信号与控制综合实验课程实验报告
- 格式:docx
- 大小:314.35 KB
- 文档页数:13
电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。
应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。
完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。
实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。
(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。
不得不加引用标记地抄袭任何资料。
每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。
再按照学时比例与本课程其它部分实验综合成为总实验成绩。
每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。
轨道交通信号与控制实验报告
班级姓名成绩
一、实验目的
通过实验,观察列车分别进入复线、单线自动闭塞区段的各闭塞分区时,各通过信号机的颜色变换、掌握单线、复线自动闭塞的基本原理。
二、实验设备
仿真计算机联锁车站3个站,一个单线、二个复线自动闭塞区段。
三、实验内容
(一)双线自动闭塞区段
分别向双线自动闭塞区段的上行方向和下行方向各发一趟车,在进站信号机处于关闭状态、列车停在接近区段时,观察各闭塞分区通过信号机的显示、填出各信号机颜色。
(二)单线自动闭塞区段
1、列车在下行方向运行时,填出各信号机颜色。
2、改变运行方向,列车在上行方向运行,填出各信号机颜色。
第1篇一、实验背景与目的随着科技的不断发展,专业实验在培养学生实践能力和创新精神方面发挥着越来越重要的作用。
本次高级专业综合实验旨在通过综合运用所学理论知识,解决实际问题,提高学生的综合运用能力。
实验内容涉及多个学科领域,包括机械、电子、计算机等,通过跨学科的合作与交流,培养学生解决复杂工程问题的能力。
二、实验内容与方案1. 实验内容本次实验共分为四个部分:(1)机械设计:设计并制作一个简单的机械装置,实现特定功能。
(2)电子电路设计:设计并搭建一个电子电路,实现信号处理或控制功能。
(3)计算机编程:编写程序,实现特定功能,如数据采集、处理等。
(4)综合应用:将以上三个部分结合,完成一个综合性的项目。
2. 实验方案(1)机械设计部分:首先,根据项目需求,确定机械装置的结构和功能。
其次,利用CAD软件进行设计,绘制详细图纸。
最后,根据图纸进行加工制作,并进行测试和调试。
(2)电子电路设计部分:首先,分析项目需求,确定电路功能和组成部分。
其次,利用电路仿真软件进行电路设计,优化电路性能。
最后,根据设计结果,制作电路板,并进行测试和调试。
(3)计算机编程部分:首先,分析项目需求,确定程序功能和实现方式。
其次,选择合适的编程语言和开发环境,编写程序代码。
最后,进行程序测试和调试,确保程序功能完善。
(4)综合应用部分:将以上三个部分结合,实现项目整体功能。
首先,编写程序控制机械装置和电子电路,实现项目预期功能。
其次,对项目进行测试和调试,确保项目稳定运行。
三、实验过程与结果1. 机械设计(1)确定机械装置结构:根据项目需求,设计一个能够实现特定功能的机械装置,如简易机器人。
(2)绘制图纸:利用CAD软件绘制机械装置的详细图纸,包括零件尺寸、装配关系等。
(3)加工制作:根据图纸进行加工制作,包括切割、焊接、组装等。
(4)测试与调试:对机械装置进行测试和调试,确保其功能正常。
2. 电子电路设计(1)电路设计:分析项目需求,确定电路功能和组成部分,利用电路仿真软件进行电路设计。
实验三十三电机速度开环控制和闭环控制(自动控制理论—检测技术综合实验)一、实验原理1.直流电机速度的控制直流电机的速度控制可以采用电枢回路电压控制、励磁回路电流控制和电枢回路串电阻控制三种基本方法。
三种控制方式中,电枢电压控制方法应用最广,它用于额定转速以下的调速,而且效率较高。
本实验采用电枢控制方式,如图33-1 所示。
本实验装置为一套小功率直流电机机组装置。
连接于被控制电机的输出轴的是一台发电机,发电机输出端接电阻负载,调节电阻负载即可调节被控制电机的输出负载。
发电机输出电压E图33-1 直流电机速度的电枢控制方式兼作被控电机速度反馈电压。
2.开环控制和闭环控制由自动控制理论分析可知,负载的存在相当于在控制系统中加入了扰动。
