篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
三、菲涅耳-基尔霍夫衍射积分
u x,y4 ik su x,ye ik 1 c od s
假设: S΄尺寸远大于λ, ρ足够远, 使来自S的光都可以作用于P点
将以上积分用于开腔的两个镜面上的场: 一次渡越后, 镜Ⅱ:u2(x,y)4 ikS1u 1x,ye ik1co dS s q次渡越后, 生成的场uq+1与产生它的场uq之 间满足类似的关系:
2 q 2 q
k L
22q k2ν c
νm nq2q Lc2cL m n2q Lc( -316 )
图(3-4) 腔中允许的纵模数
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
六、分离变量法
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
二、孔阑传输线
⑤ 均匀平面波入射→自再现模。 ⑥ 空间相干性:开始自发辐射—空间非相干。 ⑦ 无源开腔中,自再现模的实现伴随着能量的衰减; 有源开腔中,自再现模可以形成自激振荡,得到光放大,形
uq 1(x,y)4 ik S 1u qx,ye ik1c odS s
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
四、自再现模积分方程
由“自再现”的概念,当q足够大时,除了一个振幅衰减和相
移的常数因子外, uq+1应能再现uq, 即: