分式方程的应用题常考题型,初中数学分式方程应用题典型例题讲解及答案解析
- 格式:pdf
- 大小:880.56 KB
- 文档页数:26
初二数学分式方程试题答案及解析1.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳下,则可列关于的方程为.【答案】【解析】本题考查了分式方程的应用.如果设小林每分钟跳x下,那么小群每分钟跳(x+20)下.题中有等量关系:小林跳90下所用的时间=小群跳120下所用的时间,据此可列出方程.解:由于小林每分钟跳x下,所以小群每分钟跳(x+20)下.根据相同时间内小林跳了90下,小群跳了120下,可知2.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程①②72-x=③x+3x="72" ④上述所列方程,正确的有()个A 1B 2C 3D 4【答案】C【解析】本题主要考查了分式方程的应用. 关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72-x=,故①②④正确,故正确的有3个,故选C.3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【答案】A【解析】本题主要考查了分式方程的应用. 根据题意,得到甲、乙的工效都是.根据结果提前3天完成任务,知:整个过程中,甲做了(x-3)天,乙做了(x-5)天.再根据甲、乙做的工作量等于1,列方程求解.解:根据题意,得解得x=8,经检验x=8是方程的解.故选A4.解方程:(1)(2)【答案】(1)(2)x=2是增根,原方程无解【解析】本题主要考查了解分式方程.根据方程两边都乘最简公分母,可把分式方程转换为整式方程.(1)方程两边都乘(x-2)(x+2),得x(x+2)+6(X-2)= (x-2)(x+2)解得:x=1经检验是原方程的解.∴方程的解为x=1(2)方程两边都乘3(x-2),得3(5x-4) = 4X+10-3(x-2)解得:x=2经检验x=2是增根.∴原方程无解5.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)乙队单独完成该工程省钱【解析】本题主要考查了分式方程的应用. (1)根据甲、乙合做24天可完成列方程求解(2)分别求出各个条件的工程款进行比较.解:设乙队单独完成这项工程需要x天根据题意得:解得:x=90(2)甲队工程款:60 3.5=210万元, 乙队工程款:902=180万元设甲乙两队全程合作完成该工程需要y天解得:y=36合作工程款: (3.5+2) 36=198万元故乙队单独完成该工程省钱6.当______时,的值等于.【答案】3【解析】本题主要考查了解分式方程. 由题意可得分式方程=,方程两边同乘以2(5+x),去分母,化为整式方程求解.解:由题意可得分式方程:=,方程两边同乘以2(5+x),得2(1+x)=5+x,整理得x=3,经检验,原方程的解为x=3.7.当______时,的值与的值相等.【答案】-1【解析】本题主要考查了解分式方程. 由题意可得分式方程=,方程两边同乘以(4-x),去分母,化为整式方程求解.解:由题意可得分式方程:=,方程两边同乘以(4-x),得4-2x=5-x,整理得x=-1,经检验,原方程的解为x=-1.8.若方程的解是最小的正整数,则的值为________.【答案】【解析】本题主要考查了解分式方程.把最小的正整数1代入方程,求得关于a的值解:把x=1代入方程得:解得:a=-19.解分式方程,去分母后所得的方程是()A.B.C.D.【答案】C【解析】本题主要考查了解分式方程.本题的最简公分母是3x,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘3x,得1-3(2x+1)=69x.故选C.10.若关于的方程无解,求的值.【答案】【解析】本题主要考查了分式方程的解.关于x的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3,据此即可求解解:去分母得:x-2(x-3)=k解得:x=6-k根据题意得:6-k=3解得:k=311.“十一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【答案】(1)优惠率为32.5%;(2)标价750元【解析】本题考查了分式方程的应用.(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程,解方程即可解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为:=0.325=32.5%;(2)设西服标价x元,根据题意得,解之得x=750经检验,x=750是原方程的根.∴该套西装的标价是750元12.新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x天,根据题意可列方程.【答案】【解析】本题主要考查了由实际问题抽象出分式方程.根据两台合播,1天播完这块地的另一半,列方程即可解:设乙型播种单独播完这块地需要x天,根据题意可列方程13.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林公顷,根据题意列方程正确的是()A. B.B. D.【答案】B【解析】本题主要考查了由实际问题抽象出分式方程.有工作总量240,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“提前5天完成任务”.