扰动会导致输出(电机速度)偏离希望值。
闭环控制能有效地抑制扰动,稳定控制系统的输出。
闭环控制原理方框图如图33-2。
当积分环节串联在扰动作用的反馈通道(即扰动作用点之前)时,即成为针对阶跃扰动时的I 型系统,能消除阶跃信号扰动。
图33-2 直流电机速度的闭环控制原理方框图采用积分环节虽然能一定程度上消除系统的稳态误差,但是却对系统的动态性能(超调量、响应时间)和稳定性产生不利影响。
因此需要配合进行控制器的设计和校正(采用根轨迹设计方法或频域设计方法)。
此外,在扰动可以测量的情况下,采用顺馈控制也能有效地对扰动引起的跟踪误差 进行补偿,减轻反馈系统的负担,见图 33-3。
cDREG 1 G C图 33-3 反馈+顺馈控制方式消除扰动引起的误差式中: G 1= G 1 (s ) 为控制器传递函数,也是扰动输入时的反馈通道传递函数;G 2 = G 2 (s ) 为被控对象(本实验中即被控直流电机)的传递函数; G c = G c (s ) 为顺馈控制通道传递函数; R 为指令输入,即希望的电机速度;C 为输出被控量,即被控电机的输出速度; E 为系统的稳态误差;D 为系统的扰动输入,即电机的负载。
电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。
二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。
信号可以分为周期信号和非周期信号两种。
普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。
目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。
2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。
⑵用示波器测量信号,读取信号的幅值与频率。
三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。
信号与系统综合实验报告实验一常用信号的观察一、任务与目标1. 了解常用信号的波形和特点。
2. 了解相应信号的参数。
3. 学习函数发生器和示波器的使用。
二、实验过程1.接通函数发生器的电源。
2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。
三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x-π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案。
二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线。
四、实验报告上图为零输入响应、零状态响应和完全响应曲线。
五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。
因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。
实验五无源与有源滤波器一、实验原理实验指导书P14二、实验目的1.了解无源和有源滤波器的种类、基本结构及其特性;2.分析和对比无源和有源滤波器的滤波特性;3.掌握无源和有源滤波器参数的设计方法。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
实验三十八 移相全桥零电压开关电路实验(电力电子学—检测技术综合实验)一、实验原理1.移相全桥零电压开关电路结构移相全桥电路是一种软开关电路。
移相全桥电路的基本电路如图38-1所示。
该变换器由四个开关管组成全桥电路,特点是利用变压器原边漏感(或原边串联电感Lr)和开关管的寄生电容来实现零电压开关ZVS,从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰。
RL图38-1 移相全桥零电压开关变换器结构其中的S1,S2称为领先桥臂,其导通利用变压器漏感和滤波电感的能量,滤波电感一般臂变压器漏感大得多,较容易实现零电压开关。
S3和S4组成滞后桥臂,其开通仅能利用变压器漏感和谐振电感获得能量。
电路中开关器件的控制波形采用恒频移相控制方式,每对桥臂的两个开关器件成180°互补导通,而通过改变不同桥臂之间对角开关管的驱动信号移相角α的大小来实现输出电压的调节。
