找等量关系方法汇总
- 格式:doc
- 大小:71.00 KB
- 文档页数:12
找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。
寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。
首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。
这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。
例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。
首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。
化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。
通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。
例如,对于表达式2x+3x,我们可以进行化简得到5x。
因此,可以得到等量关系式2x+3x=5x。
3.分解法:通过分解法可以找到等量关系式。
分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。
通过将两个或多个数学表达式进行分解,可以得到等量关系式。
例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。
变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。
通过对数学表达式进行变换,可以得到等量关系式。
例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。
每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。
找等量关系的方法等量关系是指在同一环境下,两个或多个变量之间的关系保持不变。
寻找等量关系的方法有多种,可以通过观察、实验、数据分析等方式来确定等量关系。
下面将详细介绍几种常见的方法:1. 观察法:观察法是最简单直接的方法之一。
通过仔细观察现象,注意变量之间的关系,可以发现它们之间可能存在的等量关系。
例如,在观察天气变化时,可以发现每年的季节变化是等量关系,即春、夏、秋、冬四个季节轮流出现。
此外,观察物体的形状、大小、颜色等特征时,也可以发现某些特征之间的等量关系。
2. 实验法:实验法是通过设计和进行实验来确定等量关系的方法。
通过改变一个或多个变量,并观察其他变量的变化情况,可以判断它们之间是否存在等量关系。
例如,在物理实验中,可以通过改变一个物体的质量或受力情况,来观察其加速度如何变化,从而得出质量和加速度之间的等量关系。
3. 数据分析法:数据分析法是通过收集、整理和分析数据来确定等量关系的方法。
通过统计学方法和数学模型,可以发现变量之间的统计规律和数学关系。
例如,在经济学中,可以通过收集不同国家的GDP和人均收入数据,进行数据分析和统计,来确定GDP和人均收入之间的等量关系。
4. 推理法:推理法是通过逻辑推理和推断来确定等量关系的方法。
通过已知的事实、规律和原理,结合逻辑推理和推论,可以确定未知的等量关系。
例如,根据物体的体积和密度之间的关系,可以通过推理得出物体的质量和体积之间的等量关系。
在寻找等量关系时,需要注意以下几点:1. 基于观察和实验的结果,尽量进行多次验证和重复实验,以确保结果的可靠性和准确性。
2. 在数据分析过程中,要合理选择样本和数据集,并使用合适的统计方法和数学模型进行分析,以避免误导和错误的结论。
3. 进行推理和推断时,要注重逻辑性和合理性,并尽量减少主观臆断和偏见的影响,以确保推理过程的科学性和可信度。
总结而言,寻找等量关系的方法包括观察法、实验法、数据分析法和推理法。
找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。
以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。
通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。
例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。
根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。
例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。
通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。
例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。
如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。
通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。
4.探究法:探究法通过不断的探究和推断来找到等量关系式。
例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。
通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。
需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。
在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。
找等量关系式的四种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量"、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量"等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程.3、把公式作为等量关系.在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420"列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系.1.牢记计算公式,根据公式来找等量关系。
这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题.2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。
如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。
3.抓住关键字词,根据字词的提示找等量关系。
找等量关系式的四种方法-CAL-FENGHAI.-(YICAI)-Company One1找等量关系式的四种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花元。
每支圆珠笔的价钱是元,每支钢笔多少钱我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=元设:每支钢笔X元。
3X-×5=2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米我们可以根据“速度(和)×时间=路程”找出等量关系:“(甲速+乙速)×相遇时间=路程”设:乙车每小时行X千米(38+X)×3=2373、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
设:梯形的高是X分米(4+8)×X÷2=304、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
找等量关系式的方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花0.9元。
每支圆珠笔的价钱是0.6元,每支钢笔多少钱?我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:3支钢笔的价钱-5支圆珠笔的价钱=0.9元解:设每支钢笔X元。