等量关系为:原计划用的时间-实际用的时间=5.解:原计划用的时间为:时间用的时间为:那么根据等量关系方程为故选B14.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.【答案】(1)60天,(2)24天【解析】本题主要考查分式方程的应用. 等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:()y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.15.某单位将沿街的一部分房屋出租作为店面房,每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)求出租的房屋总间数;(2)分别求历年每间房屋的租金.【答案】(1)12间,(2)8000元、8500元【解析】本题主要考查分式方程的应用.等量关系为:第二年的房租总价÷单价-第一年的房租总价÷单价=500.设出租房屋x间.则根据题意列方程得:=500.解得:x=12.经检验:x=12是原方程的解.所以第一年租金为96000÷12=8000;第二年租金为102000÷12=8500.16.分式方程的解为.【答案】【解析】本题主要考查了解分式方程.观察可得这个分式方程的最简公分母为(2-x),去分母,转化为整式方程求解.结果要检验.解:两边都乘以(2-x),得x-1-(2-x)=-3,解方程得x=0.经检验x=0是原方程的根.17.解分式方程,去分母后所得的方程是()A.B.C.D.【答案】C【解析】本题主要考查了解分式方程.本题的最简公分母是2x,方程两边都乘最简公分母,可把分式方程转换为整式方程.解:方程两边都乘2x,得1-2(3x+1)=6x.故选C18.解方程:(1);(2).【答案】(1);(2)无解【解析】本题主要考查了解分式方程.根据去分母,转化为整式方程求解解:(1)方程两边都乘x(x-1),得(x-1)2-2x2="-" x(x-1)解得:x=经检验是原方程的解.∴原方程的解为x=(2)方程两边都乘x2-1,得2(x-1)+3(x+1)=6解得:x=1经检验x=1是增根∴原方程无解.19.若方程的一个解为,求代数式的值.【答案】【解析】本题主要考查了分式方程的解.把x的值代入原方程,得到一个关于k的方程,直接解答求出k即可.解:原方程化为整式方程得:2x(x-1)-k(x-2)=2(x-1)(x-2)∵x=-2代入得:k=3当k=3时,=3+=.20.已知关于的方程的解为正数,求的取值范围.【答案】m<-2且m≠-4【解析】本题主要考查了分式方程的解.用含有m的代数式表示x,然后根据x的取值,求m的范围.解:∵原分式方程有解,∴x≠2,解分式方程得,x=-m-2∵原方程的解为正数,∴x>0,即-m-2>0∴m<-2,∵x≠2,∴-m-2≠2,即m≠-4.故答案为:m<-2且m≠-4.。
初三数学分式方程试题答案及解析1.某商店经销一种庐山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?【答案】(1)该种纪念品4月份的销售价格是50元;(2)5月份销售这种纪念品获利900元【解析】(1)等量关系为:4月份营业数量=5月份营业数量-20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.试题解析:(1)设该种纪念品4月份的销售价格为x元.根据题意得,解得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为=40(件),∴四月份每件盈利=20(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20-5=15(元),所以5月份销售这种纪念品获利60×15=900(元).【考点】分式方程的应用.2.解方程:【答案】x=1,x=-.【解析】设,得到关于y的方程,求出方程的解得到y的值,确定出x的值,经检验即可得到分式方程的解.试题解析:设,原方程化为y2-=2,即y2-2y-3=0,解得y1=3,y2=-1,当时,解得:x=1;当时,解得:x=-,经检验x=1,x=-都是原方程的根,则原方程的根为x=1,x=-.【考点】解分式方程.3.某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.【答案】8【解析】设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.试题解析:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.【考点】分式方程的应用4.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【答案】D.【解析】去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D.【考点】1.分式方程的解2.一元一次不等式组的整数解.5.在“神七”研制过程中,某厂某车间接到加工1500个精细螺丝的任务。
