九年级数学竞赛讲座统计的思想方法附答案
- 格式:doc
- 大小:1019.00 KB
- 文档页数:9
统计法基础知识试题及参考答案1. 什么是统计法?统计法是一种数学工具,用于收集、整理、分析和解释大量数据,从而获得有关群体特征和规律的方法。
统计法主要包括描述统计和推断统计两个方面。
描述统计用于描述群体特征和现象,并通过计算平均值、方差等指标来进行量化分析;推断统计则是基于样本数据对总体进行推断和预测。
2. 试述统计学中的样本和总体的概念。
•样本:样本是指从总体中选取的一部分个体或观察对象。
样本是用来研究和推断总体的特征和规律的代表性部分。
样本应该具有代表性,即能够反映总体的特征,并且应该通过随机抽样的方式获取,以避免选择偏差。
•总体:总体是指研究对象的全体个体或观察对象的集合。
总体包括我们感兴趣的所有个体或观察对象,并且是我们希望通过统计方法进行推断和预测的对象。
总体通常较大,而样本是对总体的一部分进行观察和研究。
3. 试述频数分布与频率分布的区别。
•频数分布:频数分布是指将数据按照数值的大小分组,并统计每组中数据出现的次数。
频数分布通常用于描述数据的分布情况,每个组的频数表示该组中的数据个数。
•频率分布:频率分布是指将频数转化为相对频率或百分比,并将其呈现为表格或图形。
频率分布常常用于比较不同组别之间的数据分布情况,以便更好地观察和分析数据的特征。
频率分布反映了不同数值或类别在总体或样本中的相对出现频率。
4. 试述抽样调查的目的和方法。
•目的:抽样调查的主要目的是通过从总体中选取一部分样本进行观察和研究,从而了解总体的特征、规律和意见。
通过合理的抽样方法和样本规模,可以减少成本和时间,并在一定的误差允许范围内获得对总体的准确估计。
•方法:抽样调查的方法包括简单随机抽样、分层抽样、整群抽样等。
简单随机抽样是指从总体中随机地选择一部分个体或观察对象;分层抽样是将总体划分为若干层,然后从每层中随机选择样本;整群抽样是将总体划分为若干群,然后随机选择其中一部分群进行调查。
根据研究目的和总体特点,选择合适的抽样方法进行调查。
初中数学竞赛常用思想方法技巧数学竞赛是初中阶段培养数学思维和解题能力的重要途径之一。
为了在数学竞赛中取得好成绩,掌握一些常用的思想方法和技巧是非常关键的。
本文将介绍一些初中数学竞赛常用的思想方法和技巧。
一、思想方法1. 比较思维法比较思维法是指通过比较两个数或两个式子的大小来解决问题。
在解决一些大小关系、近似计算和估算问题时特别有用。
比如在解决近似计算问题时,我们可以通过比较两个数的大小来精确到某个程度,从而得出近似结果。
2. 反证法反证法是一种常用的证明方法,在解决一些证明问题时尤其有效。
该方法通过假设反面,然后推导出矛盾的情况来证明命题的正确性。
在解答一些证明类问题时,可以尝试运用反证法来简化证明的过程,提高解题的效率。
3. 数学归纳法数学归纳法是一种常见的证明方法,它通常用来证明与自然数有关的命题。
数学归纳法的基本思想是:先证明当n=1时命题成立,再假设当n=k时命题成立,最后通过这个假设证明当n=k+1时命题也成立。
在解决一些关于数列、方程和不等式的问题时,可以尝试运用数学归纳法来简化证明的过程。
4. 分析思维法分析思维法是一种细致分解问题的思维方式,通过将复杂的问题分解成若干个简单的子问题来解决。
在解答一些复杂的数学问题时,可以使用分析思维法将问题进行分解,进而逐步解决每个子问题,最终得出整个问题的解答。
二、技巧1. 抓住关键条件在解答数学竞赛题目时,要仔细阅读题目,并注意抓住关键条件。
关键条件通常是解决问题的关键所在,正确理解和使用关键条件可以帮助我们缩小问题的范围,更快地找到解题思路。
2. 设变量法设变量法是解决代数问题中常用的技巧,通过引入一个合适的变量来表示问题中的未知量,从而将问题转化为代数方程或不等式的求解。
在解答一些与代数运算相关的问题时,可以尝试运用设变量法来简化解题过程。
3. 利用图形和图表有些数学问题涉及到图形和图表的分析,利用图形和图表可以更直观地理解和解决问题。
第33讲 统计目 录考点一 数据的收集、整理与描述题型01 调查收集数据的过程与方法题型02 判断全面调查与抽样调查题型03 总体、个体、样本、样本容量题型04 抽样调查的可靠性题型05 用样本估计总体题型06 统计表类型一 条形统计图类型二 扇形统计图类型三 折线统计图类型四 频数分布直方图类型五 频数分布折线图题型07 频数与频率题型08 借助调查结果做决策考点二 数据分析题型01 与算术平均数有关的计算题型02 与加权平均数有关的计算题型03 与中位数有关的计算题型04 与众数有关的计算题型05 与方差有关的计算题型06 与极差有关的计算题型07 与标准差有关的计算题型08 根据已知数据,判断统计量是否正确题型09 利用合适的统计量做决策题型10 根据方差判断稳定性考点一 数据的收集、整理与描述1. 