整式及其加减中的易错题
- 格式:doc
- 大小:173.50 KB
- 文档页数:7
代数式中的错解示例一、例1 用代数式表示:(1) x 除以y 的3倍的商的平方;(2) x 与y 的倒数的和;(3) a 与b 的平方的和除c ;(4) a 的立方与b 平方的倒数的差.错解:(3×x y )2;(2)1x +1y ;(3)a 2+b 2c ;(4)1a 3-1b 2. 错解分析:(1)把“y 的3倍”误认为“3倍的商”;(2)混淆了“x 与y 的倒数的和”与”x 与y 的倒数和”不同的意义,前者是x +1y ;而后者是1x +1y. (3)错误有两点,其一没有把“a 与b 的平方的和”与“a 与b 的平方和”区别开来,前者是a +b 2,而后者是a 2+b 2;其二混淆了“除以”与“除”的不同意义,“a 与b 的平方的和除c ”,其c 应该是被除式.(4)未能正确理解文字语言中的三层关系:第一是“a 的立方”,即a 3,第二是“b 平方的倒数”,应为1b 2;第三是第一部分的结果与第二部分结果的差.正解:(1)(x 3y )2; (2)x +1y ;(3)c a +b 2;(4)a 3-1b 2. 二、例2 用语言叙述下列代数式:(1)3(x +y);(2)ab-c ;(3)a bc ;(4)x -y m;(5)a(x-y)2. 错解:(1) 3乘以x 加y ;(2) a 乘以b 与c 的差;(3) a 除以b 乘以c ;(4) x 减去y 除以m 的商;(5)a 乘以x 减去y 的平方.错解分析:(1) “3乘以x 加y ”,其意义不明确,未能准确表述其运算顺序.正确的说法是“3与x +y 的积”,或“x 与y 的和的3倍”.(2)“a 乘以b 与c 的差”容易使人误解为a(b-c).正确的说法是“ab 与c 的差”或“a 乘以b 的积与c 的差”.(3)“a 除以b 乘以c ”所表示的代数式为a b·c ,显然与题意不符.正确说法应为“a 除以bc 的商”或“a 比bc ”.(4)“x 减去y 除以m 的商”容易使人误解为x-y m.因此,这种说法不妥.正确的说法是“x-y 除以m 的商”或“x 减去y 的差除以m”.(5) “a 乘以x 减去y 的平方”容易误解为(ax -y)2或[a(x -y)]2或ax - y 2.因此这种语言表述不清.正确的说法是“x 减去y 的差的平方与a 的积”.列代数式和说出代数式的意义是用数字、字母表示的符号语言与文字语言之间的互译的两种情况.三.识别单项式、多项式出错例3下列式子中,哪些是单项式?哪些是多项式?0,133,6x -,25m n -,1y -,2ab ,5210.218x x ++. 错解:6x -,25m n -,1y -,2ab 是单项式;0,133,5210.218x x ++是多项式. 错解分析:25m n -包含加减运算,它应该是多项式;1y-的分母中含有字母,所以它既不是单项式,也不是多项式;0和133都是数字,应是单项式.正解: .(请自己填上答案)点拨:判断一个式子是不是单项式,要严格依据定义进行判断,同时注意以下三点:①单独的一个数或一个字母是单项式;②单项式中数与字母只能是相乘的关系;③若分母中出现含字母的式子,则不是整式,而是将来我们要学习的“分式”,如1就是-1与y的商,所以不是单项式.y四、识别单项式的系数和次数出错例4请指出单项式x5y3z的系数和次数.错解:单项式x5y3z的系数是0,次数是8.错解分析:对于单项式x5y3z,系数为省略了的1,而不是0;计算次数时错解误将字母z的指数当成0,实际上是1.正解: .(请自己填上答案)点拨:单项式的系数是指单项式中的数字因数;单项式的次数指单项式中所有字母的指数和.要注意系数和次数中省略的1.五.识别多项式的项和次数出错例5 指出多项式3xy2-2xy+x-5是几次几项式,并指出这个多项式的各项.错解:这个多项式是六次四项式,各项分别为:三次项3xy2,二次项2xy,一次项x,常数项5.错解分析:错解是把多项式中所有字母的指数和当成了多项式的次数,而且在写多项式的项时忽略了符号.正解: .(请自己填上答案)点拨:多项式中每一个单项式称为多项式的项,这里要注意的是每一项都包括前面的符号.在多项式里,次数最高的项的次数是多项式的次数,也就是说多项式的次数实际上是用一个次数最高的单项式的次数来代表的.整式易错点示例一、对概念理解不透例1 指出单项式3xy ,221b -,a ,42z xy -的系数和次数. 错解: 3xy 的系数是1,次数是1; 221b -的系数是21,次数是2; a 的系数是0,次数是0;42z xy -的系数是0,次数是4.错解分析: 错误的原因是不理解什么是单项式的系数和次数,当系数和指数为1时,在单项式中省略不写,因而误认为这时的系数和指数为O ,单项式的系数包括它前面的符号.正解: 3xy 的系数是31,次数是2; 221b -的系数是-21,次数是2; a 的系数是1,次数是1;42z xy -的系数是-1,次数是7.注:单项式和多项式中的“+”和“-”号在确定系数时不能遗漏.例2 试指出下列说法的错误:y x 34,b a 34,32ab -,3yx 是同类项;3a -,331b 为同类项.错解分析: 由于同类项必须同时满足:①项中所含字母相同;②相同字母的次数分别相同.而本题中y x 34与b a 34由于字母不同,因此它们不是同类项;b a 34与32ab -虽然所含字母相同,但由于相同的字母的次数不相同,因此,它们也不是同类项.同样地,3a -与331b ,y x 34与32ab -也都不是同类项.正确答案是只有y x 34与3yx 是同类项.例3 多项式abc c b a 3333+--由哪几项组成?错解:多项式abc c b a 3333+--是由3a ,3b ,3c ,abc 3四项组成. 错解分析:此解漏掉了各项的符号,必须注意,多项式的项都包括它前面的符号,正确答案是由3a ,3b -,3c -,abc 3四项组成.例4 整式32+-a 是几次几项式?错解: 32+-a 是三次二项式.错解分析:这里第一项a -的次数是l ,系数是-1,后面一项32的指数虽然是3,但底数不含有字母,因而仍是常数项.所以这个整式是一次二项式.例5 多项式522+-b ab 是几次式?错解: 522+-b ab 是二次式.错解分析: 这个多项式中,次数最高的项是第一项,它的次数为1十2=3,所以多项式522+-b ab 是三次式.例6 在代数式m ,-2,24ab ,x 1,5y x +中,单项式有( ). A.2个 B.3个 C.4个 D.5个错解:选C .单项式有m ,24ab ,x 1,5y x +. 错因分析:因为单独的一个数字和一个字母也是单项式,所以-2是单项式;x 1表示l 与x 的商,它不是单项式;5y x +表示51与y x +的积,它应当属于多项式.正解:选 B .单项式有m ,-2,24ab .点拨:单项式中数字与字母之间都是乘积关系,所以包含其他的运算形式的代数式就不是单项式,应严格按照单项式的概念判断.二、判断单项式系数、次数出错例7 单项式332xy π-的系数是________,次数是________.错解:-3,6或31-,6.错因分析:此题中出现了π,因圆周率π是常数,当单项式中出现π时,应将其看作数字系数,所以系数为32π-;数字的指数不能加在字母的指数上算作单项式的次数,所以单项式的次数为x ,y 的指数的和.正解:系数是32-,次数是4.点拨:在解答此类问题时经常由于未分清字母与数字导致出错,应正确理解与分析单项式的系数与次数.三、判断多项式项数、次数出错例8 已知m ,n 都是正整数,多项式n m n m y x +-+32的次数是( )A.mB.n m +C.n m 22+D.不能确定错解:B .错因分析:题中多项式各项次数最高的是n m +3,但由于底数为3,所以此项为常数项.应比较含有字母的单项式的次数,所以主要分析m ,n 的大小.题目已知条件没有给出m ,n 的大小关系,所以无法确定.正解:D .点拨:在比较各项次数时,一定要分清数字的指数,还是字母的指数,把每项的次数都写出来,再进行选择即可.四、对同类项概念理解出错例9 已知单项式b a b a y x +--43与3261x y 是同类项,则代数式2 011()a b -的值为( ) A.1 B.-1 C.0 D.±1错解: B .