最新冀教版初中数学八年级下册第二十二章复习优质课教案
- 格式:doc
- 大小:98.00 KB
- 文档页数:9
第二十二章四边形22.1 平行四边形的性质第1课时平行四边形的性质定理11.理解平行四边形的概念;(重点)2.掌握平行四边形边、角的性质;(重点)3.利用平行四边形边、角的性质解决问题.(难点)一、情境导入如图,平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF 为平行四边形,∴DE =AF =2,AD =EF ,AD ∥EF ,∴∠ACB =∠FEB .∵AB =AC ,∴∠ACB =∠B ,∴∠FEB =∠B ,∴EF =BF .∴AD =BF ,∵AB =5,∴BF =5+2=7,∴AD =7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】 利用平行四边形的性质求角如图,在平行四边形ABCD 中,CE ⊥AB 于E ,若∠A =125°,则∠BCE 的度数为( )A .35°B .55°C .25°D .30°解析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠A +∠B =180°.∵∠A =125°,∴∠B =55°.∵CE ⊥AB 于E ,∴∠BEC =90°,∴∠BCE =90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】 利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE 中,∵⎩⎪⎨⎪⎧CF =CE ,∠FCP =∠ECP ,CP =CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多.【类型四】 判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM=∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.三、板书设计1.平行四边形的定义2.平行四边形的边、角特征3.两平行线间的距离学生通过观看多媒体课件的演示和动手操作的过程,得出并掌握平行四边形的性质,效果比较好.例题能够引导学生用不同的方法去解决问题并加以变式练习,使教师能根据学生的掌握情况及时解决学生在练习的过程中发现问题,并通过投影指出错误,规范说理过程,极大提高课堂效率.。
正方形
教学目标:
1.掌握正方形的概念。
2.经历探索正方形的性质和判定方法,了解正方形与平行四边形、矩形、菱形之间的关系。
3.掌握正方形的性质和判定,并会应用其解决几何问题。
重点:正方形的性质和判定。
难点:应用性质和判定解决几何问题。
教学方法:探究、归纳法。
教学过程:
一、复习导入
平行四边形、矩形、菱形的定义及性质
二、探究新知
1.正方形的定义
2.正方形的性质
3.正方形的判定(观看正方形的演变动画图)
4.四边形、平行四边形、矩形、菱形、正方形之间的包含关系
三、例题解析
四、课堂总结
五、练习
六、作业:习题A组
七、板书设计
八、课后反思:由于正方形是特殊的矩形,也是特殊的菱形,融合了所有矩形和菱形的性质,在几何题的应用时考虑不全面,有待加强练习。
《几何中与中点有关的计算与证明》教学设计教学目标1、熟悉几何中有关中点问题中的计算与证明方法,会运用这些方法解决问题。
2、提高学生审题分析问题能力,充分利用所给条件和已掌握知识结合图形解决问题。
3、提高学生对知识的整合能力和分析能力。
4、经历整合几何中点有关计算和证明类型的过程,体会建模思想、化归思想在数学中的广泛应用。
重点:掌握几何问题中有关中点问题的类型及解题方法。
难点:构建相关数学模型,利用已掌握的知识解决问题。
教学过程:一、问题导入问题1:在几何问题中关于中点的相关内容有哪些?生答:线段中点、中垂线、三角形中线、直角三角形斜边中线、三角形中位线……(以及各种情况的性质)二、经典题型解析1.学生讲解习题问题:在一般的四边形中链接四边中点所组成的四边形形状与四边形对角线有什么关系?学生讨论并总结。
2、学生讨论以上习题用了哪些关于中点的知识,分类并总结。
3、师生共同总结,师板书:情况一情况二情况三情况四三、课后小结通过本节课复习的内容总结一下关于几何中与中点有关的应用类型。
通过什么已知条件判断相应的用什么知识。
学生讨论展示:一人给条件,一人回答应用哪个知识点,具有什么性质。
四、作业完成练习题9、10、11题,并总结解题思路和方法。
板书设计情况一:1、直角三角形斜边中线解题通法:直角+斜边中点→斜边中线等于斜边的一半2、等腰三角形三线合一:底边中线、底边高、顶角角平分线三线合一3、线段垂直平分线:遇到垂直平分线→线段相等→等腰三角形4、连三角形两边中点→中位线→与第三边平行且等于第三边一半一个中点时倍长一边再找一个中点构造中位线。
四边形复习一、教学目标:通过对本章知识的回顾,进一步认识四边形、特殊四边形的基本性质和判定方法,加深对三角形中位线的理解。
通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
二、教学重点:通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
三、教学过程:1.引入在本章我们学习了特殊的四边形——平行四边形、矩形、菱形、正方形。
他们之间具有一般与特殊的关系。
下面我们一起来梳理一下它们之间的关系以及特殊化的演进过程。
2.学生回顾四边形与特殊四边形的关系:正方形有一个角是直角对角线相等对角线垂直一组邻边相等菱形矩形对角线相等对角线垂直有一个角是直角一组邻边相等平行四边形三四个条两组对边对角线角边分别平行互相平分是相直等四边形在整个特殊化演进过程中,从平行四边形出发,按照边、角、对角线的特殊化进行分类,演化出了菱形、矩形。
菱形、矩形的边、角、对角线特殊化演化出了正方形。