当α=180°时,S1和S3或S 2和S4 同时导通,输出电压为零;当α=0°时,S1 和S4或S2 和S3 同时导通,输出电压达到最大值。
图38-2 移相全桥零电压开关电路的控制驱动信号2. 控制电路核心——UC3875芯片的工作原理简介(1)芯片电路图和引脚图38-3 UC3875的内部结构图UC3875芯片是美国UNITRODE公司生产的移相式PWM控制集成电路, 其核心是相位调制器,其A输出信号与B输出信号反相,C输出信号与D输出信号反相,A、C输出信号的相位移和B 、D 输出信号相位移相同。
该电路中具有独立的过电流保护,欠电压封锁电路。
A/B 、C/D 两对半桥都有可以单独调整死区时间。
集成电路还内置带宽超过7MHz 的误差放大器,一个5V 基准源,软启动,斜坡电压发生器和斜率补偿电路。
图38-4 移相控制器UC3875引脚图(2) UC3875引脚和控制电路设计说明1脚:5V 参考电压输出;2脚:内部误差放大器的输出端,该引脚输出低于1V 时,驱动信号的移相脚强制设置为;0o3脚:运放反向输入端(-),接变换器输出电压作为反馈, 2脚与3脚之间接电容和电阻,形成闭环PI 调节器,稳定输出电压;4脚:运放同向输入端(+) ,接入给定电压信号,以控制输出电压大小;5脚:电流检测,可实现过电流保护,芯片内部有一个电流比较器该引脚输入电压超过2.5V ,UC3875自动封锁所有输出引脚,四路输出全部输出低电平;6脚:软起动,芯片内部在上电后用9uA 恒流源给其充电,可接入一个电容,开机自动充电到4.8V ,实现变换器的软启动;7脚:C/D 两功率管的延迟,设置滞后桥臂的死区时间,并联接入电容电阻到地:/(62.512)th delay DS R T V e =−15脚:A/B 两功率管的延迟信号, 设置滞后桥臂的死区时间,用法同7号脚; 16脚:开关频率设置端,并联接入电容、电阻到地,开关频率公式f = 4/RC 。
2010 级《信号与控制综合实验》课程实验报告(检测技术实验)指导教师日期实验成绩实验评分表基本实验实验编号名称/内容(此列由学生自己填写)实验分值评分电气学科大类差动变压器性能检测10 差动变压器零残电压的补偿20 差动变压器的标定40设计性实验实验名称/内容实验分值评分超声波测距40创新性实验实验名称/内容实验分值评分教师评价意见总分目录实验一差动变压器性能检测 ..................................................................实验二差动变压器零残电压的补偿....................................................... 实验三差动变压器的标定 ...................................................................... 实验四超声波测距 ................................................................................... 总结............................................................................................................ 参考书目 ....................................................................................................实验二十二.差动变压器的标定一.差动变压器的基本结构:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。
初级线圈作为差动变压器激励用,相当于变压器的原边;次级线圈由两个结构尺寸和参数相同的相同线圈反相串接而成,相当于变压器的副边。
实验三十五 PWM 控制芯片认识及外围电路设计实验(电力电子学—自动控制理论综合实验)一、 实验原理 1.PWM 控制电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM ),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。
由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。
PWM 控制的原理可以简单通过图35-1理解。
