七年级下册人教版数学期末总复习教案及练习试卷(资料)
- 格式:doc
- 大小:1.11 MB
- 文档页数:18
最新人教版七年级数学下册期末复习资料(共6套附答案)期末复习(一) 相交线与平行线考点一命题【例1】已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是( )A.1个B.2个C.3个D.4个【方法归纳】要判断一个命题是假命题,只需要举出一个反例即可.1.下列语句不是命题的是( )A.两直线平行,同位角相等B.锐角都相等C.画直线AB平行于CDD.所有质数都是奇数考点二相交线中的角【例2】如图所示,O是直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说出理由.思路:根据邻补角互补,得∠AOC与∠BOC的和为180°.利用已知条件,即可求得∠AOC的度数.根据角平分线的定义得∠COD,∠AOD的度数,从而判定出两直线的位置关系.【方法归纳】求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.2.如图,直线AB,CD相交于点O,已知:∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE 的度数.考点三平行线的性质与判定【例3】已知:如图,四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F.求证:∠1=∠2.思路:由条件得∠A+∠ABC=180°,得AD∥BC,从而∠1=∠DBC.由BD⊥DC,EF⊥DC,可得BD∥EF,从而∠2=∠DBC,所以∠1=∠2,结论得证.【方法归纳】本题既考查了平行线的性质又考查了平行线的判定.题目的证明用到了“平行线迁移等角”.3.(2013²盐城)如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°4.(2012²宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=__________.(第3题)(第4题)考点四平移变换【例4】(2013²晋江)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观察图形可得△ABC扫过的面积为四边形AA′B′B的面积与△ABC的面积的和,然后列式进行计算即可.5(2012²济南)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于__________.复习测试一选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°(第1题)(第2题)(第3题)(第4题)5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°(第9题)(第10题)二、填空题(每小题3分,共15分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.(2014²温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.(第13题)(第14题)(第15题)三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠______________=∠_________________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________________________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________. 选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223³70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12³∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13³90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,。
人教版七年级数学下册期末测试题及答案共五套七下期期末(共六套) 姓名: 学号班级一、选择题:(本大题共10个小题,每小题3分,共30分)1(若m,,1,则下列各式中错误的是( ) (((A(6m,,6 B(,5m,,5 C(m+1,0 D(1,m,22.下列各式中,正确的是( )23 A.=?4 B.?=4 C.=-3 D.=-4 1616,27(4),3(已知a,b,0,那么下列不等式组中无解的是( ) ((x,,ax,,ax,ax,a,,,,A( B( C( D( ,,,,x,,bx,,bx,,bx,b,,,,4(一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50?,后右转40? (B) 先右转50?,后左转40?(C) 先右转50?,后左转130? (D) 先右转50?,后左转50?x,1,5(解为的方程组是( ) ,y,2,xy,,1xy,,,1xy,,3xy,,,23,,,,A. B. C.D. ,,,,31xy,,35xy,,35xy,,,35xy,,,,,,006(如图,在?ABC中,?ABC=50,?ACB=80,BP平分?ABC,CP平分?ACB,则?BPC的大小是( )0000A(100 B(110 C(115 D(120AA A1小刚D PB 小军C1 BC 1 CB小华(1) (2) (3)7(四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A(4 B(3 C(2 D(118(在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是( ) 2A(5 B(6 C(7 D(89(如图,?ABC是由?ABC沿BC方向平移了BC长度的一半得到的,若?ABC的面积为111220 cm,则四边形ADCC的面积为( ) 11 2222 A(10 cmB(12 cm C(15 cmD(17 cm10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) - 1 -A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上( 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9?3(x+1)的解集是________.