错因分析:根据同类项的定义可知,相同字母的指数应对应相等,由于题目中x ,y 的先后位置不同,致使出现24=-b a ,3=+b a 的错误等式,通过仔细观察可得34=-b a ,2=+b a ,解得1=a ,1=b ,所以代数式 2 011()a b -的值为0.正解: C .点拨:通过对定义分析可知,两个式子若是同类项,所含的字母和指数必须对应相等.五、合并同类项出错例10 下列运算中,正确的是( )A.m n mn 77=-B.ab b a 1046=+C.633523a a a =+D.022=-ba b a错解:C .错因分析:在给出的选项中,mn 7和n ,a 6和b 4都不是同类项,所以不能合并;33a 和32a 是同类项,但是结果中的字母指数发生了变化,结果应为35a ;b a 2和2ba 都包含着字母a ,b ,且对应的指数也都相等,所以应选D .正解: D .点拨:合并同类项的前提首先是几个单项式必须是同类项,其次是将同类项的系数相加作为结果的系数,字母和字母的指数保持不变.若两项不是同类项,就不能进行合并,应保留原来形式.六、应用去括号法则出错例11 化简:)]3(2)25([52222a a a a a a ---+-.错解:原式=)3(2)25(52222a a a a a a ---+-=2224a 5a 2a 2a 6a +--+=27a a.+4错因分析:题中的错误主要是去掉中括号时,括号内的每项都要变号,特别是带有小括号的项.先去中括号时,要把每个小括号看作一个整体,作为一项,一般是先去小括号,再去中括号.正解:原式=]6225[52222a a a a a a +--+-=a a a a a a 622552222-++--=a a 42-.点拨:将代数式中的括号去掉时,应注意变号.去括号的法则是:括号前面是正号,去掉括号和前面的符号,括号内每项都不变号;括号前面是负号,去掉括号和前面的符号,括号内每项都变号.去括号时要由内到外或由外到内依次进行,以免出错.例12 去括号:)32(523--+x y x .错解:)32(523--+x y x =32523--x y x .错解分析:在去括号时,如果括号前面是“+”号,只需要去掉括号和这前面的“+”号,把括号中每一项照抄下来就行了.但由于原括号中第一项的“+”号省略,因此,在去掉括号后应把它补上.正确答案是:32523--+x y x .例13 计算:)21(3)325(22x x x x +--+-.错解:原式=2223325x x x x +--+-=x x 462-.错解分析:上述解法错误有:(l)根据去括号法则,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号,而不能单改变第一项的符号或其中部分项的符号,错解中只改变了第一项的符号,其余各项的符号均未改变;(2)去括号时,括号前面的系数应乘以括号内的每一项,错解中仅用括号前面的系数去乘括号内的第一项,其余各项均未乘以括号前面的系数.正解:原式=22363325x x x x -+-+-=x x 422+.例14 不改变多项式3334723d c b a -++的值,把它后面三项括在前面带有“-”号的括号内.错解:3334723d c b a -++=)472(3333d c b a +--.错解分析:根据添括号法则,如果添上的括号的前面是“-”号,那么括到括号里的每一项的符号都要改变.上述解法虽然括起来的后面两项都改变了符号,但由于括到括号里的第一项没有改变符号,因此是错误的.正确答案应是:)472(3333d c b a +---.七、整式加减运算过程出错例15 先化简再求值.当27=a ,21=-b 时,求代数式)2(3)2(32222b b a b b a +--的值. 错解:①原式=063632222=+--b b a b b a .②原式=222223a b 6b 3a b 2b 8b =----,把21=-b 代入上式,原式=-2.错因分析:此题既要应用乘法的分配律,又要去括号和合并同类项,是一道典型的整式运算.特别要注意在去括号时括号内每一项都要变号,和应用乘法分配律时数字因数要乘以括号内的每一项,要细心、认真,不能马虎.正解:原式=22222126363b b b a b b a =----, 把21=-b 代入上式,原式=-3.点拨:在遇到求代数式的值时,一般是先化简,再代入,运算简便.应重点注意去括号法则的应用和乘法分配律的应用.八、考虑问题不全面,造成漏解例16.如果二次三项式22(1)16x m x -++是一个完全平方式,那么m 的值是____.错解:由题意知2(1)8m +=,解得3m =.错解分析:忽视了222()2a b a ab b ±=±+而导致错误.正解:由题意知2(1)8m +=±,解得3m =或5-.。
整式加减的常见错误及避免方法教案。
一、常见错误1.没有化简式子在学习整式加减的过程中,很多时候都需要先将式子化简一下,然后再进行加减操作。
但是很多学生经常会忘记这个步骤,导致最后的答案错误。
例如:2x+3y+4x-5y=3x-2y如果不进行化简,直接进行加减操作,那么就会得到错误的答案。
2.不注意正负号在整式加减中,很多学生都容易犯的一个错误就是不注意正负号。
这个错误很容易发生,有时候只是因为粗心大意,有时候是因为基础不扎实。
例如:3x-4xy-2x-5xy=?如果不注意正负号,很容易出现错误。
3.没有将同类项合并在进行整式加减的过程中,很多时候需要将同类项合并,然后再进行加减操作。
但是有些学生经常会忘记这个步骤,导致最后的答案错误。
例如:3x+5y-2x+4y=?如果不合并同类项直接进行加减操作,就会出现错误。
二、避免方法1.认真阅读题目在进行整式加减的时候,首先需要认真阅读题目,弄清楚需要进行何种运算以及需要注意哪些细节问题。
只有认真阅读题目,才能够避免犯一些低级错误。
2.多思考多练习整式加减是需要思考的,如果想要避免犯错误,那么就需要多思考多练习。
多做一些有思考性的题目,多总结自己的思考方法和错误点,有助于提高整式加减的水平。
3.化简式子、合并同类项、注意正负号在进行整式加减的时候,一定要记得先化简式子、合并同类项,然后再进行加减操作,最后注意正负号。
只有按照这样的基本方法进行整式加减,才能够避免犯低级错误。
4.扎实基础知识整式加减是代数知识的一部分,如果想要做好整式加减,就必须要扎实代数基础知识。
只有掌握了代数的基础知识,才能够更好地理解和运用整式加减。
如果基础不扎实,那么即使掌握了整式加减的方法,也很容易出现错误。
学好整式加减需要认真对待每个细节问题,遇到错误要时刻反思,掌握正确的避免方法。
只有这样,才能够在整式加减这个知识点上取得好的成绩。
整式的加减重难点和易错点一、选择题1、整式-(a-(b-c))去括号为()A。
-a-b+cB。
-a+b-cC。
-a+b+cD。
-a-b-c2、在(a-b+c)(a+b-c)=[a+(b-c)][a-(b-c)]的括号内填入的代数式分别()A。
c-b,c-bB。
b+c,b+cC。
b+c,b-cD。
c-b,c+b3、当k取1/3时,多项式x^2-3kxy-3y^2+xy-8中不含xy 项。
A。
0B。
1C。
1/9D。
-1/34、如果多项式(a+1)x^4-bx-3x-5是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-55、若|a|=2,|b|=3,且a>b,则|a-b|的值是()A、-5或-1B、1或-1C、5或3D、5或16、若|m|=3,|n|=7.且m-n>0,则m+n的值()A、10B、4C、-10或-4D、4或-47、若M=3x^2-5x-2,N=3x^2-4x-2,则M,N的大小关系()A、M>NB、M=NC、M<ND、以上都有可能8、设a是最小的自然数,b是最大的负整数,c,d分别是单项式-xy^2的系数和次数,则a,b,c,d四个数的和是()A、-1B、0C、1D、39、若多项式y^2+(m-3)xy+2x|m|是三次三项式,则m的值为()A、-3B、3C、3或-3D、210、如果a是最小的正整数,b是绝对值最小的数,c与a^2互为相反数,那么(a+b)^2009-c^2009=11、当a<3时,|a-3|+a=12、有理数a,b满足a|b|,则代数式|a+b|+|2a-b|化简后结果为___________13、去括号a-b)-(-c-d)a-b)+(c-d)________________14、化简(x+2)-(x-3x)4x-(-6x)+(-9x)=15、化简3-5x-4(x-x+3x)/22=16、当a^2+b^2=1时,(a+b)^2的最小值为__________17、计算m+n-(m-n)的结果为2n。