分式方程 应用题专题1、温〔州〕--福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.解:设通车后火车从福州直达温州所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 解:设每盒粽子的进价为x 元,由题意得20%x ×50-〔x2400-50〕×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30〔不合题意舍去〕经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 D 〕A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 D 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,那么李强平均每分钟清点(10)x +本,依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 C 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完解:设原来每天加固x 米,根据题意,得 926004800600=-+x x .去分母,得 1200+4200=18x 〔或18x =5400〕解得 300x =.检验:当300x =时,20x ≠〔或分母不等于0〕.∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,那么乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x=1解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了通过这段对话,请你求出该地驻军原来每天加固的米数.20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程240024008(120)x x-=+% .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少? 解:设第五次提速后的平均速度是x 公里/时,那么第六次提速后的平均速度是〔x +40〕公里/时.根据题意,得:x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?解:设第一次购书的进价为x 元,那么第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x += 解得:5x =经检验5x =是原方程的解所以第一次购书为12002405=〔本〕. 第二次购书为24010250+=〔本〕第一次赚钱为240(75)480⨯-=〔元〕第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=〔元〕所以两次共赚钱48040520+=〔元〕答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,那么提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分解这个方程,得80x =.5分经检验,80x =是所列方程的根.6分80 3.2256∴⨯=〔千米/时〕. 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,那么提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 那么 列车提速后的速度为=256〔千米/时〕答:列车提速后的速度为256千米/时.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,那么乙队单独完成需要2x 天.根据题意得111220x x +=,解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意.∴应付甲队30100030000⨯=〔元〕.应付乙队30255033000⨯⨯=〔元〕.∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,那么乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,那么乙工程队每周铺设管道3公里18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是20千米/时.。
分式方程应用题专题复习一.行程问题(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
3.甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.(2)水航问题3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
初三数学第二讲(2)分式方程应用题分类一、【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少? 分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度。
分析:等量关系:甲用时间=乙用时间+ (小时)6030601.电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.2.乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.3.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解.二、【工程类应用性问题】例1 甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
