方体的表面积为2 × (10 × 5 + 10 × 8 + 5 × 8) = 220平方厘米,体积为10 × 5 × 8 = 400立方厘米。
六、总结通过对正方体和长方体的表面积和体积计算方法的介绍,我们可以看出,对于正方体和长方体,它们的表面积计算方法略有不同,而体积的计算方法相同。
计算多面体的表面积和体积多面体是一个立体几何体,它的表面由多个平面的面构成。
计算多面体的表面积和体积是几何学中的基本问题之一。
本文将介绍如何计算一个多面体的表面积和体积。
一、计算多面体的表面积多面体的表面积是指多面体所有面的总面积。
不同类型的多面体有不同的计算方法,以下分别介绍几种常见多面体的计算方法。
1. 计算正方体的表面积:正方体是一种六个面都是正方形的多面体。
正方体的表面积可以通过以下公式计算:表面积 = 6 × (边长)²2. 计算长方体的表面积:长方体是一种六个面都是矩形的多面体。
长方体的表面积可以通过以下公式计算:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)3. 计算球体的表面积:球体是一种所有面都是由半径相等的球面覆盖的多面体。
球体的表面积可以通过以下公式计算:表面积= 4 × π × (半径)²4. 计算圆柱体的表面积:圆柱体是一种由上下底面和侧面围成的多面体。
圆柱体的表面积可以通过以下公式计算:表面积= 2 × π × (半径)² + 2 × π × 半径 ×高5. 计算锥体的表面积:锥体是一种由底面和侧面围成的多面体,其中底面为一个封闭曲面,侧面为多个直线段。
锥体的表面积可以通过以下公式计算:表面积= π × (半径) ×(半径 + 斜高)二、计算多面体的体积多面体的体积是指多面体所包围的空间的大小。
不同类型的多面体有不同的计算方法,以下分别介绍几种常见多面体的计算方法。
1. 计算正方体的体积:正方体的体积可以通过以下公式计算:体积 = (边长)³2. 计算长方体的体积:长方体的体积可以通过以下公式计算:体积 = 长 ×宽 ×高3. 计算球体的体积:球体的体积可以通过以下公式计算:体积= (4/3) × π × (半径)³4. 计算圆柱体的体积:圆柱体的体积可以通过以下公式计算:体积= π × (半径)² ×高5. 计算锥体的体积:锥体的体积可以通过以下公式计算:体积 = (1/3) ×底面积 ×高综上所述,根据不同多面体的类型,我们可以采用相应的公式来计算多面体的表面积和体积。
长方体的表面积计算知识点总结长方体是一种常见的几何体,具有六个矩形的面。
计算长方体的表面积是数学中的基本技巧,本文将总结长方体表面积计算的知识点。
1. 什么是长方体?长方体是一种具有六个矩形面的立体,其相邻面的边长互相垂直。
长方体的六个面分别是底面、顶面和四个侧面。
底面和顶面是相等的矩形,侧面是相等的长方形。
2. 长方体的表面积计算公式长方体的表面积等于各个面积之和。
根据长方体的特点,我们可以用下面的公式来计算表面积:表面积 = 2 × (底面积 + 侧面积 + 顶面积)其中,底面积可以用长方体的底面长和底面宽相乘得到,侧面积可以用长方体的两个相邻边长相乘得到,顶面积与底面积相等。
3. 表面积计算的具体步骤计算长方体的表面积需要经过以下步骤:步骤一:测量长方体的底面长、底面宽和高度。
步骤二:根据测量结果应用上述公式计算出底面积、侧面积和顶面积。
步骤三:将三个面积的计算结果代入表面积的计算公式,得出最终的表面积。
值得注意的是,在进行测量时需要确保测量的准确性,以保证最终计算结果的准确性。
4. 实例演算为了更好地理解表面积计算的过程,我们举个例子进行演算。
假设长方体的底面长为5cm,底面宽为3cm,高度为4cm。
首先计算底面积:底面积 = 5cm × 3cm = 15cm²接下来计算侧面积:侧面积 = 5cm × 4cm + 3cm × 4cm = 20cm² + 12cm² = 32cm²顶面积与底面积相等,即顶面积也是15cm²。
最后代入公式计算得出表面积:表面积 = 2 × (15cm² + 32cm² + 15cm²) = 2 × 62cm² = 124cm²因此,该长方体的表面积为124平方厘米。
5. 应用举例长方体表面积的计算在日常生活和工作中有着广泛的应用。
长方体的面积公式和表面积计算公式长方体是一种立体几何体,由六个矩形面构成,其中相邻面之间的边长相等。
它有三个相邻面的边长分别为长、宽、高。
在数学中,我们通常会遇到长方体的面积公式和表面积计算公式。
首先,我们来看长方体的面积公式。
面积公式是用来计算长方体各个面的面积的。
考虑到长方体的特点,我们得知,它有两个相对的长面,两个相对的宽面,以及两个相对的高面。
因此,长方体的面积由这六个面积相加得到。
其中,S表示长方体的面积,l为长,w为宽,h为高。
这个公式的推导可以通过将长方体展开为六个矩形来理解。
