主线右幅坐标正反算
- 格式:xls
- 大小:817.50 KB
- 文档页数:20
一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。
1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角YX第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O ) 直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。
直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。
2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。
二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。
例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。
13图5解:α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F BC>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L OD,直线段DE长度为L DE,则E点坐标为X D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L6R L 3sL 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O) ×Cos(F)+Abs(y O) ×COS(F CP)Y P=Y O+Abs(x O) ×Sin(F)+Abs(y O) ×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'",两点水平距离=,计算点的坐标?35o17'"=35o17'"=2、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=、=、=、=,计算坐标方位角计算坐标方位角、水平距离。
=62°09'"+180°=242°09'"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=、=、=、=,试计算坐标方位角、水平距离。
键入按等号键[=]等于纵坐标增量,按储存键[],键入按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。
【例题6-4】坐标正算,已知坐标方位角=294°42'51",=,试计算纵坐标增量横坐标增量。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'",两点水平距离=,计算点的坐标?35o17'"=35o17'"=2、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=、=、=、=,计算坐标方位角计算坐标方位角、水平距离。
=62°09'"+180°=242°09'"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=、=、=、=,试计算坐标方位角、水平距离。
键入按等号键[=]等于纵坐标增量,按储存键[],键入按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。
【例题6-4】坐标正算,已知坐标方位角=294°42'51",=,试计算纵坐标增量横坐标增量。
一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。
1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。
直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。
2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。
二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。
例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。
13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L6R L 3sL 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
坐标正反算计算程序在进行坐标正反算计算之前,需要先了解一些基本概念和公式:1.大地坐标系:大地坐标系是用经纬度表示地球表面上的点的坐标系统,其中经度表示东西方向的位置,纬度表示南北方向的位置。
2.平面坐标系:平面坐标系是用平面直角坐标系表示地球上的点的坐标系统,其中X轴表示东西方向的位置,Y轴表示南北方向的位置。
3.椭球坐标参数:椭球坐标参数包括椭球体长半轴a、短半轴b和偏心率e等参数,用来描述地球表面的形状。
4.大地坐标与平面坐标的转换公式:-大地坐标转平面坐标:平面X坐标 = N * (cosB * (L - L0))平面Y坐标 = M + N * sinB * tan(B - B0)-平面坐标转大地坐标:B=B0+(Y-M)/NL = L0 + X / (N * cosB)H = (N / cosB) - N其中,N、M、B0、L0分别代表椭球的参数计算中的一些辅助数值,H 代表大地高。
下面是一个示例的坐标正反算计算程序:```pythonimport mathclass CoordinateConverter:def __init__(self, a, b, e, lon_origin, lat_origin):self.a = aself.b = bself.e = eself.lon_origin = lon_origint_origin = lat_origindef geodetic_to_plane(self, lon, lat):lon_diff = lon - self.lon_originM = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 * math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)X = N * math.cos(t_origin) * lon_diffY = M + N * math.sin(t_origin) * math.tan(lat - t_origin)return X, Ydef plane_to_geodetic(self, X, Y):M = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 *math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)lat = t_origin + (Y - M) / Nlon = self.lon_origin + X / (N * math.cos(lat))H = (N / math.cos(lat)) - Nreturn lon, lat, H#示例用法#大地坐标转平面坐标X, Y = converter.geodetic_to_plane(lon=121, lat=41)print("平面坐标:", X, Y)#平面坐标转大地坐标print("大地坐标:", lon, lat, H)```注意:在实际使用时,需要根据具体的椭球参数和坐标系定义进行适当修改,以满足实际需求。
坐标正算反算公式讲解坐标正算和反算是地理信息系统(GIS)中两个常用的操作,用于将地理坐标转换为平面坐标(正算)或将平面坐标转换为地理坐标(反算)。
这两个操作在测量、绘图、导航、定位等领域都有广泛的应用。
下面是对坐标正算和反算公式的详细讲解。
一、坐标正算公式坐标正算是将地理坐标(经纬度)转换为平面坐标(XY坐标)。
在坐标正算中,我们需要用到投影坐标系和大地坐标系之间的转换公式。
1.地理坐标系地理坐标系使用经度和纬度来表示地球上的点。
经度是指从地球圆心到其中一点的经线弧度长度与赤道弧度长度的比值,范围为-180到180度;纬度是指从地球赤道到其中一点的纬线弧度长度与半径的比值,范围为-90到90度。
2.投影坐标系投影坐标系是将地理坐标投影到平面坐标系上的一种方法。
根据需要,可以选择不同的投影方式,例如等角、等面积、等距、等分四类等。
每个投影方式都有其特点,选用不同的投影方式可以满足不同的需求。
3.原理坐标正算的原理是根据地理坐标系中点的经纬度和投影坐标系中原点的经纬度之间的差异,通过一定的计算公式将地理坐标系中的点坐标转换为投影坐标系中的点坐标。
4.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。
(2)计算地理坐标系中点的经纬度与原点经纬度的差值。
(3)利用投影坐标系的转换公式,将差值转换为平面坐标。
5.常用坐标正算公式常用的坐标正算公式包括高程改正公式、大地坐标系转换公式、高斯投影正算公式等。
二、坐标反算公式坐标反算是将平面坐标(XY坐标)转换为地理坐标(经纬度)。
在坐标反算中,我们需要用到投影坐标系和大地坐标系之间的反转换公式。
1.原理坐标反算的原理是根据投影坐标系中点的坐标和大地坐标系中原点的经纬度之间的差异,通过一定的计算公式将平面坐标系中的点坐标转换为地理坐标系中的点坐标。
2.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。
(2)计算平面坐标系中点的坐标与原点坐标的差值。
(3)利用投影坐标系的反转换公式,将差值转换为地理坐标。