初三数学分式方程试题答案及解析1.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【解析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.试题解析:(1)设乙工程队每天能完成绿化的面积是x (m2),根据题意得:解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作y天,根据题意得:解得:y≥10,答:至少应安排甲队工作10天.【考点】1. 分式方程的应用;2.一元一次不等式的应用2.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【答案】(1)购买一个台灯需要25元,购买一个手电筒需要5元;(2)荣庆公司最多可购买21个该品牌的台灯.【解析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.试题解析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得 25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.【考点】1、分式方程的应用;2、一元一次不等式的应用.3.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【答案】80米/分.【解析】方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.本题设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走600米的时间=爸爸走1600米的时间+10分钟.试题解析:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得,解得 x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.【考点】分式方程的应用(行程问题).4.⑴解方程:(1); (2)解不等式组并求该不等式组的整数解。
初三数学分式方程试题答案及解析1.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍。
已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍。
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x。
【答案】(1)购买这批乒乓球拍和羽毛球拍的总费用为 4000+25x ;(2)x=40。
【解析】(1)若每副乒乓球拍的价格为x元,根据购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍即可得出答案,(2)根据购买的两种球拍数一样,列出方程=,求出方程的解,再检验即可。
试题解析:(1)若每副乒乓球拍的价格为x元,则购买羽毛球拍花费:2000+25x,则购买这批乒乓球拍和羽毛球拍的总费用为:2000+2000+25x=4000+25x;(2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40。
【考点】分式方程的应用。
2.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选C【考点】分式方程的解3.解方程:.【答案】此方程无解.【解析】首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.试题解析:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得:2x=4,解得:x=2.检验:当x=2时,x﹣2=0,故x=2不是原方程的根,∴此方程无解.【考点】解分式方程.4.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【答案】(1)3;(2)方案3总工资最低,最低总工资为4800元.【解析】(1)设单独由乙队摘果,需要x天才能完成,根据题意列出分式方程,求出分式方程的解得到x的值,检验即可;(2)分别求出三种方案得总工资,比较即可.试题解析:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2()=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;(2)方案1:总工资为6000元;方案2:总工资为5200元;方案3:总工资为4800元,则方案3总工资最低,最低总工资为4800元.【考点】分式方程的应用.5.娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?【答案】(1)大货车速度为60km/h,则小轿车的速度为90km/h;(2)当小刘出发时,小张离长沙还有120km.【解析】(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.试题解析:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.