3.知识梳理:通过对四边形与特殊四边形之间关系的梳理,进一步用表格的形式让学生来总结特殊四边形的性质与判定:( 1)特殊四边形的性质:四边形对称性边角对角线项目中心对称图形平行且相等对角相等互相平分平行四边形邻角互补矩形中心对称图形平行且相等四个角都互相平分且相等轴对称图形是直角中心对称图形平行互相垂直平分,且每一条对菱形对角相等角线平分一组对角轴对称图形且四边相等邻角互补正方形中心对称图形平行四个角都互相垂直平分且相等,每一轴对称图形且四边相等是直角条对角线平分一组对角( 2)特殊四边形的判定:四边形平行四边形矩形菱形正方形1. 定义:两组对边分别平行 2. 两组对边分别相等3. 一组对边平行且相等 4. 对角线互相平分5.两组对角分别相等1.定义:有一个角是直角的平行四边形2.三个角是直角的四边形3.对角线相等的平行四边形1.定义:一组邻边相等的平行四边形2.四条边都相等的四边形3.对角线互相垂直的平行四边形1.定义:一组邻边相等且有一个角是直角的平行四边形2. 有一组邻边相等的矩形3. 对角线互相垂直的矩形4. 有一个角是直角的菱形5. 对角线相等的菱形6.对角线相等且互相垂直的平行四边形( 3)三角形中位线与中点四边形:①三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。
第二十二章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯.【教学重点】1、平行四边形与各种特殊平行四边形的区别.2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法.【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用.【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件.【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕.(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米.3、顺次连结矩形ABCD各边中点所成的四边形是菱形.4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米.5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形 .(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A .正方形B .菱形C .矩形D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形. (5)、正方形具有而矩形不具有的特征是( D )A. 内角为3600B. 四个角都是直角C. 两组对边分别相等D. 对角线平分对角问:那么正方形具有而菱形不具有的特征是什么?对角线相等2、集合表示,突出关系二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗已知:如图1,□ABCD 的对角线AC 、BD 交于点O , EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF . 证明: ∵变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?BC对角线互相平分的四边形是平行四边形.变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?对角线互相平分的四边形是平行四边形.变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?对角线互相平分的四边形是平行四边形.变式4.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形.变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?为什么?可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形.BB变式6.在变式5中,若将“□ABCD ”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长.) 略解:∵AB=6,BC=8 ∴BD=AC=10. 设OG = x ,则BG = GD=252+x . 在Rt △ABG 中,则勾股定理得: AB 2 + AG 2 = BG 2 ,即()()22222252586+=+-+x x ,解得 415=x .∴GH = 2 x = 7.5.(二)一题多解,培养发散思维 〖例题2〗已知:如图,在正方形ABCD ,E 是BC 边上一点, F 是CD 的中点,且AE = DC + CE .求证:AF 平分∠DAE .证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)∵四边形ABCD 是正方形,∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°, ∴∠C =∠GDF在△EFC 和△GFD 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF GDF C 21 ∴△EFC ≌△GFD (ASA )∴CE=DG ,EF=GF ∵AE = DC + CE , ∴AE = AD + DG = AG , ∴AF 平分∠DAE .FE BCA G证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,∴AD // BC ,DA=DC ,∠FCG=∠D=90°(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°, ∴∠FCG =∠D在△FCG 和△FDA 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠DF CF D FCG 21 ∴△△FCG 和△FDA (ASA )∴CG=DA ∵AE = DC + CE ,∴AE = CG + CE = GE , ∴∠4 =∠G ,∴∠3 =∠4, ∴AF 平分∠DAE .