初一数学整式加减易做易错题选第三章整式加减易做易错题选例1 下列说法正确的是( )A. 的指数是0B.没有系数C. -3是一次单项式D.-3是单项式分析:正确答案应选D.这道题主要是考查学生对单项式的次数和系数的理解.选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指数.例2 多项式的次数是( )A. 15次B.6次 C.5次 D.4次分析:易错答A.B.D.这是由于没有理解多项式的次数的意义造成的.正确答案应选C.例3 下列式子中正确的是( )A. B.C. D.分析:易错答C.许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视.正确答案选B.例4 把多项式按的降幂排列后,它的第三项为( )A. -4B.C.D.分析:易错答B和D.选B的同学是用加法交换律按的降幂排列时没有连同〝符号〞考虑在内,选D的同学则完全没有理解降幂排列的意义.正确答案应选C.例5 整式去括号应为( )A. B.C. D.分析:易错答A.D.C.原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号.例6 当取( )时,多项式中不含项A. 0B.C.D.分析:这道题首先要对同类项作出正确的判断,然后进行合并.合并后不含项(即缺项)的意义是项的系数为0,从而正确求解.正确答案应选C.例7 若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有( )A. 2个B.3个 C.4个 D.5个分析:易错答A.C.D.解这道题时,尽量从每一个结论的反面入手.如果能够举出反例即可说明原结论不成立,从而得以正确的求解.例8 在的括号内填入的代数式是( )A. B.C. D.分析:易错答D.添后一个括号里的代数式时,括号前添的是〝-〞号,那么这两项都要变号,正确的是A.例9 求加上等于的多项式是多少?错解:这道题解错的原因在哪里呢?分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解.正解:答:这个多项式是例10 化简错解:原式分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了-3.正解:原式巩固练习1. 下列整式中,不是同类项的是( )A. B.1与-2C. 与D.2. 下列式子中,二次三项式是( )A. B.C. D.3. 下列说法正确的是( )A. 的项是B. 是多项式C. 是三次多项式D.都是整式4. 合并同类项得( )A. B.0 C.D.5. 下列运算正确的是( )A. B.C. D.6. 的相反数是( )A. B.C. D.7. 一个多项式减去等于,求这个多项式.参考答案1. D2.C 3.B 4.A 5.A 6.C 7.。
第二章整式的加减易错题一.选择题(共4小题)1.下列说法中,正确的是()A.单项式的系数是B.单项式5×105t的系数是5C.单项式m既没有系数,也没有次数D.﹣2005是单项式2.下列说法正确的是()A.32ab3的次数是6次B.x+不是多项式C.x2+x﹣1的常数项为1D.多项式2x2+xy+3是四次三项式3.下列各组的两项是同类项的为()A.3m2n2与﹣m2n3 B.xy与2yx C.53与a3D.3x2y2与4x2z24.若﹣2xy m和x n y3是同类项,则()A.m=1,n=1 B.m=1,n=3 C.m=3,n=1 D.m=3,n=3二.填空题(共15小题)5.在代数式xy,﹣3,x﹣y,﹣m2n,,4﹣x2中,单项式有:;多项式有:.6.若单项式(k﹣3)x|k|y2是五次单项式,则k= .7.多项式x+7是关于x的二次三项式,则m= .8.代数式是由、、、几项的和组成.9.单项式﹣x3y2的系数是,次数是.10.单项式﹣的系数是.11.单项式的系数是;次数是.12.单项式的系数是;多项式a2﹣2ab+1是次项式.13.单项式的系数是,次数是.14.若﹣x m﹣2y5与2xy2n+1是同类项,则m+n= .15.有一个关于x的二次三项式,它的二次项系数为3,一次项系数和常数项都是﹣1,试写出这个多项式.16.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x﹣y)]※3x化简后得到.17.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是.18.3a﹣(﹣2b﹣c)去括号得.19.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= .三.解答题(共4小题)20.先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.21.若(a+2)2与2|3a﹣b|互为相反数,求3[2(2a﹣b)﹣3(a﹣2b)]﹣4(a+2b)的值.22.已知多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)中,不含x3项,计算(a3﹣2a2+4a ﹣1)的值.23.有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.参考答案与试题解析一.选择题(共4小题)1.(2009秋?厦门校级期中)下列说法中,正确的是()A.单项式的系数是B.单项式5×105t的系数是5C.单项式m既没有系数,也没有次数D.﹣2005是单项式【分析】分别根据单项式及单项式的系数及次数的定义进行解答.【解答】解:A、单项式的系数是﹣,故本选项错误;B、单项式5×105t的系数是5×105,故本选项错误;C、单项式m的系数是1,次数也是1,故本选项错误;D、因为﹣2005是常数项,所以﹣2005是单项式,故本选项正确.故选D.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号.2.(2015秋?南通期中)下列说法正确的是()A.32ab3的次数是6次B.x+不是多项式C.x2+x﹣1的常数项为1D.多项式2x2+xy+3是四次三项式【分析】依据单项式、多项式的概念回答即可.【解答】解:A、是4次单项式,故A错误;B、分母中含有字母,不是整式,故B正确;C、x2+x﹣1的常数项为﹣1,故C错误;D、多项式2x2+xy+3是2次三项式,故D错误.故选:B.【点评】本题主要考查的多项式、单项式的概念,掌握相关概念是解题的关键.3.(2016?白云区一模)下列各组的两项是同类项的为()A.3m2n2与﹣m2n3 B.xy与2yx C.53与a3D.3x2y2与4x2z2【分析】依据同类项的定义回答即可.【解答】解:A、3m2n2与﹣m2n3字母n的指数不同不是同类项,故A错误;B、xy与2yx是同类项,故B正确;C、53与a3所含字母不同,不是同类项,故C错误;D、3x2y2与4x2z2所含的字母不同,不是同类项,故D错误.故选:B.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.4.(2016秋?阳信县期中)若﹣2xy m和x n y3是同类项,则()A.m=1,n=1 B.m=1,n=3 C.m=3,n=1 D.m=3,n=3【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=1,即可求出n,m的值.【解答】解:∵﹣2xy m和是同类项,∴故选C.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.二.填空题(共15小题)5.在代数式xy,﹣3,x﹣y,﹣m2n,,4﹣x2中,单项式有:xy,﹣3,﹣m2n ;多项式有:x﹣y,4﹣x2.【分析】根据数与字母的积是单项式,单独一个数或一个字母也是单项式,可得单项式,再根据几个单项式的和是多项式,可得多项式.