3X-0.6×5=0.92、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?我们可以根据“速度(和)×时间=路程”找出等量关系:(甲速+乙速)×相遇时间=路程解:设乙车每小时行X千米(38+X)×3=2373、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
解:设梯形的高是X分米(4+8)×X÷2=304、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:解:设平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
初中方程找等量关系的口诀
1.抓住关键句,寻找等量关系:
●找到题目中的“等于”、“比…多”、“比…少”、“是…的几倍”、“一共”、
“相差”等关键词汇,这些往往暗示着等量关系的存在。
●例如:“小明和小红共收集了100个瓶子”,其中的“共”字就提示了等
量关系。
2.运用数量关系式建立等量关系:
●根据常见数学模型建立等式,如:工作总量=工作效率×工作时间、
路程=速度×时间、总价=单价×数量、总产量=单产量×面积等。
●如题目描述的是某个具体问题的情景时,可以利用这些公式来构建
等量关系。
3.根据图形或线段图找等量关系:
●对于几何问题,通过画出线段图、面积图等可视化工具,直观地展
示出各个部分之间的数量关系。
●比如在解梯形面积问题时,可以通过梯形面积公式(上底+下底)×
高÷2建立等量关系。
4.应用代数思想抽象化处理:
●把未知量用字母表示,并根据题意列出方程,通过运算求解。
●例如:“已知甲车速度为每小时38千米,两车相遇时,它们走过的
路程之和等于总路程237千米。
”可以设乙车速度为X,得到等量关
系式(38+X)×3=237。
总结起来就是:
•关键句里抓等式,
•数量关系建模快,
•几何图形显关系,
•未知字母列方程。
找等量关系式的四种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
3、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
1.牢记计算公式,根据公式来找等量关系。
这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。
2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。
如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。
3.抓住关键字词,根据字词的提示找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
找等量关系式的四种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
、方程。
从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
1.牢记计算公式,根据公式来找等量关系。
这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。
2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”如““速度×3比……多(少)如“比……少”4个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率。
在倍比关系的应用题中,也应找准标准量。
因此,正确地确定“量率对应”是解题的关键。
5.补充缺省条件,根据句子意思找等量关系。
这类应用题的特征是含有“比……多(少)”、“比……增加(减少)”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难。
因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整。
如“小明第一天看书60页,比第二天少看,第二天看了多少页?”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的是指第二天的”,于是可列方程X-X=60。
6.利用好线段图,根据线段图找等量关系。
位“1”“比”、“抓方程一、译式法例14辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨?分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x、y吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:6=x.由这10+y +y27x;“6辆小卡车和10辆大卡车共运货51吨”可翻译成数学式子:51 54=两个式子组合列出二元一次方程组即可求解.评注:对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程(组)也就列出来了.这种将关键词语译成代数式列方程(组)解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.二、列表法相等关系,列出方程(组)的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.三、图示法例4甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔2分二人相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈?分析:根据题意可以分别画出甲、乙相向而行、同向而行时的示意图(如图1和图2)如果设甲每分钟跑x 圈,乙每分钟跑y 圈,根据图1可得12x 2=+y ;根据图2可得166=-y x .评注:图示法是指将条件及它们之间的内在联系用简单明了的示意图表示出来,然后据图找等评注1.代数语言:4.6×2+25χ=44.2(这里χ表示每根跳绳的售价)。
2.掌握常见的基本数量关系,建立等量关系式。
根据“行程问题”基本数量关系式:速度×时间=路程根据“工作问题”基本数量关系式:工作效率×工作时间=工作总量图1 图2 6x 6相向 同向3.根据题中关键性词语来理解数量关系从中得到等量关系式。
例如,一个花坛里有3行芍药花,每行5棵。
另一个花坛里有3行牡丹花,芍药花比牡丹花少9棵,牡丹花每行多少棵?根据题中“芍药花比牡丹花少9棵”的关键性词语“比”、“少”,就可以列出:3χ-5×3=9(χ表示每行牡丹花的棵数)4.利用线段图的直观性,从图中发现等量关系。
米,宽☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。
则列方程解应用题的关键是——找出..相.等关系...,找出了相等的关系,方程也就可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
习题:1.某数的三分之一比这个数小1,求这个数。
二、根据常见的数量关系找等量关系1.2.3.(4.习题:1.1.2.3.4.圆形周长=π×直径=2π×半径圆形面积=π×(半径)2习题:1.长方形的周长为60米,已知长是宽的1.5倍,求它的面积。
四、理解文字找等量关系。
习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。
问男生有多少人?五、画图分析找等量关系根据题意画出图形分析图或者是表格分析图,从中找出相关等量列方程。
习题:1.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,(4)2.3.45.市场经济问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度78,(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)3例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?(五)劳力调配问题:这类问题要搞清人数的变化.例1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?1.例.10.3______道题。
(十)利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?(十一)储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税元,求银行半1.(1c(其中a、b、。
(22n表示,连1.1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。