思考:如果用“截取法”,即在AE 上取点G ,使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?三、综合训练,总结规律 (一)综合练习,提高解题能力1. 在例2中,若将条件“AE = DC + CE ”和结论 “AF 平分∠DAE ”对换,所得命题正确吗?为什么?你有几种证法?2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,G、H分别是BC、AD的中点.求证:四边形EGFH是平行四边形.(用两种方法)(二)课堂小结,领悟思想方法1.一题多变,举一反三.经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获.也只有这样,才能做到举一反三,提高应变能力.2.一题多解,触类旁通.在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的. 3.善于总结,领悟方法.数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力.四、课后反思。
第二十二章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)A .正方形B .菱形C .矩形D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形 (4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为360问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
22.1平行四边形的性质第一课时教学设计思想“平行四边形的性质”是全章重点内容之一,它在日常生产和生活中经常用到,具有重要的实用性。
本节教学时要引导学生主动积极的探索,认识平行四边形,亲自发现平行四边形的性质,然后通过例题和练习加深对知识的理解,灵活运用性质解决实际问题。
教学目标知识与技能:熟记平行四边形的对边相等、对角线互相平分的性质,并能用它们解决简单的问题。
通过旋转等操作活动体会平行四边形的中心对称性。
通过推导平行四边形的性质定理的过程,提高推导、论证能力和逻辑思维能力.过程与方法:经历四边形有关概念的形成过程和性质的探究过程;体会平移、旋转等图形变换在研究平行四边形及其性质中的应用。
情感态度价值观:在操作、探究等数学活动中,增强交流与合作意识教学重难点:重点:平行四边形性质定理的应用难点:平行四边形性质定理的探索对策:学生经历性质的探索过程,真正理解每个性质,而不是死记硬背教学方法:启发探索、讨论分析法课时安排:1课时教具准备:多媒体,常用画图工具教学过程一、创设问题情境1、欣赏身边的平行四边形(出示平行四边形的图片)2、学生总结平行四边形的相关概念:两组对边分别情形的四边形叫做平行四边形。
记作ABCD,读作平行四边形ABCD。
下面同学们观察平行四边形都有哪些要素?生:四个角,四条边,连接不相邻的两个顶点的线段可构造两条对角线。
师:好,下面我们就来从角、边、对角线的角度去研究平行四边形的性质,另外我们已经学习了轴对称与中心对称,我们就来探究一下平行四边形是怎样的图形。
二、一起探究师:请同学们在纸上画出一个平行四边形。
然后同桌交流,你是怎样画图的学生活动:画图,体会平移,然后讨论片刻叙述自己的画图过程。
师:通过做图过程你发现了什么?生:积极思考,发现性质:平行四边形的对边相等。
师:小组讨论一下,你们发现平行四边形的角有什么特点?并说明理由学生活动:小组讨论,利用平行线的性质总结出平行四边形对角相等的关系。
第二十二章四边形
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率
【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】
一、以题代纲,梳理知识
(一)开门见山,直奔主题
同学们,今天我们一起复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABD中,对角线A
和BD相交于点O:
(1) AB=DAD=B (平行四边形)
(2)∠A=∠B=∠=90°(矩形)
(3)AB=B,四边形ABD是平行四边形(菱形)
(4)OA=O=OB=OD ,A⊥BD (正方形)
(5) AB=D ∠A=∠ ( ? )
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABD各边中点所成的四边形是菱形。
4、若正方形ABD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系
1、性质判定,列表归纳
2、基础练习:
(1)矩形、菱形、正方形都具有的性质是()
A.对角线相等(距、正) B 对角线平分一组对角(菱、正).对角线互相平分 D 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)
A.对角线相等且互相平分 B 对角线相等且互相垂直
对角线互相垂直且互相平分 D 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D)
A.正方形B.菱形.矩形 D.平行四边形都是中心对称图形,A、B、都是平行四边形
(4)、矩形具有,而菱形不一定具有的性质是( B ) A 对角线互相平分 B 对角线相等 对边平行且相等 D 内角和为3600
问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
(5)、正方形具有而矩形不具有的特征是( D )
A 内角为3600
B 四个角都是直角 两组对边分别相等 D 对角线平分对角
问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABD 的对角线A 、BD 交于点O , EF 过点O 与AB 、D 分别交于点E 、F .