【解答】解:单项式有:xy,﹣3,﹣m2n;多项式有:x﹣y,4﹣x2,故答案为:xy,﹣3,﹣m2n;x﹣y,4﹣x2.【点评】本题考查了多项式、单项式,利用定义解题是解题关键,注意是分式.6.(2014秋?昌乐县期末)若单项式(k﹣3)x|k|y2是五次单项式,则k= ﹣3 .【分析】利用单项式次数的定义求解即可.【解答】解:∵单项式(k﹣3)x|k|y2是五次单项式,∴|k|=3,k=±3,∵k﹣3≠0,∴k=﹣3,故答案为:﹣3.【点评】本题主要考查了单项式,解题的关键是熟记单项式次数的定义.7.(2015秋?夏津县期末)多项式x+7是关于x的二次三项式,则m= 2 .【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.8.代数式是由﹣xy2、yx 、﹣x3、﹣1 几项的和组成.【分析】每个单项式叫做多项式的项,依此即可求解.【解答】解:代数式是由﹣xy2、yx、﹣x3、﹣1几项的和组成.故答案为:﹣xy2、yx、﹣x3、﹣1.【点评】考查了多项式,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.9.(2012秋?高淳县期中)单项式﹣x3y2的系数是﹣1 ,次数是 5 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式﹣x3y2的系数是﹣1,次数是5.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.系数是1或﹣1时,不能忽略.10.(2012秋?洪湖市期中)单项式﹣的系数是﹣.【分析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣.故答案为:﹣.【点评】本题考查的是单项式系数的定义,即单项式中的数字因数叫做单项式的系数.11.(2015秋?南长区期中)单项式的系数是﹣;次数是 3 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是3.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.(2015秋?绍兴校级期中)单项式的系数是π;多项式a2﹣2ab+1是二次三项式.【分析】根据单项式与多项式的有关概念求解.【解答】解:单项式的系数是π,多项式a2﹣2ab+1是二次三项式.【点评】解答此题的关键是熟知以下概念:单项式的系数是指单项式中的数字因数;多项式中的每个单项式叫做多项式的项;多项式里次数最高项的次数,叫做多项式的次数.13.(2014秋?红塔区期末)单项式的系数是,次数是 3 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数是,次数是3,故答案为:,3.【点评】本题考查了单项式,解决本题的关键是明确单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.14.(2016春?龙泉驿区期中)若﹣x m﹣2y5与2xy2n+1是同类项,则m+n= 5 .【分析】利用同类项的定义求出m与n的值,即可确定出m+n的值.【解答】解:∵﹣x m﹣2y5与2xy2n+1是同类项,∴m﹣2=1,2n+1=5,∴m=3,n=2,∴m+n=3+2=5.【点评】此题考查了同类项,熟练掌握同类项的定义是解本题的关键.15.(2013秋?邹平县校级期末)有一个关于x的二次三项式,它的二次项系数为3,一次项系数和常数项都是﹣1,试写出这个多项式3x2﹣x﹣1 .【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式,二次项系数是3,一次项系数和常数项是﹣1,根据前面的定义即可确定这个二次三项式.【解答】解:∵关于x的二次三项式,二次项系数是3,∴二次项是3x2,又一次项系数和常数项是﹣1,则一次项是﹣x,常数项为﹣1,则这个二次三项式,3x2﹣x﹣1,故填空答案:3x2﹣x﹣1.【点评】本题考查多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.16.(2016秋?南开区月考)对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x﹣y)]※3x化简后得到21x+6y .【分析】根据题意,(x+y)相当于a,(x﹣)相当于b,先计算前面的部分,然后再与后面的进行计算即可.【解答】解:由题意得(x+y)※(x﹣y)=3(x+y)+2(x﹣y)=5x+y,所以[(x+y)※(x﹣y)]※3x=(5x+y)※3x=3(5x+y)+2?3x=21x+3y.【点评】该题目考查了整式的加减,关键是理解题意中的新定义.17.(2014秋?蚌埠期末)有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是x2﹣15x+9 .【分析】根据多项式加法的运算法则,用和减去这个多项式,即可求出另外一个.【解答】解:2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9.原来的多项式是x2﹣15x+9.【点评】要正确运用多项式加法的运算法则.18.(2012秋?闸北区校级期中)3a﹣(﹣2b﹣c)去括号得3a+2b+c .【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,求解即可.【解答】解:原式=3a+2b+c.故答案为:3a+2b+c.【点评】本题考查了去括号和添括号,解答本题的关键是掌握去括号的法则.19.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= 2m﹣4 .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解答】解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.【点评】本题考查绝对值的化简方法和去括号的法则,比较简单.三.解答题(共4小题)20.(2014秋?金昌期中)先化简,再求值(1)(﹣x2+5x+4)﹣(5x﹣4+2x2),其中x=﹣2(2)已知A=x2+5x,B=3x2+2x﹣6,求2A﹣B的值,其中x=﹣3.【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)把A与B代入2A﹣B中去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=﹣x2+5x+4﹣5x+4﹣2x2=﹣3x2+8,当x=﹣2时,原式=﹣12+8=﹣4;(2)∵A=x2+5x,B=3x2+2x﹣6,∴2A﹣B=2x2+10x﹣3x2﹣2x+6=﹣x2+8x+6,当x=﹣3时,原式=﹣9﹣24+6=﹣27.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.若(a+2)2与2|3a﹣b|互为相反数,求3[2(2a﹣b)﹣3(a﹣2b)]﹣4(a+2b)的值.【分析】利用互为相反数两数之和为0列出等式,利用非负数的性质求出a与b的值,原式去括号合并后代入计算即可求出值.【解答】解:根据题意得:(a+2)2+2|3a﹣b|=0,可得a+2=0,3a﹣b=0,解得:a=﹣2,b=﹣6,则原式=12a﹣6b﹣9a+18b﹣4a﹣8b=﹣a+4b=2﹣24=﹣22.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.已知多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)中,不含x3项,计算(a3﹣2a2+4a ﹣1)的值.【分析】多项式去括号合并后,根据结果不含x3项,求出a的值,代入原式计算即可得到结果.【解答】解:多项式(a+3)x3﹣2x2y+y2﹣(5x3+y2+1)=(a﹣2)x3﹣2x2y﹣1中,不含x3项,得到a﹣2=0,即a=2,则原式=a3﹣a2+2a﹣=4﹣4+4﹣=3.【点评】此题考查了多项式,熟练掌握运算法则是解本题的关键.23.(2015秋?庄浪县期中)有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.【分析】根据整式的加减混合运算法则把原式去括号合并得到最简结果,即可做出解释.【解答】解:原式=3x2y+2x2y﹣5x2y2+y2﹣5x2y﹣5y2+5x2y2=﹣4y2,结果与x无关,且y=1与y=﹣1结果相同,则小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.。