李庄13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选火车站一点来建火车站(位置已选好),说明理由:____________. 15.从A沿北偏东60?的方向行驶到B,再从B沿南偏西20?的方向行驶到C,•则?ABC=_______度.16.如图,AD?BC,?D=100?,CA平分?BCD,则?DAC=_______.DA17(给出下列正多边形:? 正三角形;? 正方形;? 正六边形;?正八边形(用上述正多边形中的一种能够辅满地面的是_____________((将所有答案的序号都填上)2BCy,318.若?x-25?+=0,则x=_______,y=_______. 三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤(x,3(x,2),4,,,19(解不等式组:,并把解集在数轴上表示出来( 2x,1x,1,,.,52, 231,xy,,,20(解方程组: 342,,4()3(2)17xyxy,,,,,- 2 -21.如图, AD?BC , AD平分?EAC,你能确定?B与?C的数量关系吗?请说明理由。
一元一次方程的应用【目标导航】1.通过利润利率问题、行程问题等实际问题的分析,使学生掌握如何用方程来解决一些生活中的实际问题;2.引导学生积极探索思考,培养学生分析问题和用方程解决实际问题的能力;3.让学生在问题情境中感受数学的应用价值,从而产生对数学学习的浓厚兴趣.【要点梳理】列一元一次方程解应用题的一般步骤 1.审题;2.根据题意恰当的设出未知数;3.分析问题,找出等量关系并列出方程;4.求出所列方程的解;5.检验解的合理性;6.做出答案.【应用举例】一、和差倍分问题:父亲今年32岁,儿子今年8岁,几年后父亲的年龄是儿子年龄的3倍? 答案:解:设x 年后父亲的年龄是儿子年龄的3倍 32+x=3(8+x),解得:x=4. 二、数字问题:有一个两位数,它的十位上的数字比个位上的数字大5,并且这个两位数比它的两个数字之和的7倍还要大3,求这个两位数. 答案:解:设个位数为x,十位数为(x+5) 10(x+5)+x=7(x+x+5)+3, x=4, 这个两位数是:94 三、等积问题:一个长为20m ,宽为15m ,高为5m 的长方体盒子盛满水倒进棱长为15m 的正方体盒子,求水的高度. 答案:解:设水的高度是:xm. 151520155x ⨯⨯=⨯⨯203x =答:水高203m. 四、行程问题 1.(2011广西崇左)元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马. 答案:20.解:设良马x 天可以追上驽马,根据题意,得240x =150(12+x ).解得x =20.所以良马20天可以追上驽马.2.甲、乙两人骑自行车同时从相距65km 的两地同时出发,已知甲比乙每小时多骑2.5km , (1)若两人相向而行,2小时相遇,求乙的速度?(2)若两人同向而行,甲经过几小时追上乙? 答案: 解:(1)设:两人相向而行乙的速度每小时xkm. 2(x+x+2.5)=65, x=30答:乙的速度每小时30 km 。
人教版数学七年级下册《复习题9》教案一. 教材分析人教版数学七年级下册《复习题9》主要包括了以下几个部分:分数的加减法、乘除法;一元一次方程的解法;几何图形的性质和计算。
这些内容是学生进一步学习数学的基础,对于提高学生的数学思维能力和解决实际问题的能力具有重要意义。
二. 学情分析学生在之前的学习中已经初步掌握了分数的加减法和乘除法,一元一次方程的解法以及几何图形的性质和计算。
但是,对于一些复杂的问题,学生可能还存在理解和运用上的困难。
因此,在复习过程中,需要帮助学生巩固基础知识,提高解题能力。
三. 教学目标1.知识与技能:使学生掌握分数的加减法和乘除法,一元一次方程的解法以及几何图形的性质和计算。
2.过程与方法:通过复习题的训练,提高学生的解题能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:分数的加减法和乘除法,一元一次方程的解法以及几何图形的性质和计算。
2.难点:对于一些复杂问题,如何正确运用所学知识进行解决。
五. 教学方法1.采用问题驱动法,引导学生主动思考和探究。
2.使用示例教学法,通过具体的例题讲解,使学生掌握解题方法。
3.采用小组合作学习法,培养学生的团队合作精神。
六. 教学准备1.教师准备复习题的PPT或者黑板。
2.准备相关的辅导资料和解答。
七. 教学过程1.导入(5分钟)教师通过提问或者复习已学知识,引导学生进入复习状态。
2.呈现(10分钟)教师呈现复习题,让学生明确复习的目标和内容。
3.操练(10分钟)学生独立完成复习题,教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师选取一些典型的题目进行讲解,帮助学生巩固所学知识。
5.拓展(10分钟)教师给出一些拓展题目,引导学生进行思考和探究。
6.小结(5分钟)教师引导学生总结复习的内容和收获,强调重点和难点。
7.家庭作业(5分钟)教师布置适量的家庭作业,巩固所学知识。
七年级数学人教(Jiao)版下学期期末总复习学案第五章(Zhang) 相交线与平行线 本(Ben)章知识结构图:知识(Shi)要点1、在同一(Yi)平面内,两条直线的位置关系有 两(Liang) 种(Zhong): 相(Xiang)交 和 平行 , 垂直 是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。