图中,V 1为变换器输出的反馈电压与一个三角波信号V tri 进行比较,比较电路产生的输出电压为固定幅值、宽度随反馈电压的增大而减小的PWM 脉冲方波,如图中阴影部分所示。
若将该PWM 方波作为如图35-2所示的直流降压变换器的开关管的驱动信号,当输出电压升高时,输出电压方波宽度变窄,滤波后输出直流电压降低,达到稳定到某一恒定值的目的。
由PWM 控制的原理可知,实现PWM 控制应该具备以下条件:图35-1 PWM 控制原理V triV 1V 图35-2 直流-直流降压变换电路(Buck 电路)(1) 有三角波或阶梯波这样具有斜坡边的信号,作为调节宽度的调制基础信号;从图35-1可以知道,三角波的频率就是使图35-2中开关管通断的开关频率。
(2) 有比较器以便将调制基础信号和反馈电压信号进行比较产生PWM 信号;(3) 对反馈电压幅度的限制门槛电压,以使反馈电压不至于超过三角波最高幅值或低于三角波最低值。
一旦超出其最高值或低于最低值,2个信号没有交点,将出现失控情况;(4) 若同时需要控制多个开关管,尤其是桥式电路的上下桥臂上的一对开关管时,应具有死区电路。
死区即上下桥臂的两个开关管都没有开通脉冲、都不导通的时间,以便待刚关断的开关管经历恢复时间完全关断后,再让另一开关管开通; (5) 有反馈控制环节(即恒定的电压给定、误差放大器及调节器(或校正环节)、功率放大电路);(6) 按照一定逻辑关系开放脉冲的逻辑控制电路。
实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。
无线控制网络综合实验实验报告姓名:学号:分组编号:小组成员:指导老师:2016年3月实验3.1 LED灯控制实验一、实验目的1、熟悉UP-CUP IOT-6410-II实验系统的硬件组成及使用方法,熟悉Zigbee模块的硬件接口;2、熟悉和掌握使用IAR集成开发环境,编写程序实现利用CC2530的IO口控制LED闪烁的功能。
二、实验原理1、硬件原理CC2530控制LED 的电路原理图如图3-1-1所示。
CC2530核心板上预留了两个LED,采用共阳极驱动方式,分别由CC2530的P1.0和P1.0控制,通过控制这两个IO口输出低电平即可点亮对应LED。
图3-1-1 LED硬件原理图IO口的控制是通过对CC2530相关寄存器的操作实现的,其中部分IO相关寄存器如图3-1-2所示。
具体操作过程见软件设计部分。
图3-1-2部分IO相关寄存器2、软件原理(1)、首先设置P1SEL寄存器,选择IO口的通用IO功能;(2)、设置P1DIR寄存器,选择P1.0和P1.1口的输入输出方向为输出方向;(3)、通过设置P1寄存器的第0位和第1位即可控制LED的亮灭,其中P1寄存器是可位寻址的,即可直接使用P1_x操作。
程序主函数如下。
void main(void){Initial(); //调用初始化函数,初始化P1.0和P1.1口,包括对寄存//器P1SEL和P1DIR的操作LED1=0; //LED1点亮LED2=0; //LED2点亮while(1){LED2 = !LED2; //LED2闪烁Delay(50000);}}三、实验步骤1、调整硬件:使用配套USB线连接PC机和UP-CUP IOT-6410-II型设备,设备上电,确保打开Zigbee模块开关供电,并使用CCD_SETKEY选择要使用的Zigbee 模块;2、创建工程:打开IAR Embedded Workbench for MCS-51嵌入式开发环境,按下列步骤建立新工程;(1).选择file→new→Workspace新建一个工作空间;(2).选择Project→Greate New Project...弹出图3-1-3建立新工程对话框,然后确认Tool chain栏已经选择8051,在Project templates:栏选择Empty project,点击下方OK按钮;图3-1-3建立新工程(3).选择工程的保存位置,如图3-1-4;图3-1-4保存工程(4).保存Workspace工作空间并选择保存位置,如图3-1-5;图3-1-5保存Workspace3、配置工程选项按照《物联网综合实验系统实验指导书V1.3》的说明对工程进行配置,其中部分配置的说明如下:(1).Codemodel和Datamodel可以调节程序寻址范围的大小,要根据实际程序的大小进行调节;(2).Stack/Heap标签:用于调整堆栈的大小;(3).Linker选项,Output标签:用于输出编译生成的文件,用于下载到芯片运行,可以输出.hex、.bin或.txt等多种格式;(4).Debugger:用于选择软件调试的方式和使用的仿真器类型。