整式的加减经典题型初一(上)心育张老师整式的加减一、常考题型总结题型1:抄错题问题例1:小郑在一次测验中计算一个多项式A减去5xy-3yz+2xz时,不小心看成加上5xy-3yz+2xz,计算出错误结果为2xy+6yz-4xz,试求出正确答案。
培优练:1.李明在计算一个多项式减去2x^2-4x+5时,误认为加上此式,计算出错误结果为-2x^2+x-1,试求出正确答案。
2.已知A=4x-3x-6,请正确求出A-B。
题型2:分类讨论型问题例1:如果关于x的多项式ax+4x-42与3xb+5x是次数相同的多项式,求3b-2b^2+3b-4的值。
培优练:1.多项式ax+ax-4x+2x+x+1是关于x的二次多项式,求a+a/(2a)+a。
2.已知多项式5xy+(n-3)y-2是关于x,y的五次二项式,求m^2-2mn+n^2的值。
题型3:绝对值双值性例1:已知3xy-(m-1)y+5是关于x,y的三次三项式,求2m-3m+1的值。
2|m|培优练:1.若多项式5xy+(n-3)y-2是关于x,y的五次二项式,求m^2-2mn+n^2的值。
题型4:非负数性质(0+0型)例1:已知(a+2)^2+a+b+5=√(2ab-(2ab-ab)-4a)-ab,求3a^2b-[2ab-(3abc-(4ab^2-2ab)-4a)]/ab。
培优练:1.已知|a+2|+(b+1)^2+(c-a^2b)≥0,求代数式5abc-{2a^2b-[3abc-(4ab^2-2ab)]}/ab的值。
2.已知x+2y^2+5的值是7,求代数式3x+6y^2+4的值。
3.已知x^2-x-1=0,试求代数式-x^3+2x+2008的值。
二、求代数式的值的题型总结题型1:整体代人例1:已知代数式3y-2y+6的值等于8,那么代数式2y-y+1=_______。
例2:当多项式x^2+x+1=0时,求多项式x^3+x^2+1的值。
例3:已知a为有理数,且a^3+a^2+a+1=0,求1+a+a^2+a^3+…+a^2007的值。
整式的加减错误分析整式的加减是数学中的基础内容之一,在学习这部分内容时,有的同学由于对概念理解不透彻,计算马虎,常常在解题中出现一些错误.先将常见的错误归纳如下,希望对你的学习有帮助.一、概念方面的错误例1 下列各题的判断都是错误,你能说明原因吗?1.b a 2和2)1(21-x 都是单项式; 2.单项式a -的系数和次数都是0;3.33x π的系数是4,次数是4;51022ab ⨯-的系数是52-,次数是4; 4.2a b -与2ba 、32与62都不是同类项;3abc -与xyz 、2x y 与2xy 都是同类项;5.多项式231xy x y --是四次多项式.分析:1.单项式是数与字母的积,它不含有加减运算,因为ba 2中含有字母与字母的商, 2)1(21-x 中含有加号,它们都不符合单项式的定义.所以都不是单项式. 2.只含有字母的因数的单项式,其系数为1或-1,若系数为1,可省略不写,字母的指数为1时,可省略不写.省略不写并不代表没有,所以a -的系数是-1,次数是1.3.π是圆周率,不可把它当作字母看待,所以33x π的系数是3π,次数是3; 单项式51022ab ⨯-即为51022⨯-ab ,所以它的系数是51022⨯-,次数为2. 4. 同类项必须同时具备两个条件: (1)所含字母相同;(2)相同字母的指数分别相同.两个条件缺一不可.几个常数项也叫同类项.2a b -与2ba 、32与62都符合上述两个条件,所以是同类项;3abc 与xyz 、2x y 与2xy 都不符合上述的条件,所以不是同类项.5.多项式的次数是多项式中次数最高的项的次数,而231xy x y --中次数最高的项的次数为3,所以此多项式为三次三项式.二、合并同类项方面的错误例2 下列计算都是错误的,你能说出错误的原因吗?1.235253x x x -+=;2.531xy xy -=;3.222523x y xy x y -=;4.347x y xy +=;5.88xy xy xy -+=;6.332254x y xy x y -=.分析:合并同类项是指把同类项合并成一项,要注意的是,只有同类项才可合并,不是同类项就不能合并.在判断同类项时,要注意两个“相同”,(1)所含字母相同;(2)相同字母的指数分别相同.同类项与系数无关,与字母的排列顺序无关.合并同类项时,系数相加是关键,字母及其指数都不变.以上的几个小题的错误,你找到了吗?三、去括号方面的错误例3 下列去括号中有错误,你能说明原因吗?1.22222212(12)21224623x x x x x x x x ---+=---+=--.2.223(21)321x x x x --=--.分析:在去括号时,要注意括号前的符号,若在括号前面去掉“-”号,则括号内的各项都要变号.上例错误的原因,你找到了吗?。
整式的加减易错题大集合一:选择题1、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A、三次多项式B、四次多项式或单项式C、七次多项式D、四次七项式2、多项式2错误!未找到引用源。
-3×错误!未找到引用源。
x错误!未找到引用源。
+y的次数是()A、10次B、12次C、6次D、8次3、多项式2错误!未找到引用源。
-错误!未找到引用源。
+错误!未找到引用源。
+25的次数是()A、二次B、三次C、四次D、五次4、关于多项式错误!未找到引用源。
-3错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+x的说法正确的是()A、是六次六项式B、是五次六项式C、是六次五项式D、是五次五项式5、如果多项式(a+1)错误!未找到引用源。
- 错误!未找到引用源。
-3x-54是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-56、若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A、5B、4C、3D、27、x表示一个两位数,现将数字5放在x的左边,则组成的三位数是()A、5xB、10x+5C、100x+5D、5×100+x8、两列火车都从A地驶向B地.已知甲车的速度是x千米/时,乙车的速度是y 千米/时.经过3时,乙车距离B地5千米,此刻甲车距离B地()A、[3(-x+y)-5]千米B、[3(x+y)-5]千米C、[3(-x+y)+5]千米D、[3(x+y)+5]千米9、已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()A、-1B、1C、0D、210、若|a|=2,|b|=3,且a>b,则|a-b|的值为()A、-5或-1B、1或-1C、5或3D、5或111、任选一个大于-4的负整数填在□里,任选一个小于3的正整数填在◇里,对于“□+◇”运算结果为负数的情况有()种.A、2种B、3种 C 、4种D、512、若|m|=3,|n|=7,且m-n>0,则m+n的值是()A、10B、4C、-10或-4D、4或-413、一个圆柱体的底面半径扩大为原来的3倍,高为原来的错误!未找到引用源。