【考点】分式方程的应用6.若关于x的方程无解,则m=________.【答案】1或.【解析】分式方程去分母转化为整式方程,根据分式方程无解得到x-4=0,求出x的值代入整式方程即可求出m的值.试题解析:去分母得:x-2=3+m(x-4),整理得:(1-m)x=5-4m若1-m=0,即m=1,方程无解;若1-m≠0,即m≠1时,根据题意:x-4=0,即x=4,将x=4代入整式方程得:m=.综上,m的值为1或.【考点】分式方程的解.7.一行20人外出旅游入住某酒店,因特殊原因,服务员在安排房间时每间比原来多住1人,结果比原来少用了一个房间.设原来每间住x人,则下列方程正确的是A.B.C.D.【答案】A.【解析】设原来每间住x人,原来所用房间数为,实际所用房间数为.所列方程为.故选A.【考点】由实际问题抽象出分式方程.8.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.9.⑴解方程:=-3 ⑵解不等式组:【答案】(1) 原方程无解;(2)-1≤x<2.【解析】(1)先根据“去分母、去括号、揿项、合并同类项、系数化为1”的步骤解方程,然后再检验即可求得方程的解.(2)先求出不等式组中①、②的解集,再找到公共部分即可.(1)∵=-3=-31=x-1-3(x-2)1=x-1-3x+6x=2经检验:x=2是增根,所以原方程无解.(2)解不等式(1)得:x<2;解不等式(2)得:x≥ -1所以:不等式组的解集为:-1≤x<2.考点: 1.解分式方程;2.解一元一次不等式组.10.随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.⑴如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞把;⑵生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?⑶已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照⑵中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)【答案】(1)2000;(2)原计划安排150名工人生产雨伞;(3)制伞公司支付完员工工资后将剩余24400元.【解析】(1)根据某景区与某制伞厂签订2万把雨伞的订购合同,厂方10天内完成生产任务,即可得出平均每天应生产雨伞数量;(2)设原计划安排x名工人生产雨伞得出每人平均生产雨伞的数量,进而表示出提高工作效率后的生产数量,即可得出等式方程求出即可;(3)根据毛利润=雨伞的销售价﹣雨伞的材料费﹣工人工资求出即可.试题解析:(1)20000÷10=2000;(2)设原计划安排x名工人生产雨伞.由题意可得解之得:x="150"经检验:x=150是原方程的解,答:原计划安排150名工人生产雨伞;(3)(元)答:制伞公司支付完员工工资后将剩余24400元.【考点】分式方程的应用.11.A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.【答案】3小时.【解析】本题的等量关系是路程=速度×时间.本题可根据乙从B到A然后再到B用的时间=甲从A到B用的时间-20分钟-40分钟来列方程.试题解析:设甲从A地到B地步行所用时间为x小时,由题意得:化简得:2x2-5x-3=0,解得:x1=3,x2=-,经检验知x=3符合题意,∴x=3,∴甲从A地到B地步行所用时间为3小时.考点: 分式方程的应用.12.对于非零的两个实数a,b,规定a⊗b=-,若1×(x+1)=1,则x的值为 () A.B.C.1D.-【答案】D【解析】由规定可知:-1=1去分母:1-(x+1)=x+1解得x=-当x=-时,分母x+1=-+1≠0∴x=-是原方程的根.13.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,列出方程 .【答案】.【解析】设乙队每天安装x台,根据甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,则.故答案是.【考点】由实际问题抽象出分式方程.14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so.研究15、12、10这三个数的倒数发现:-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x、5、3(x>5),则x的值是________.【答案】15【解析】依据调和数的意义,有-=-,解得x=15.15.全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为A.+2=+B.-=2-0.5C.-=2-0.5D.-=2+0.5【答案】C【解析】自行车队的速度是长跑队的速度的2.5倍,可得自行车队的速度为2.5x,整个过程长跑队一共比自行车队多用了2-0.5小时,据此可列方程-=2-0.5.16. (1)甲、乙两人同时从A地出发去B地,甲的速度是乙的1.5倍.已知A、B两地相距27千米,甲到达乙地3小时后,乙才到达,求甲、乙两人的速度.(2)甲、乙两人同时从相距9千米的A、B两地同时出发,若相向而行,则1小时相遇,若同向而行,乙在甲前面,则甲走了18千米后追上乙,求甲、乙两人的速度.【答案】(1)甲为4.5千米/时,乙为3千米/时. (2)甲为6千米/时,乙为3千米/时.【解析】(1)根据甲比乙少用3小时为等量关系列出方程.