我们将长方体展开成一个长方形,然后将长、宽、高依次取出,得到六个矩形,它们正好是长方体的六个面。
这样,我们就可以用长方体的边长来计算每个矩形的面积,然后将其相加即可得到长方体的面积。
接下来,我们来看长方体的表面积计算公式。
表面积是指长方体所有面(包括内外)的总面积。
由于长方体的六个面都是矩形,因此可以使用矩形的面积公式来计算每个面的面积,然后将其相加即可得到长方体的表面积。
长方体的表面积计算公式可以表示为:S = 2lw + 2lh + 2wh正如面积公式中的公式一样,这个公式也是将长方体展开为六个矩形来推导的。
每个矩形的边长分别是长、宽、高的两个边长,因此,我们可以用长方体的边长来计算每个矩形的面积,然后将其相加即可得到长方体的表面积。
需要注意的是,长方体的体积和表面积是不同的。
体积是指长方体所包围的空间的大小,而表面积则是长方体外部的曲面的总面积。
总的来说,长方体的面积公式和表面积计算公式是非常重要的几何学概念,它们可以用来计算长方体的面积和表面积。
这些公式的推导基于长方体的特点和形状,通过将长方体展开为六个矩形来进行计算。
长方形表面积公式大全(求长方形表面积公式)常见几何体的表面积公式如下:1、长方体的表面积=(长×宽+长×高+宽×高)×2。
2、正方体的表面积=棱长×棱长×6。
3、圆柱的表面积=上下底面面积+侧面积。
4、棱台的表面积=两个三角形的面积+三个梯形的面积之和。
扩展资料:长方体度量及计算:1、对角线长度:长方体的对角线是长方体任意一个顶点到对面顶点的长度。
对角线的长度:依据勾股定理,点2和点3的长度是根号,而点2到点3的线又与点3到点5的长度形成直角,所以对角线的长度是:长方体对角线平方=长平方+宽平方+高平方。
2、体积长方体的体积=长×宽×高。
设一个长方体的长、宽、高分别为a、b、c,则它的体积:V=abc=Sh。
因为长方体也属于棱柱的一种,所以棱柱的体积计算公式它也同样适用。
长方体体积=底面积× 高。
长方形的表面积公式?2ab+2bc+2ac它有六个面。
每张脸和它对面的脸完全一样,形状完全一样。
所以实际上我们只需要计算三个矩形的面积,再乘以二,就可以得到总的表面积。
让我们一个一个来数。
简单来说就是宽度乘以长度再乘以二;然后长度乘以高度,再乘以二;宽度乘以高度,然后乘以二。
最后,将三个结果相加,得到总表面积。
让我们把它分成三个步骤。
求上下两面的面积,我们用宽乘以长,也就是上面公式的第一部分2ab,带入数值:2ab=2*(4*5)=2*(20)=40。
长方体表面积计算公式是什么?常见几何体的表面积公式如下:1、长方体的表面积=(长×宽+长×高+宽×高)×22、正方体的表面积=棱长×棱长×63、圆柱的表面积=上下底面面积+侧面积4、棱台的表面积=两个三角形的面积+三个梯形的面积之和扩展资料通常一个多面体只有当它的所有面都是平面且连通的,且封闭的内部空间是连通的,才是经典多面体。
小学数学知识归纳长方体与正方体的体积与表面积的计算小学数学知识归纳:长方体与正方体的体积与表面积的计算在小学数学中,长方体与正方体是我们常见的立体图形之一。
了解它们的体积与表面积的计算方法对我们理解空间几何概念具有重要的意义。
本文将对长方体与正方体的体积与表面积进行归纳和总结。
一、长方体长方体是指所有的棱都是矩形且相互垂直的六个面所构成的立体图形。
其中,长方体的体积与表面积的计算方法如下:1. 体积计算公式: 长方体体积 = 长 ×宽 ×高。
其中,长、宽和高分别表示长方体的三个边长。
2. 表面积计算公式: 长方体表面积 = 2(长 ×宽 + 长 ×高 + 宽 ×高)。
其中,长、宽和高分别表示长方体的三个边长。
例题1:求解一个长方体的体积和表面积假设一个长方体的长、宽和高分别为3 cm、4 cm和5 cm,我们可以使用上述公式计算其体积和表面积。
计算过程如下:体积 = 3 cm × 4 cm × 5 cm = 60 cm³表面积 = 2(3 cm × 4 cm + 3 cm × 5 cm + 4 cm × 5 cm) = 94 cm²因此,该长方体的体积为60 cm³,表面积为94 cm²。
二、正方体正方体是指所有的棱都是正方形且相互垂直的六个面所构成的立体图形。
正方体的体积与表面积的计算方法如下:1. 体积计算公式: 正方体体积 = 边长³。
其中,边长表示正方体的边长。
2. 表面积计算公式: 正方体表面积 = 6 ×边长²。
其中,边长表示正方体的边长。
例题2:求解一个正方体的体积和表面积假设一个正方体的边长为2 cm,我们可以使用上述公式计算其体积和表面积。
计算过程如下:体积 = 2 cm × 2 cm × 2 cm = 8 cm³表面积 = 6 × 2 cm × 2 cm = 24 cm²因此,该正方体的体积为8 cm³,表面积为24 cm²。
计算几何体的表面积计算几何体的表面积是数学中的一个重要概念,它用于确定三维物体的曲面总面积。