第三章整式的加减一、基本概念中的易错题1,单项式的定义例1,下列各式子中,是单项式的有_________________ (填序号)1 2 x 1 x①可②2;③x y;④xy;⑤匚;⑥〒;⑦—;注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:n ”当作数字,而不是字母)2单项式的系数与次数例2指出下列单项式的系数和次数;3,多项式的项数与次数例3下列多项式次数为3的是()A. 5x2 6x 1B. x2 x 1C.a2b ab b2D.x2y2 2x3 1注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,n”当作数字,而不是字母例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;(1)25______________ x2y xy3是____________________________ 次项式,最高次项是 ____ ,常数项是_________________________ ;3 2 2 1(2)—U—1是次项式,最高次项是,常数项是34,书写格式中的易错点例5下列各个式子中,书写格式正确的是( )1A.a bB. 1 abC.a 32a2bD.a3 E . 1ab F .31、代数式中用到乘法时,若是数字与数字乘,要用’乂”若是数字与字母乘,乘号通常写成” •或省略不写,如3X y应写成3 y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“ •或省略不写;2、带分数与字母相乘,要写成假分数;3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号;4、系数一般写在字母的前面,且系数“1往往会省略;例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______ 人。
《整式的加减》中的易错题知识结构:整式的加减整式的概念整式的计算整式的应用单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量一、基本概念中的易错题二、运算过程中的易错题1,同类项的判定与合并同类项的法则:例1 判断下列各式是否是同类项?323232)3(xyyx与22102)2(与-2232)4(yxyx-与323222)1(yxba与点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;练一练:)2(3)22)(2()3()123)(1(222222ab b a ab b a x x x x ---++--+-234)1(2--x x 原式=解:224)2(ab b a +-原式=1,化简下列各式:整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题]2)1(32[3,1222x x x x +---化简:]2332[3222x x x x ++--解:原式=22223323x x x x --+-=32)233(222---+x x x x =3242--x x =注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;拓展练习 正式的应用中的易错题1,“A+2B ”类型的易错题:例1 若多项式计算多项式A -2B ;;12,12322++-=+-=x x B x x A )12(2)123(222++--+-=-x x x x B A 解:22412322--++-=x x x x 21224322-+--+=x x x x 1472--=x x 注意:列式时要先加上括号,再去括号;例2 一个多项式A 加上得,求这个多项式A ?2532+-x x 3422+-x x 342)253(22+-=+-+x x x xA 解:因为)253(34222+--+-=x x x x A 所以25334222-+-+-=x x x x A 23543222-++--=x x x x A 12++-=x x A 注意:我们在移项的时候是整体移项,不要漏了添上括号;例2 若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b从错误中吸取教训,从失败中取得进步,胜利必将是你的!。
(名师选题)七年级数学上册第二章整式的加减重点易错题单选题1、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b 的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.2、若﹣2xm+7y4与3x4y2n是同类项,则mn的值为()A.1B.5C.6D.﹣6答案:D分析:根据同类项的定义,得到关于m、n的等式,然后求出m、n的值并计算即可得到答案.解:由同类项的概念可知:m+7=4,2n=4,解得:m=﹣3,n=2,∴mn=(﹣3)×2=﹣6,故选D.小提示:本题考查了同类项的定义,掌握相关知识并熟练使用,是解题关键.3、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.4、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.5、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.6、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.7、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.8、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.9、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.10、下列各选项中,不是同类项的是()A.3a2b和−5ba2B.12x2y和12xy2C.6和23D.5x n和−3x n4答案:B分析:根据同类项的概念求解即可.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.解:A、3a2b和−5ba2是同类项,不符合题意;B、12x2y和12xy2不是同类项,符合题意;C、6和23是同类项,不符合题意;D、5x n和−3x n4是同类项,不符合题意.故选:B.小提示:此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.填空题11、计算4a+2a−a的结果等于_____.答案:5a分析:根据合并同类项的性质计算,即可得到答案.4a+2a−a=(4+2−1)a=5a所以答案是:5a.小提示:本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.12、计算:2a+3a=______.答案:5a分析:直接运用合并同类项法则进行计算即可得到答案.解:2a+3a=(2+3)a=5a.所以答案是:5a.小提示:本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=__.13、已知abc>0,|b|b答案:﹣2c分析:先根据已知条件确定a,b,c的符号,再化简绝对值即可.∵abc>0,|b|=−1,|c|=c,b∴a<0,b<0,c>0,∴a+b<0,a﹣c<0,b﹣c<0,∴|a+b|﹣|a−c|﹣|b−c|=﹣a﹣b+a﹣c+b﹣c=﹣2c.所以答案是:﹣2c.小提示:本题考查绝对值化简,合并同类项法则,解题关键是根据已知条件判断绝对值内的式子的正负性.14、立信初一年级周二体锻课站队时,有三个人数一样多的小组(假设人数足够多)分别记为A、B、C三个小组,依次完成以下三个步骤:第一步,A组二个人去B组;第二步,C组三个人去B组;第三步,A组还有几个人,B组就去多少人到A组.请你确定,最终B组人数为 _____人.答案:7分析:设A、B、C原来人数为a人,根据题意列出关系式,去括号合并即可得到结果.解:设A、B、C原来人数为a人,根据题意得:a+2+3﹣(a﹣2)=a+2+3﹣a+2=7(人),则最终B组人数为7人.所以答案是:7.小提示:此题考查了整式的加减,弄清题意是解本题的关键.15、实数a、b、c在数轴上的位置如图所示,√a2+|a−c|−|c−b|化简的结果是______.答案:-b分析:根据数轴上点的位置得到c<a<0<b,得到a-c>0,c-b<0,由此化简绝对值及算术平方根,再计算即可.解:由数轴得c<a<0<b,∴a-c>0,c-b<0,∴√a2+|a−c|−|c−b|=-a+a-c-(b-c)=-c-b+c=-b,所以答案是:-b.