设乙的速度为x千米/时,列方程得-=3,甲为4.5千米/时,乙为3千米/时.(2)设甲的速度为x千米/时,相向而行,1小时相遇,则(甲速+乙速)×1=9,所以乙速=9-x.又若同向而行,乙在甲前面,则甲走了18千米后追上乙,即甲走18千米所用时间=乙走9千米所用的时间相等,由此可列出方程,得=,甲为6千米/时,乙为3千米/时.17.已知关于x的方程的解是正数,则m的取值范围为 __.【答案】m>﹣6且m≠﹣4.【解析】解分式方程后需要检验,原方程整理得:2x+m=3x﹣6,解得:x=m+6,∵x>0,∴m+6>0,即m>﹣6,又∵原式是分式方程,∴x≠2,即m+6≠2,∴m≠﹣4,综上所述,则m的取值范围为m>﹣6且m≠﹣4.【考点】解分式方程.18.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?【答案】解:(1)设打折前售价为x,则打折后售价为0.9x,由题意得,,解得:x=4。
分式方程及应用压轴考点一:解分式方程考点二:已知分式方程的解,求字母参数的值考点三:分式方程的特殊解问题考点四:分式方程的无解(增根)问题考点五:分式方程的应用问题【考点一:解分式方程】【典例1】(2023春•万源市校级期末)解方程:(1)1﹣=(2)﹣=.【答案】见试题解答内容【解答】解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+2=1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【变式1-1】(2023•青秀区校级模拟)解方程:+=.【答案】见试题解答内容【解答】解:去分母得:2(x+1)+2x=5x,去括号得:2x+2+2x=5x,解得:x=2,经检验x=2是分式方程的解.【变式1-2】(2023秋•高邮市期末)解方程:(1)(2)﹣=1.【答案】见试题解答内容【解答】解:(1)去分母得:x﹣5=2x﹣5,移项合并得:x=0,经检验x=0是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【变式1-3】(2023秋•石河子校级期末)解方程:(1);(2).【答案】(1)x=2;(2)无解.【解答】解:(1)去分母得:2=5x﹣5,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:16+x2﹣4=x2+4x+4,解得:x=2,经检验x=2是增根,分式方程无解.【变式1-4】(2023秋•铁岭县期末)解方程:(1)(2).【答案】见试题解答内容【解答】解:(1)去分母得:15x﹣12+x﹣3=6x+5,移项合并得:10x=20,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【考点二:已知分式方程的解,求字母参数的值】(2023秋•绥中县期末)已知关于x的方程的解是x=1,则a的值为()【典例2】A.2B.1C.﹣1D.﹣2【答案】C【解答】解:∵关于x的方程的解是x=1,∴=,解得a=﹣1,经检验a=﹣1是方程的解.故选:C.【变式2-1】(2023秋•常德期末)已知关于x的分式方程的解为x=4,则a的值为()A.4B.3C.0D.﹣6【答案】D【解答】解:将x=4代入方程,得:,解得a=﹣6,故选:D.(2023•武侯区校级模拟)已知x=1是分式方程的解,则a的值为()【变式2-2】A.﹣1B.1C.3D.﹣3【答案】D【解答】解:把x=1代入分式方程得:=,去分母得:8a+12=3a﹣3,解得:a=﹣3,∵a﹣1=﹣4≠0,∴a的值为﹣3.故选:D.【变式2-3】(2023秋•平舆县期末)若分式方程的解为x=2,则a的值是()A.1B.2C.﹣1D.﹣2【答案】C【解答】解:∵分式方程的解为x=2,∴=,即=1,解得a=﹣1,经检验a=﹣1是方程的解,所以原方程的解为a=﹣1,故选:C.【变式2-4】(2023秋•绵阳期末)已知x=2是关于x的分式方程的解,则a =.【答案】.【解答】解:把x=2代入关于x的分式方程得:,,4a=1,,检验:当时,2a≠0,∴是分式方程的解,故答案为:【考点三:分式方程的特殊解问题】【典例3】(2023秋•南陵县期末)若关于x的分式方程的解是正数,则m的取值范围是()A.m<4且m≠3B.m<4C.m≠3D.m>4且m≠3【答案】A【解答】解:方程两边同时乘以x﹣1得,1﹣m﹣(x﹣1)+2=0,解得x=4﹣m.∵x为正数,∴4﹣m>0,解得m<4.∵x≠1,∴4﹣m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选:A.【变式3-1】(2023秋•陵城区期末)若关于x的分式方程的解为非负数,则a的取值范围是()A.a>1且a≠2B.a<1C.a≥1且a≠2D.a≤1且a≠﹣2【答案】C【解答】解:,方程两边同时乘2(x﹣2)得:2(x﹣a)=x﹣2,2x﹣2a=x﹣2,2x﹣x=2a﹣2,x=2a﹣2,∵关于x的分式方程的解为非负数,∴2a﹣2≥0,2a≥2,a≥1,∵分式的分母x﹣2≠0,∴x≠2,即2a﹣2≠2,解得:a≠2,∴a≥1且a≠2,故选:C.【变式3-2】(2023秋•重庆期末)若关于x的不等式组的解集为x≥3,且关于y的分式方程有非负数解,则满足条件的所有整数a的和为.【答案】5.【解答】解:,解不等式①,得x≥3,解不等式②,得x>a﹣2,∵原不等式组的解集为x≥3,∴a﹣2<3,∴a<5;解分式方程,得y=,∵y=1是原分式方程的增根,∴a≠4,∵≥0,∴a≥2;综上,2≤a<5,且a≠4,∴满足条件的整数a为2或3,2+3=5,故答案为:5.