在几何学中,几何体可以是由平面图形延伸而成的立体图形。
它们的表面积可用于计算物体的涂料用量、包装尺寸以及其他与表面积相关的问题。
在计算几何体的表面积时,我们需要根据几何体的形状和性质选择相应的计算公式。
下面将介绍几种常见几何体的表面积计算方法。
一、立方体的表面积计算立方体是一种具有六个相等正方形面的几何体。
它的表面积计算公式为:表面积 = 6 ×边长^2,其中边长指立方体的任意相邻边的长度。
二、长方体的表面积计算长方体也是一种常见的几何体,它具有六个面,其中有两个面是相等的长方形。
长方体的表面积计算公式为:表面积 = 2 × (长 ×宽 + 长×高 + 宽 ×高),其中长、宽和高分别表示长方体的长度、宽度和高度。
三、圆柱体的表面积计算圆柱体由一个圆和一个平行于其底面的矩形组成。
圆柱体的表面积计算公式为:表面积= 2 × π × 半径^2 + 2 × π × 半径 ×高,其中半径是圆柱体底面圆的半径,高为圆柱体的高度。
四、球体的表面积计算球体是一个完全由曲面组成的几何体,其表面积计算公式为:表面积= 4 × π × 半径^2,其中半径为球体半径。
除了上述常见几何体外,还存在着许多其他几何体,每个几何体的表面积计算方法都是独特的。
对于不规则几何体,我们可以通过将其分解为多个规则几何体的组合,然后分别计算每个几何体的表面积,最后将它们相加来获得整个几何体的表面积。
在实际应用中,计算几何体表面积十分重要。
例如,在建筑工程中,需要准确计算出墙壁、天花板和地板的表面积,以确定所需的建材数量。
同样,在包装设计中,需要计算产品的表面积以确定包装纸张的使用量。
因此,掌握计算几何体表面积的方法对于解决一系列实际问题至关重要。
计算表面积了解表面积的计算方法表面积是一个物体外部覆盖的总面积,是衡量物体大小和形状的关键指标之一。
掌握表面积的计算方法,不仅可以帮助我们更好地理解物体的特征,还可以应用于各种实际问题的解决。
本文将介绍几种常见物体表面积的计算方法,帮助读者更全面地了解表面积的概念和计算原理。
一、立方体表面积的计算方法立方体是一种特殊的几何体,其六个面都是正方形,具有相等的长宽高。
计算立方体表面积的方法相对简单,可以通过以下公式进行计算:表面积 = 6 ×边长^2其中,边长表示立方体的边长。
根据该公式,我们可以快速计算出任意立方体的表面积。
二、长方体表面积的计算方法长方体是一种常见的几何体,其六个面中,有两个面是长方形,其余四个面是正方形或长方形。
计算长方体表面积的方法较为简单,可以通过以下公式进行计算:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)其中,长、宽和高分别表示长方体的长、宽和高。
根据该公式,我们可以轻松计算出长方体表面积,无论长宽高是多少。
三、球体表面积的计算方法球体是一种完全由曲面组成的几何体,其表面积的计算相对复杂一些。
球体表面积的计算方法可以通过以下公式进行计算:表面积= 4 × π × 半径^2其中,π是一个数学常数,约等于3.14159,半径表示球体的半径。
根据该公式,我们可以比较准确地计算出球体的表面积。
四、圆柱体表面积的计算方法圆柱体是一种上下底面相等,侧面是由矩形组成的几何体,其表面积的计算方法较为复杂。
圆柱体表面积的计算方法可以通过以下公式进行计算:表面积= 2 × π × 半径 × (半径 + 高)其中,π是一个数学常数,约等于3.14159,半径表示圆柱体的底面半径,高表示圆柱体的高度。
根据该公式,我们可以相对准确地计算出圆柱体的表面积。
总结:通过以上几种常见物体表面积的计算方法,我们可以看出不同几何体的表面积计算方法各有不同。
长方体和正方体的表面积知识点1、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
长方体和正方体表面积知识巩固一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。
6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。
长方体和正方体的表面积计算与应用长方体和正方体是几何学中的两个重要概念,它们在日常生活和工程设计中都有广泛的应用。
在本文中,我们将探讨长方体和正方体的表面积计算方法以及它们在实际应用中的意义。
一、长方体表面积计算与应用长方体是一个具有六个面的立体,每个面都是矩形。
如图所示,我们可以用三个边长a、b和c来描述长方体的形状。
长方体的表面积等于各个面的面积之和。
面积的计算公式可以根据矩形的特点得到。
首先,长方体有两个底面,每个底面的面积都是a×b,所以底面的总面积为2ab。
其次,长方体有四个侧面,每个侧面的面积都是b×c、a×c和a×b,所以四个侧面的总面积为2bc+2ac。
因此,长方体的表面积等于2ab+2bc+2ac,可以简化为2(a×b+a×c+b×c)。