小提示:此题考查了根据数轴上点的位置判断式子的符号,化简绝对值,计算算术平方根,正确理解数轴上点的位置得到式子的符号是解题的关键.解答题16、已知m=4x2+10x+2y2,n=2x2−2y+y2,求:(1)m−2n;(2)当5x+2y=2时,求m−2n的值.答案:(1)10x+4y(2)4分析:(1)把m与n代入m−2n中,先去括号,再合并同类项即可得到结果;(2)将原式结果变形后,把已知等式整体代入计算即可求出值.解:(1)m−2n=4x2+10x+2y2−2(2x2−2y+y2)=4x2+10x+2y2−4x2+4y−2y2=10x+4y;(2)∵5x+2y=2∴原式=10x+4y=2(5x+2y)=2×2=4.小提示:此题考查了利用整式的加减化简求值,熟练掌握运算法则是解本题的关键.17、已知:A=3x2+2xy+3y−1,B=x2−xy.(1)计算:A-3B;(2)若(x+1)2+|y−2|=0,求A-3B的值;(3)若A-3B的值与y的取值无关,求x的值.答案:(1)5xy+3y-1(2)-5(3)x=−35分析:(1)把A和B代入计算即可;(2)利用非负数的性质求出x,y的值,代入计算即可;(3)A-3B变形后,其值与y的取值无关,确定出x的值即可.(1)解:A-3B=3x2+2xy+3y−1-3(x2−xy)=3x2+2xy+3y−1-3x2+3xy=5xy+3y-1(2)解:因为(x+1)2+|y−2|=0,(x+1)2≥0,|y−2|≥0,所以x+1=0,y-2=0,解得x=-1,y=2,把x=-1,y=2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A-3B=5xy+3y-1=(5x+3)y-1,要使A-3B的值与y的取值无关,则5x+3=0,.所以x=−35小提示:本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键..18、先化简,再求值:a2b-[2a2-2(ab2-2a2b)-4]-2ab2,其中a=-2,b=12答案:−3a2b−2a2+4;-10分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=a2b−(2a2−2ab2+4a2b−4)−2ab2=a2b−2a2+2ab2−4a2b+4−2ab2=−3a2b−2a2+4时,当a=-2,b=12−2×(−2)2+4原式=−3×(−2)2×12=−6−8+4=-10小提示:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。
初一数学第三章整式加减易错题一.选择题(共9小题)1.(2015秋•埇桥区期末)已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣42.(2015秋•满城县期末)下列计算正确的是()A.2a+3b=5ab B.2ab﹣2ba=0 C.2a2b﹣ab2=a2b D.2a2+3a2=5a33.(2013秋•合浦县期末)若3x3y﹣4x m﹣2+6xy2﹣2为四次三项式,则该多项式的常数项为()A.﹣2 B.﹣4 C.﹣6 D.﹣84.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个5.(2014秋•桐乡市期中)下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个6.(2014秋•宜兴市校级月考)对任意实数y,多项式2y2﹣10y+15的值是一个()A.负数B.非负数C.正数D.无法确定正负7.(2014秋•高密市校级月考)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式8.(2013秋•翠屏区校级期末)已知有关于x,y整式(b﹣1)x a y3+(b+1)y2与2x2y3的和为单项式,求a+b()A.1 B.0 C.﹣1 D.﹣29.(2011秋•藁城市校级期末)若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式二.填空题(共4小题)10.若a为正整数,3x b﹣a y b与(a﹣2)x b﹣a y是同类项,则满足条件的a有个.11.若多项式3x m y2+(m+2)x2y﹣1是四次三项式,则m的值为.12.单项式﹣34a2b5的系数是,次数是;单项式﹣的系数是,次数是.13.有一串单项式:x,﹣2x2,3x3,﹣4x4,…,﹣10x10,…(1)写出第100个单项式是;(2)第n个单项式是.三.解答题(共5小题)14.(2013秋•东阳市校级期中)计算一个多项式减去3x﹣5x+1时,马虎同学由于大意,将减号抄成加号,得出结果是5x+3x﹣7,请求出这道题的正确结果.15.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?16.(2011秋•嵊州市期末)先化简,再求值:已知a=2,b=﹣1,求代数式a2b2+3ab﹣7a2b2﹣2ab+1+5a2b2的值.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.初一数学第三章整式加减易错题参考答案与试题解析一.选择题(共9小题)1.(2015秋•埇桥区期末)已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】本题根据同类项的定义中相同字母的指数也相同,可得m,n的值,再代入9m2﹣5mn﹣17求值即可.2.(2015秋•满城县期末)下列计算正确的是()A.2a+3b=5ab B.2ab﹣2ba=0 C.2a2b﹣ab2=a2b D.2a2+3a2=5a3【分析】根据合并同类项的法则,可得答案.3.(2013秋•合浦县期末)若3x3y﹣4x m﹣2+6xy2﹣2为四次三项式,则该多项式的常数项为()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】根据若3x3y﹣4x m﹣2+6xy2﹣2为四次三项式,可得﹣4x m﹣2是常数,可得常数项.4.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个【分析】根据分母中不含有字母的式子是整式,可得整式的个数.5.(2014秋•桐乡市期中)下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.6.(2014秋•宜兴市校级月考)对任意实数y,多项式2y2﹣10y+15的值是一个()A.负数B.非负数C.正数D.无法确定正负【分析】用配方法将多项式2y2﹣10y+15变形为a(x﹣h)2+k的形式,然后根据a、k的具体数值对多项式的值的符号做出判断.7.(2014秋•高密市校级月考)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【分析】根据合并同类项法则和多项式的加减法法则可做出判断.8.(2013秋•翠屏区校级期末)已知有关于x,y整式(b﹣1)x a y3+(b+1)y2与2x2y3的和为单项式,求a+b()A.1 B.0 C.﹣1 D.﹣2【分析】由(b﹣1)x a y3+(b+1)y2与2x2y3的和为单项式,得知b+1=0,a=2,再求出a+b 即可.9.(2011秋•藁城市校级期末)若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式【分析】若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.二.填空题(共4小题)10.若a为正整数,3x b﹣a y b与(a﹣2)x b﹣a y是同类项,则满足条件的a有1个.【分析】由同类项的定义可得b=1,且b﹣a≥0,且a为正整数,可得a=1,可得结论.11.若多项式3x m y2+(m+2)x2y﹣1是四次三项式,则m的值为2.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.12.单项式﹣34a2b5的系数是﹣34,次数是7;单项式﹣的系数是﹣,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.13.