北京科技大学《信号系统与信号处理综合实验》实验报告专业班级:学生姓名:学号:指导教师:实验成绩:年月日计算机与通信工程学院目录一、SEED-DTK6446 CCS 平台实验 (2)1、DDR2 SDRAM 实验 (2)2、Audio 音频实验 (6)3、RS232实验 (5)4、结论及思考 (8)二、Linux 平台实验 (10)1、入门实验 (10)2、OSD图像叠加实验 (14)3、视频采集回放实验........................................................................... 错误!未定义书签。
4、结论及思考 (15)三、自主设计实验 (16)四、总结与收获 (25)五、教师评语 (25)一、SEED-DTK6446 CCS 平台实验1、DDR2 SDRAM 实验实验目的1. 了解SEED-DVS6446 外部存储器DDR2 SDRAM;2. 了解TMS320DM6446 芯片DDR2 存储器控制器的特点;3. 熟悉DDR2 SDRAM 的读取操作。
实验内容1. 系统初始化;2. 外部接口的初始化;3. DDR2 SDRAM 的读写操作。
实验报告要求1. 将ddr 工程运行结果截图。
2. 分别在ddr_test.c 中的第20 行、21 行设置断点,将memory browser 窗口截屏,地址栏为0x80000000。
3. 分析第ddr_test.c 中的20 行、21 行代码的作用,将memory browser 窗口截屏。
第20行代码:retcode |= memaddr32(ddr_base, ddr_size );作用:memaddr32函数分为读操作和写操作两个部分,/* Write Pattern */for ( i = start; i < end; i += 4 ) {*( volatile Uint32* )i = i; }写入部分操作是将操作数i存入寄存器中。
2012级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号U2012专业班号电气12同组者1学号U2012专业班号电气12指导教师日期实验成绩评阅人实验评分表目录1实验一、常用信号的观察 (1)2实验二、零输入相应、零状态响应及完全响应 (4)3实验五、无源滤波器与有源滤波器 (9)4实验六、LPF、HPF、BPF、BEF间的变换 (18)5实验七、信号的采样与恢复 (25)6实验八、调制与解调 (30)7思考与体会 (31)8参考文献 (39)1 实验一常见信号的观察1.1任务和目标了解常见信号的波形和特点。
了解常见信号有关参数的测量,学会观察常见信号组合函数的波形。
学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系。
掌握基本的误差观赏和分析方法。
1.2原理分析描述信号的方法有很多种,可以用数学表达式(时间的函数),也可以用函数图形(信号的波形)。
信号可以分为周期信号和非周期信号两种。
普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。
目前,常用的数字示波器可以非常方便地观察周期信号及非周期信号的波形。
1.3实验方案(1)观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形。
(2)用示波器测量信号,读取信号的幅值和频率。
1.4具体实现(1)接通函数发生器电源。
(2)调节函数发生器选择不同频率、不同波形输出。
(3)用数字示波器观察各发生器输出函数波形、幅值、频率等特性。
1.5实验结果(1)正弦信号观察与测量,波形如图1-1所示。
图1-1 正弦波示波器测量显示,该正弦波的幅值为A=V p-p/2=2.08V/2=1.04V 频率为f=1.000kHz 函数可表示为:y=1.04sin(2kπt) V(2)方波的观察与测量,波形如图1-2所示。
图1-2方波的幅值为A=Vp-p/2=2.08V/2=1.04V 频率f=1.000kHz函数可以表示为U(t)=4Um(sinωt+13sin3ωt+15sin5ωt−⋯)π其中,Um=A=1.04V ω=2πf=2kπ3、三角波的观察与测量,波形如图1-3所示。