求证:OE=OF . 证明 ∵
B C
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
变式2.在图1中,如果过点O再作GH,分别交AD、B于G、H,你又能得到哪些新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
变式3.在图1中,若EF与AB、D的延长线分别交于点E、F,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?
对角线互相平分的四边形是平行四边形。
变式4.在图1中,若改为过A 作AH ⊥B ,垂足为H ,连结HO 并延长交AD 于G ,
连结G ,则四边形AHG 是什么四边形?为什么? 可由变式1可知四边形AHG 是平行四边形, 再由一个直角可得四边形AHG 是矩形。
变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、B 于G 、H ,则四边形BGDH 是什么四边形?为什么?
可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形。
变式6.在变式5中,若将“□ABD ”改为“矩形ABD ”,GH 分别交AD 、B 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,B=8,你能求出GH 的长吗?(这一问题相当于将矩形ABD 对折,使B 、D 重合,求折痕GH 的长。
) 略解:∵AB=6,B=8 ∴BD=A=10。
B
B
A
G
设OG = ,则BG = GD=252+x . 在Rt △ABG 中,则勾股定理得: AB 2 + AG 2 = BG 2 , 即(
)()
2
2
2
2
2
252586+=+-+x
x ,
解得 4
15
=
x . ∴GH = 2 = 75.
(二)一题多解,培养发散思维 〖例题2〗
已知:如图,在正方形ABD ,E 是B 边上一点, F 是D 的中点,且AE = D + E .
求证:AF 平分∠DAE .
证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)。
∵四边形ABD 是正方形,
∴AD=D ,∠=∠AD=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°, ∴∠ =∠GDF
在△EF 和△GFD 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF GDF C 2
1 ∴△EF ≌△GFD (ASA ) ∴E=DG ,EF=GF ∵AE = D + E , ∴AE = AD + DG = AG , ∴AF 平分∠DAE .
F E
证法二:(延长法)延长B ,交AF 的延长线于G (如图2-2) ∵四边形ABD 是正方形, ∴AD // B ,DA=D ,∠FG=∠D=90°
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FG=90°, ∴∠FG =∠D
在△FG 和△FDA 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF D FCG 2
1 ∴△△FG 和△FDA (ASA )
∴G=DA ∵AE = D + E ,
∴AE = G + E = GE , ∴∠4 =∠G ,
∴∠3 =∠4, ∴AF 平分∠DAE .
思考:如果用“截取法”,即在AE 上取点G ,
使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?
三、综合训练,总结规律 (一)综合练习,提高解题能力
1. 在例2中,若将条件“AE = D + E ”和结论 “AF 平分∠DAE ”对换,
所得命题正确吗?为什么?你有几种证法?
2.已知:如图,在□ABD中,AE⊥BD于E,F⊥BD于F,
G、H分别是B、AD的中点.
EGFH是平行四边形.(用两种方法)
求证:四边形
B Array
(二)课堂小结,领悟思想方法
1.一题多变,举一反三。
经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。
也只有这样,才能做到举一反三,提高应变能力。
2.一题多解,触类旁通。
在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。
3.善于总结,领悟方法。
数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。
四、课后反思。