长方体的表面积计算方法不仅适用于数学问题,还有许多实际应用。
例如,在建筑设计中,工程师需要计算建筑物的外墙面积来确定所需的材料数量,以便控制成本和施工时间。
另外,物流行业中的货物包装和运输也需要准确计算货物箱体的表面积,以防止运输过程中的堆放不当。
二、正方体表面积计算与应用正方体是一种特殊的长方体,它的六个面都是正方形。
正方体以边长a来描述。
正方体的表面积计算方法与长方体类似,但由于所有面都是正方形,所以可以简化计算过程。
正方体有六个面,每个面的面积都是a×a,所以正方体的表面积等于6×(a×a),即6a×a,也可以表示为6a²。
正方体在数学中具有重要意义,它是立方体的一种特例。
正方体常用于建筑设计中的柱体形状,例如高层建筑的柱子或水塔。
此外,在游戏设计和几何模型制作中,正方体也经常被用来构建基本形状。
三、长方体和正方体表面积计算公式的推导我们可以通过立体的展开图来推导出长方体和正方体的表面积计算公式。
首先,将长方体的六个面展开,得到一个长方形的图形。
授课教案
学员姓名:授课教师:所授科目:
1、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个顶点。
2、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。
3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。
4、相交于一个顶点的()条棱,分别叫做长方体的()、()、()。
5、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。
6、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。
高是()厘米。
7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
8、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
9、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。
二、应用题。
1、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米
2、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米
3、天天游泳池,长25米,宽10米,深米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块
4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块
5、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个(不计接口)
6、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米
7、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米表面积是多少平方米
8、.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸
9、一只无盖的长方形鱼缸,长米,宽米,深米,做这只鱼缸至少要用玻璃多少平方米
10、.用36厘米的铁丝焊接成一个正方体框架,这个正方体棱长是多少如果用纸糊满框架的表面,至少需要纸多少平方厘米
11、一个长方体的水池的长是18米,宽是12米,深是米,在它的四周和底面抹上水泥,水泥的面积多少平房米
12、.用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米
13、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一对鱼缸需要多少平方厘米的玻璃
14、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽分米。
做一节水管,至少要用铁皮多少平方分米。
15、一个游泳池,长25米,宽10米,深米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是2分米的正方形,那么至少需要这种瓷砖多少块
16、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米
17、做一个长方体的浴缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃如果每平方分米玻璃4元钱,至少需要多少钱买玻璃。