有一串单项式:x,﹣2x2,3x3,﹣4x4,…,﹣10x10,…(1)写出第100个单项式是﹣100x100;(2)第n个单项式是n(﹣1)n﹣1x n.【分析】根据所给的单项式,发现系数与次数的关系,可得答案.三.解答题(共5小题)14.(2013秋•东阳市校级期中)计算一个多项式减去3x﹣5x+1时,马虎同学由于大意,将减号抄成加号,得出结果是5x+3x﹣7,请求出这道题的正确结果.【分析】根据题意列出关系式,去括号合并即可得到结果.15.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.16.(2011秋•嵊州市期末)先化简,再求值:已知a=2,b=﹣1,求代数式a2b2+3ab﹣7a2b2﹣2ab+1+5a2b2的值.【分析】先将多项式进行同类项的合并,得出最简整式,然后代入x及y的值,即可得出答案.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.18.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.【分析】解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.。
整式的加减 拔咼及易错题精选(全卷总分100分)姓名 得分 一、选择题(每小题3分,共30分)1.计算3a? + a ,结果正确的是( )A . 3a 6B . 3a 3C . 4a 61 2 .单项式-—a2 D. 4a3 2n-1b 4与 3a 2m b 8m 是同类项,则(1+ n)100?(1- m)102=( A .无法计算 B . 4 3m — 1 1 — & n+1 , —a b +x 3.已知 a 3b m + x n —1yA. 6B. — 6 4 .若A 和B 都是五次多项式,则( A. A + B 一定是多式C. A — B 是次数不高于5的整式1 5 . a — b=5,那么 3a+ 7+ 5b — 6(a+ - b )等于( 3 A. — 7 B. — 8 C. — 9 D. 10 6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价 折,现售价为b 元,则原售价为( 2m —5 s+3n y 12 C. 的化简结果是单项式,那么 D. — 12B. A — B 一定是单项式 D. A + B 是次数不低于10b 7ba B . a 710 ,10a,7a b D . b 710 ) ) A. C. mns=( 5的整式a 元后,再次打73xy 7. 如图,阴影部分的面积是( “ 11 f 13A. xyB. xy2 2 8. —个多项式A 与多项式B = 2x 2— 3xy — y 2的和是多项式C = x 2+ xy + y 2,则A 等于(A. C. 9. 当 A. C .C. 6xy 2 2 2 2x — 4xy — 2y B. — x + 4xy+ 2y 2 2 2 3x 2— 2xy — 2y 2 D . 3x 2— 2xy x = 1 时,ax+ b+ 1 的值为一2,则(a+ b —1)(1 — a — b)的值为( —16 B . — 8 8 D . 16 10 . 一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出 售,每件还盈利( ) A. 0.125a 元 B. 0.15a 元C. 0.25a 元D. 1.25a 元 、填空题(每小题分,共18分) 23二2ab 4 11.单项式-十的系数是 ,次数是a —b14.已知三",代数式2(a b) a -b4(a -b)-3(a b)的值为 22.(5分)已知xyx y=2,求代数式 3x - 5xy 3y -x 3xy _ y 的值 (1)填写下表:图案序号 1 23 4 … N12•已知单项式3xb y c 与单项式期4^的差是ax,'则皿——-13.当 x=1 时,代数式 ax 5+bx 3+cx+仁2017,当 x= — 1 时,ax 5+bx 3+cx+ 1= __________15. ____________________________________________________________________ 已知a ,b ,c 在数轴上的位置如图所示,化简:|a — b|+ |b+ c|+ |c — a|= _____________________________________ IIMUH.心e ob16. 平移小菱形◊可以得到美丽的 中国结”图案,下面四个图案是由◊平移后得到的类似中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 __________ .三、解答题(共52分)仃.(5分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为 x 、2、y,若,BA=BC , 求 4x+4y+30 的值。
《整式的加减》中的易错题 知识结构:
整式的加减
整式的概念整式的计算整式的应用单项式
多项式
系数
次数
项,项数,常数
项,最高次项次数
同类项与合并同类项
去括号
化简求值用字母来表示生活中的量
一、基本概念中的易错题
二、运算过程中的易错题
1,同类项的判定与合并同类项的法则:例1 判断下列各式是否是同类项?
3
2
3
23
2
)
3
(x
y
y
x与
2
2
102
)
2
(与
-
2
23
2
)
4
(yx
y
x-
与
3
2
3
22
2
)
1
(y
x
b
a与
点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;
对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;
答:(2)、(4)是同类项,(1)(3)不是同类项;
练一练:
)
2(3)22)(2()
3()123)(1(222222ab b a ab b a x x x x ---++--+-2
34)1(2--x x 原式=解:2
24)2(ab b a +-原式=1,化简下列各式:
整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.
4,多重括号化简的易错题]
2)1(32[3,1222x x x x +---化简:
]
2332[3222x x x x ++--解:原式=22223323x x x x --+-=3
2)233(222---+x x x x =3
242--x x =注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;
拓展练习 正式的应用中的易错题
1,“A+2B ”类型的易错题:
例1 若多项式计算多项式A -2B ;
;12,12322++-=+-=x x B x x A )
12(2)123(222++--+-=-x x x x B A 解:2
2412322--++-=x x x x 2
1224322-+--+=x x x x 1
472--=x x 注意:列式时要先加上括号,再去括号; 例2 一个多项式A 加上得,求这个多项式A ?
2532+-x x 3422+-x x 3
42)253(22+-=+-+x x x x A 解:因为)
253(34222+--+-=x x x x A 所以2
5334222-+-+-=x x x x A 2
3543222-++--=x x x x A 1
2++-=x x A 注意:我们在移项的时候是整体移项,不要漏
了添上括号;
例2 若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?
分析:如果直接列式的话,非常麻烦,我们可以
先求出另一边长,再求周长,这样就比较容易求
出答案;解:一边长为:a+2b;
另一边长为:3(a+2b)-(a-b)
=3a+6b-a+b
=3a-a+6b+b
=2a+7b;
周长为:2(a+2b+2a+7b)
=2(a+2a+2b+7b)
=2(3a+9b)
=6a+18b;
答:长方形的周长为6a+18b
从错误中吸取教训,从失败中取得进步,胜利必将是你的!。