如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。
邻补角的性质: 邻补角互补 。
如图1所示, 与 互为邻补角, 与 互为邻补角。
+ = 180°; + = 180°; + = 180°; + = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
对顶角的性质:对顶角相等。
如图1所示, 与 互为对顶角。
= ; = 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。
如图2所示,当 = 90°时, ⊥ 垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征: ①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。
图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
李庄人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .1>0 D .1-m <2 2.下列各式中,正确的是( )16±4 B.±164 C 327- 3 2(4)- 4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在马路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为的方程组是( ) A. B. C. D.6.如图,在△中,∠500,∠800,平分∠,平分∠,则∠的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△沿方向平移了长度的一半得到的,若△的面积为20 cm 2,则四边形A 11的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案干脆填在答题卷的横线上. 11.49的平方根是,算术平方根是8的立方根是. 12.不等式59≤3(1)的解集是.13.假如点P(a,2)在第二象限,那么点Q(-3)在.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为C 1A 1ABB 1CD了使李庄人乘火车最便利(即间隔 最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠度.16.如图∥,∠100°平分∠,则∠.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种可以辅满地面的是.(将全部答案的序号都填上) 18.若│x 2-25则.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.解不等式组:,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, ∥ , 平分∠,你能确定∠B 及∠C 的数量关系吗?请说明理由。
学习必备欢迎下载七年级下学期期末数学试卷(时间:120分钟满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
题号一二三四五总分六附加题得分一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 7排4号。
2、不等式-4x ≥-12的正整数解为 1,2,3 .3、要使4x 有意义,则x 的取值范围是_x_≥4_____________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_____________三角形具有稳定性__________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 90°。
6、等腰三角形一边等于5,另一边等于8,则周长是__18或21_______ .7、如图所示,请你添加一个条件....使得AD ∥BC,∠EAD=∠ABC。
8、若一个数的立方根就是它本身,则这个数是 0。
9、点P (-2,1)向上平移2个单位后的点的坐标为(-2,3)。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为x+y=1000(1+6%)x+(1-2%)y=1000×(1+4.4%)。
二、细心选一选:(每题3分,共30分)11、下列说法正确的是( D)A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角; D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是(C )13、有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
人教版七年级下册期末复习数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <22.下列各式中,正确的是( )3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx a x 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC的大小是( )A .1000B .1100C .1150D .1200PC B A 小刚小军小华 (1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示, 小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.C 1A 1 AB B 1C D。