2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号U2012 专业班号电气12同组者1 学号U2012 专业班号电气12指导教师日期实验成绩评阅人1实验评分表2目录1实验一、常用信号的观察 (1)2实验二、零输入相应、零状态响应及完全响应 (4)3实验五、无源滤波器与有源滤波器 (9)4实验六、LPF、HPF、BPF、BEF间的变换 (18)5实验七、信号的采样与恢复 (25)6实验八、调制与解调 (30)7思考与体会 (31)8参考文献 (39)31 实验一常见信号的观察1.1任务和目标了解常见信号的波形和特点。
了解常见信号有关参数的测量,学会观察常见信号组合函数的波形。
学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系。
掌握基本的误差观赏和分析方法。
1.2原理分析描述信号的方法有很多种,可以用数学表达式(时间的函数),也可以用函数图形(信号的波形)。
信号可以分为周期信号和非周期信号两种。
普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。
目前,常用的数字示波器可以非常方便地观察周期信号及非周期信号的波形。
1.3实验方案(1)观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形。
(2)用示波器测量信号,读取信号的幅值和频率。
1.4具体实现4(1)接通函数发生器电源。
(2)调节函数发生器选择不同频率、不同波形输出。
(3)用数字示波器观察各发生器输出函数波形、幅值、频率等特性。
1.5实验结果(1)正弦信号观察与测量,波形如图1-1所示。
图1-1 正弦波示波器测量显示,该正弦波的幅值为A=V p-p/2=2.08V/2=1.04V频率为f=1.000kHz 函数可表示为:y=1.04sin(2kπt) V(2)方波的观察与测量,波形如图1-2所示。
5图1-2方波的幅值为A=V p-p/2=2.08V/2=1.04V 频率f=1.000kHz函数可以表示为U(t)=4Um(sin ωt+13sin3ωt+15sin5ωt−⋯)π其中,Um=A=1.04V ω=2πf=2kπ3、三角波的观察与测量,波形如图1-3所示。
实验三十四 温度控制系统的开环控制和闭环控制(自动控制理论—检测技术综合实验)一、 实验原理1.温度控制问题温度是一个极易受环境、负载变化而变化的物理量。
温度控制应用很广,从温室的温度、冶炼时的炉温、化工产品生产制造工艺过程对恒温的需要,到家用电器的温度控制(如电磁炉温度控制)、等等,都需保持温度为恒定值,或按照一定规律变化。
扰动导致的输出(温度)偏离希望值可以通过闭环控制得到抑制。
温度控制系统除了受到负载扰动(如电加热炉的水温控制中,热水因供水需要不断减少和不断补充加入的冷水)的影响外,与其它物理量(如转速、电压、电流等)的控制不同的是,被控的温度容易受到环境温度的影响;此外,温度控制对象(如电炉)具有滞后的特性,即除了一般系统的惯性)1(1+Ts 外,还有一个明显滞后的环节,构成了具有滞后特性的一阶(或二阶)环节:s e τ−1)(+=−Ts e K s G sp τ (34-1) 其中τ远大于T 。
由开环系统的Nyquist 图分析可知,当被控对象不存在滞后特性,即控制系统的开环传递函数为)1()(+=Ts K s G p 时,其Nyquist 图(图34-1)不包围(-1,j0)点,无论增益K 为多大,对应的闭环系统总是稳定的。
而对象具有滞后特性(式(34-1))时,对应的Nyquist 图如图34-2,由于纯滞后环节的相频特性加上τωτωj e j −=∠−)1(+Ts K 的滞后相频特性,相位比仅有)1(+Ts K 环节时更加滞后,Nyquist 图与负实轴有无穷多个穿越点。
当增益K 增大到一定程度时,Nyquist 图顺时针包围(-1,j0)点,系统不稳定。
图34-2 具有滞后特性的惯性环节的Nyquist 图Re Im 图34-1 惯性环节的Nyquist 图因此,温度的控制控制,不能简单地采用普通的PI 控制,或PID 控制,或其它的超前-迟后控制。
从闭环特征方程0)()(1=+s G s G p c 上看,特征方程所对应的相位延迟很大;而控制器(校正环节)的传递函数∏∏==−−=1111)()()(n i ic m j j c c c p s zs K s G (34-2) 中,校正环节中的PI 控制特性或校正网络极点仍具有迟后特性,会导致系统的不稳定性更严重;而其中的超前环节(零点)相对于滞后环节而言时间常数太短(电子元件构成的校正环节不可能产生足以补偿温度对象这样的纯滞后环节的时间常数),因此对系统存在的不稳定性无任何改善作用。