【考点四:分式方程的无解(增根)问题】(2023秋•滨州期末)若关于x的分式方程=1无解,则a的值为()【典例4】A.0B.1C.1或5D.5【答案】B【解答】解:+=1,方程两边同时乘以x﹣5得:2﹣(a+1)=x﹣5,去括号得,2﹣a﹣1=x﹣5,解得x=6﹣a,∵原分式方程无解,∴x=5,∴m=1,故选:B.【变式4-1】(2023秋•安顺期末)若关于x的分式方程无解,则k的取值是()A.﹣3B.﹣3或﹣5C.1D.1或﹣5【答案】B【解答】解:,去分母,得6x=x+3﹣k(x﹣1),∴(5+k)x=3+k,∵关于x的分式方程无解,∴分两种情况:当5+k=0时,k=﹣5,当x(x﹣1)=0时,x=0或1,当x=0时,0=3+k,∴k=﹣3,当x=1时,5+k=3+k,∴k不存在,故不符合题意,综上所述:k的值为:﹣3或﹣5.故选:B.【变式4-2】(2023秋•凉州区期末)若分式方程无解,则k的值为()A.±1B.2C.1或2D.﹣1或2【答案】C【解答】解:,去分母得:2(x﹣2)+1﹣kx=﹣1,2x﹣4+1﹣kx=﹣1,2x﹣kx=2,(2﹣k)x=2,∵分式方程无解,∴x﹣2=0,x=2,2﹣k=0,k=2,当k=1时,原方程为:,2(x﹣2)+1﹣x=﹣1,2x﹣4+1﹣x+1=0,x=2,检验:当x=2时,x﹣2=0,∴k=1时,原方程无解;综上可知:分式方程无解时,k的值为1或2,故选:C.【变式4-3】(2023秋•江汉区期末)若关于x的分式方程﹣=1无解,则m的值为.【答案】见试题解答内容【解答】解:去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或x==1,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【考点五:分式方程的应用问题】【典例5】(2023秋•信州区期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【答案】见试题解答内容【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【变式5-1】(2023秋•藁城区期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【变式5-2】(2023秋•商丘期末)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有30元的损耗,第二次购进的文具有125元的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.【答案】见试题解答内容【解答】解:(1)设第一次购进x件文具,第二次就购进2x件文具,由题意得=﹣2.5,解得:x=100,经检验,x=100是原方程的解,且符合题意,则2x=2×100=200.答:第二次购进200件文具;(2)第一次购进100件文具,利润为:(15﹣10)×100﹣30=470(元);第二次购进200件文具,利润为:(15﹣12.5)×200﹣125=375(元),两笔生意是盈利:利润为470+375=845元.【变式5-3】(2023秋•恩施市期末)某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【答案】见试题解答内容【解答】解:(1)设乙工程队每天能完成绿化的面积是x平方米,则甲工程队每天能完成绿化的面积是1.5x平方米,依题意,得:﹣=3,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m天,则需安排乙队工作天,依题意,得:700m+500×≤14500,解得:m≥10.所以m最小值是10.答:至少应安排甲队工作10天.1.(2023秋•交口县期末)解方程,去分母后正确的是()A.3(x+1)=1﹣x(x﹣1)B.3(x+1)=(x+1)(x﹣1)﹣x(x﹣1)C.3(x+1)=(x+1)(x﹣1)﹣x(x+1)D.3(x﹣1)=1﹣x(x+1)【答案】B【解答】解:去分母得:3(x+1)=(x+1)(x﹣1)﹣x(x﹣1).故选:B.2.(2023秋•阳新县期末)已知一艘轮船顺水航行46千米和逆水航行34千米共用的时间,正好等于船在静水中航行80千米所用的时间,并且水流的速度是2千米/小时,求设轮船在静水中的速度为x千米/小时,是下列方程正确的是()A.B.C.D.【答案】B【解答】解:设船在静水中航行的速度为x千米/时(1分)则+=故选:B.3.(2023秋•广平县期末)甲、乙两人分别从相距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,设甲的速度为3x km/h.依题意,下面所列方程正确的是()A.B.C.D.【答案】D【解答】解:设甲的速度为3x/时,则乙的速度为4x千米/时.根据题意,得﹣=.故选:D.4.(2023秋•秦皇岛期末)已知关于x的分式方程的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由分式方程的解是非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3,故选:C.5.(2023秋•冠县期末)若解分式方程=﹣3产生增根,则k的值为()A.2B.1C.0D.任何数【答案】B【解答】解:=﹣3,去分母,得k=x﹣k﹣3(x﹣2).