七年级数学下学期期末总复习学案第五章 相交线与平行线(一)本章知识结构图:(二)例题与习题:一、对顶角和邻补角:1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个 2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角。
( )3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠AOB ,OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
( )二、垂线:已知:如图,在一条公路l 的两侧有A 、B 两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. .一般情况相交成直角相交线相交 两条直线 第三条所截两条直线被邻补角 垂线 邻补角互补 点到直线的距离同位角、内错角、同旁内角 平行线平行公理及其推论 平行线的性质 平行线的判定 平移 对顶角 对顶角相等 垂线段最短 存在性和唯一性两条平行线的距离 平移的特征 12121221D BE (图1-2) 图1-1<2>为方便机动车出行,A 村计划自己出资修建一条由本村直达公路l 的机动车专用道路,你能帮助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. .三、同位角、内错角和同旁内角的判断1.如图3-1,按各角的位置,下列判断错误的是( )(A )∠1与∠2是同旁内角 (B )∠3与∠4是内错角 (C )∠5与∠6是同旁内角 (D )∠5与∠8是同位角2.如图3-2,与∠EFB 构成内错角的是_ ___,与∠FEB 构成同旁内角的是_ ___.四、平行线的判定和性质: 1.如图4-1, 若∠3=∠4,则 ∥ ;若AB ∥CD,则∠ =∠ 。
七年级数学人教版下学期期末总复习学案考试内容第五章 相交线与平行线 第六章 平面直角坐标系第七章 三角形 第八章 二元一次方程组第九章 不等式与不等式组 第十章 数据的收集、整理与描述 第十五章 整式的乘除与因式分解第五章 相交线与平行线A.1个B.2个C.3个D.4个 2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角。
( )3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
( )二、垂线:已知:如图,在一条公路l 的两侧有A 、B 两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. . <2>为方便机动车出行,A 村计划自己出资修建一条由本村直达公路l 的机动车专用道路,你能帮助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. .12121221E(图1-2)图1-1三、同位角、内错角和同旁内角的判断1.如图3-1,按各角的位置,下列判断错误的是( )(A )∠1与∠2是同旁内角 (B )∠3与∠4是内错角 (C )∠5与∠6是同旁内角 (D )∠5与∠8是同位角2.如图3-2,与∠EFB 构成内错角的是_ ___,与∠FEB四、平行线的判定和性质: 1.如图4-1, 若∠3=∠4,则 ∥ ; 若AB ∥CD,则∠ =∠ 。
2.已知两个角的两边分别平行,其中一个角为52°, 则另一个角为_______. 3.两条平行直线被第三条直线所截时,产生的八个角中, 角平分线互相平行的两个角是( ) A.同位角 B.同旁内角 C.内错角 D. 同位角或内错角 4.如图4-2,要说明 AB ∥CD ,需要什么条件? 试把所有可能的情况写出来,并说明理由。
5.如图4-3,EF ⊥GF ,垂足为F ,∠AEF=150°,∠DGF=60°。
试判断AB 和CD 的位置关系,并说明理由。
6.如图4-4,AB ∥DE ,∠ABC =70°,∠CDE =147°,求∠C 的度数. ( )7.如图4-5,CD ∥BE ,则∠2+∠3−∠1的度数等于多少?( ) 8.如图4-6:AB ∥CD ,∠ABE =∠DCF ,求证:BE ∥CF .12345678图3-1 C (1) 图4-1 图4-3 图4-6F EDC B A(图4-2) 图4-4 图4-5五、平行线的应用:1.某人从A 点出发向北偏东60°方向走了10米,到达B 点,再从B 点方向向南偏西15°方向走了10米,到达C 点,则∠ABC 等于( )A.45°B.75°C.105°D.135°2.一位学员练习驾驶汽车,发现两次拐弯后,行驶方向与原来的方向相同,这两次的拐弯角度可能是( )A 第一次向右拐50°,第二次向左拐130°B 第一次向左拐50°,第二次向右拐50°C 第一次向左拐50°,第二次向左拐130°D 第一次向右拐50°,第二次向右拐50°3.如图5-2,把一个长方形纸片沿EF 折叠后,点D、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于 °4.计算(图6-1)中的阴影部分面积。
(单位:厘米)5.如(图6-2)所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,求阴影部分面积。
(结果保留π )6.求(图6-3)中阴影部分的面积(单位:厘米)7.下列命题中,真命题的个数为( )个① 一个角的补角可能是锐角;② 两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离; ③ 平面内,过一点有且只有一条直线与已知直线垂直;④ 平面内,过一点有且只有一条直线与已知直线平行;A.1B.2C.3D.48.已知:如图8-1,AD ⊥BC ,EF ⊥BC ,∠1=∠2。
求证:∠CDG=∠B.9. 已知:如图8-2,AB ∥CD ,∠1=∠2,∠E=65°20′,求:∠F 的度数。
D图8-1 132 D BC AE F G 图8-3B 'DFCBA图6-1AB E FCD 1 2 图2图8-2图8-4图5-2D图6-3 图6-210.已知:如图8-3, AE ⊥BC , FG ⊥BC , ∠1=∠2, ∠D =∠3+60︒, ∠CBD =70︒ .(1)求证:AB ∥CD ; (2)求∠C 的度数。