去括号,得k=x﹣k﹣3x+6.移项,得﹣x+3x=﹣k+6﹣k.合并同类项,得2x=6﹣2k.x的系数化为1,得x=3﹣k.∵分式方程=﹣3产生增根,∴3﹣k=2.∴k=1.故选:B.6.(2023秋•宜春期末)现定义一种新的运算:,例如:,若关于x的方程x⊕(2x﹣m)=3的解为非负数,则m的取值范围为()A.m≤8B.m≤8且m≠7C.m≥﹣2且m≠7D.m≥﹣2【答案】B【解答】解:∵x⊕(2x﹣m)=3,∴,解方程得:x=8﹣m;由于方程有解,则8﹣m≠1,即m≠7;由题意得:8﹣m≥0,解得:m≤8;综合起来,m的取值范围为m≤8且m≠7;故选:B.7.(2023秋•兰陵县期末)对于两个不相等的实数a,b,我们规定符号min{a,b}表示a,b 中较小的值,如min{2,4}=2,按照这个规定,方程min{,﹣}=的解为()A.﹣1或2B.2C.﹣1D.无解【答案】D【解答】解:①当x>0时,有>﹣,∴min{,﹣}=﹣,即﹣=,解得x=﹣1(不合题意舍去);②当x<0时,有<﹣,∴min{,﹣}=,即=,解得x=2(不合题意舍去);综上所述,方程min{,﹣}=无解,故选:D.8.(2023秋•崆峒区期末)分式与互为相反数,则x的值为()A.1B.﹣1C.﹣2D.﹣3【答案】C【解答】解:由题意得,去分母3x+2(1﹣x)=0,解得x=﹣2.经检验得x=﹣2是原方程的解.故选:C.9.(2023秋•罗山县期末)定义运算“※”:a※b=,若5※x=2,则x的值为()A.B.C.10D.或10【答案】D【解答】解:当5>x时,∵5※x=2,∴=2,解得x=.经检验,x=符合题意,是分式方程的解.当5<x时,∵5※x=2,∴=2.解得x=10.经检验,x=10符合题意,是分式方程的解.故选:D.10.(2023秋•开州区期末)若关于x的不等式组无解,且关于y的分式方程3﹣的解为正数,则所有满足条件的整数a的值的和为.【答案】13.【解答】解:,由①得,x≥﹣1,由②得,x<﹣a,∵不等式组无解,∴﹣a≤﹣1,即a≥1,3﹣,3(y﹣2)+a=y,3y﹣6+a=y,解得y=3﹣a,∵分式方程的解为正数,∴3﹣a>0且3﹣a≠2,解得a<6且a≠2,∴a的取值为1≤a<6且a≠2,∴所有满足条件的整数a的值的和为1+3+4+5=13,故答案为:13.11.(2023秋•虹口区校级期末)若关于x的方程的解为负数,则a 的取值范围是.【答案】a<﹣13或﹣13<a<﹣10.【解答】解:+=,去分母,得(x﹣1)(x+1)+(3﹣x)(x﹣3)=3x+a,去括号、合并同类项,得3x=a+10,等号两边同除以3,得x=(x≠3,且x≠﹣1),∵x=3或x=﹣1是原分式方程的增根,∴a≠﹣1,且a≠﹣13,∵<0,∴a<﹣10,∴a<﹣13或﹣13<a<﹣10,故答案为:a<﹣13或﹣13<a<﹣10.12.(2022秋•宁远县期末)若关于x的方程=+1无解,则a的值是3或1.【答案】见试题解答内容【解答】解:去分母,得:ax=3+x﹣1,整理,得:(a﹣1)x=2,当x=1时,分式方程无解,则a﹣1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.13.(2023秋•应城市期末)解下列分式方程.(1);(2).【答案】见试题解答内容【解答】解:(1)原方程变形得:,方程两边同乘以最简公分母(x﹣3)得:1=2(x﹣3)﹣x,整理的:1=2x﹣6﹣x,移项得:x=7,检验:当x=7时,x﹣3=7﹣3=4≠0,所以,x=7,是原方程的根,(2)方程两边同乘以最简公分母(x﹣1)(x+2)得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:x2+2x﹣x2﹣x+2=3,合并同类项得:x=1,检验:当x=1时,(x﹣1)(x+2)=(1﹣1)(1+2)=0,所以,x=1是原方程的增根,所以,原分式方程无解.14.(2023秋•南宁期末)为提高快递包裹分拣效率,物流公司引进了快递自动分拣流水线.一条某型号的自动分拣流水线的工作效率是一名工人工作效率的4倍,用这条自动分拣流水线分拣3000件包裹比一名工人分拣这些包裹要少用3小时.(1)这条自动分拣流水线每小时能分拣多少件包裹?(215000件,则至少应购买多少条该型号的自动分拣流水线,才能完成分拣任务?【答案】(1)条自动分拣流水线每小时能分拣3000件包裹;(2)至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.【解答】解:(1)设一名工人每小时能分拣x件包裹,则这条自动分拣流水线每小时能分拣4x件包裹,由题意得:﹣=3,解得:x=750,经检验,x=750是原方程的解,且符合题意,∴4x=4×750=3000,答:这条自动分拣流水线每小时能分拣3000件包裹;(2)应购买m条该型号的自动分拣流水线,才能完成分拣任务,由题意得:3000m≥15000,解得:m≥5,答:至少应购买5条该型号的自动分拣流水线,才能完成分拣任务.15.(2022秋•洪山区校级期末)春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?【答案】见试题解答内容【解答】解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200经检验,x=200是原方程的解,且符合题意,∴第一批箱装饮料每箱的进价是200元.(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.。