11.如图8-4,在长方形ABCD 中,∠ADB =20°,现将这一长方形纸片沿AF 折叠,若使 AB ’ ∥BD ,则折痕AF 与AB 的夹角∠BAF 应为多少度?( )12. 如图8-5, B 点在A 点的北偏西30︒方向,距A 点100米, C 点在B 点的北偏东60︒, ∠ACB = 40︒ (1) 求A 点到直线BC 的距离;(100米) (2) 问:A 点在C 点的南偏西多少度 ? (写出计算和推理过程)( )13.如图,在1010⨯的正方形网格中,每个小正方形的边长均为1个单位,将ABC △向下平移4个单位,得到A B C '''△,请你画出A B C '''△(不要求写画法).六、利用等积变换作图:1.如图△ ABC ,过A 点的中线能把三角形分成面积相同的两部分。
你能过AB边上一点E 作一条直线EF ,使它也将这个三角形分成两个面积相等的部分吗?2.有一块形状如图的耕地,兄弟二人要把它分成两等份,请你设计一种方案把它分成所需要的份数.如果只允许引一条直线,你能办到吗?3.如图,欲将一块四方形的耕地中间的一条折路MPN 改直,但不能改变折路两边的耕地面积的大小,应如何画线?4.已知:如图,五边形ABCDEABCDE 的面积相等。
BCA B C A图8-5第4题N B A PM D第六章 平面直角坐标系(一)本章知识结构图:(二)例题与习题:一、填空:1.已知点P(3a-8,a-1).(1) 点P 在x 轴上,则P 点坐标为 ;点P 在y 轴上,则P 点坐标为 ; (2) 点P 在第二象限,并且a 为整数,则P 点坐标为 ; (3) Q 点坐标为(3,-6),并且直线PQ ∥x 轴,则P 点坐标为 .2.如图的棋盘中,若“帅” 位于点(1,-2)上,“相”位于点(3,-2)上, 则“炮”位于点___ 上.3.点)1,2(A 关于x 轴的对称点'A 的坐标是 ;点)3,2(B 关于y 轴的对称点'B 的坐标是 ;点)2,1(-C 关于坐标原点的对称点'C 的坐标是 . 4.已知点P 在第四象限,且到x 轴距离为52,到y 轴距离为2,则点P 的坐标为_____. 5.已知点P 到x 轴距离为52,到y 轴距离为2,则点P 的坐标为 . 6. 已知),(111y x P ,),(122y x P ,21x x ≠,则⊥21P P 轴,21P P ∥ 轴;7.把点),(b a P 向右平移两个单位,得到点),2('b a P +,再把点'P 向上平移三个单位,得到点''P ,则''P 的坐标是 ;8.在矩形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标为 ; 9.线段AB 的长度为3且平行与x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为_____. 二、选择题:10.线段AB 的两个端点坐标为A(1,3)、B(2,7),线段CD 的两个端点坐标为C(2,-4)、D(3,0),则线段AB 与线段CD 的关系是( )A.平行且相等B.三、解答题:1.已知:如图,)3,1(-A ,)0,2(-B ,)2,2(C ,求△ABC 的面积.2.已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . ⑴ 求点C 的坐标;⑵ 若10=∆ABC S ,求点B 的坐标.3.已知:四边形ABCD 各顶点坐标为A(-4,-2),B(4,-2),C(3,1),D(0,3). (1)在平面直角坐标系中画出四边形ABCD ; (2)求四边形ABCD 的面积.(3)如果把原来的四边形ABCD 各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少? 4. 已知:)1,0(A ,)0,2(B ,)3,4(C .⑴ 求△ABC 的面积; ⑵ 设点P 在坐标轴上,且△ABP 与△ABC 的面积相等, 求点P 的坐标.5.如图,是某野生动物园的平面示意图.6.如图,平移坐标系中的△ABC ,使AB 平移到11B A 的位 置,再将111C B A ∆向右平移3个单位,得到222C B A ∆,画出222C B A ∆,并求出△ABC 到222C B A ∆的坐标变化.第七章 三角形(一)本章知识结构图:1.如果三角形的一个外角小于和它相邻的内角,那么这个三角形是( )第6题图A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形 2.如图是一副三角尺拼成图案,则∠AEB =_________°.3.在△ABC 中,若a=3,b=5,则c 边的取值范围_ _______.4.如果三条线段的比是:(1)5:20:30 (2)5:10:15 (3)3:4:5(4)3:3:5 (5)5:5:10 (6)7:7:2 那么其中可构成三角形的比有( )种. A.2 B.3 C.4 D.55.三角形的三边分别为3,8,1-2x ,则x 的取值范围是( )A.0<x <2B.-5<x <-2C.-2<x <5D.x <-5或x >26.如果一个三角形两边上的高的交点在三角形的外部,那么这个三角形是___ ___三角形.7. 已知△ABC ,求作:(1)△ABC 的中线AD ;(2)△ABC 的角平分线AE ;8. 已知△ABC ,求作:△ABC 的高线AD 、CE 。
9.在△ABC 中,两条角平分线BD 、CE 相交于点O ,∠BOC=116°,那么∠A 的度数是______。
10.已知BD 、CE 是△ABC 的高,若直线BD 、CE 相交所成的角中有一个为50°,则∠BAC 等于______________. 11.在△ABC 中,∠B -∠A=15°,∠C -∠B=60°,则△ABC的形状为_________. 12.(08年北京卷第5题).若一个多边形的内角和等于720,则这个多边形的边数是( )A .5B .6C .7D .813. 一个多边形的每一个内角为144°,则它的边数是______,它的对角线的条数是_____. 14.把一个五边形切去一角,则它的内角和为( )度。