全面调查与抽样调查概念优缺点全面调查(普查)为特定的目的对全部考察对象进行的调查,叫做全面调查.优点:收集到的数据全面、准确缺点:一般花费多、工作量大,耗时长抽样调查抽取一部分对象进行调查,根据调查样本数据推断全体对象的情况叫抽样调查.优点:调查范围小,花费少、工作量较小,省时.缺点:抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.【使用抽象调查时的注意事项】抽样时注意样本的代表性和广泛性.【小技巧】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.所以要根据调查目的、调查对象等因素,合理选择调查方法,不能凭主观臆想随意选择.2. 总体、个体、样本及样本容量1. 条形统计图中每个小长方形的高即为该组对象数据的个数(频数),各小长方形的高之比等于相应的个数(频数)之比.2. 扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3. 在利用折线统计图比较两个统计量的变化趋势时,要保证两个图中横、纵坐标的一致性,即坐标轴上同题型01 调查收集数据的过程与方法【例1】(2022·福建福州·福建省福州延安中学校考模拟预测)为了解某市4万名学生平均每天读书的时间,请你运用数学的统计知识将统计的主要步骤进行排序:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示.合理的排序是()A.③②④①B.③④②①C.③④①②D.②③④①【答案】B【分析】直接根据调查收集数据的过程与方法分析排序即可.【详解】解:统计的主要步骤依次为:从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;利用统计图表将收集的数据整理和表示;分析数据;得出结论,提出建议,故选:B.【点拨】本题主要考查调查收集数据的过程与方法,熟练掌握调查的过程是解答此题的关键.【变式1-1】(2023·四川南充·统考一模)垃圾分类利国利民,某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①【答案】A三、分析数据,解答问题:(2)表中m=______,n=_______(3)该校共有学生1600人,请估计该校学生中,中度视力不良和重度视力不良的一共有多少人题型02 判断全面调查与抽样调查【例2】(2023·浙江嘉兴·统考一模)下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力【答案】A【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【详解】解:A.检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B.检测一批LED灯的使用寿命,适宜采用抽样调查的方式,故B不符合题意;C.检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C不符合题意;D.检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D不符合题意.故选:A.【点拨】本题主要考查了全面调查和抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.【变式2-1】(2022·贵州贵阳·统考模拟预测)下列调查中,适宜采用抽样调查的是()A.调查某班学生的身高情况B.调查亚运会100 m游泳决赛运动员兴奋剂的使用情况C.调查某批汽车的抗撞击能力D.调查一架“歼10”隐形战斗机各零部件的质量【答案】C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.调查某班学生的身高情况,适合全面调查,故本选项不符合题意;B.调查亚运会100 m游泳决赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;C.调查某批汽车的抗撞击能力,适合抽样调查,故本选项符合题意;D.调查一架“歼10”隐形战斗机各零部件的质量,适合全面调查,故本选项不符合题意.故选:C.【点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【变式2-2】(2022·重庆渝中·重庆巴蜀中学校考二模)下列说法中正确的是()A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为调查某品牌方便面的色素含量是否符合国家标准,采用普查的方式C.为了解全市中学生的睡眠情况,应该采用普查的方式D.了解小米手机的使用寿命,采用抽样调查的方式【答案】D【分析】根据抽样调查和全面调查的性质,对各个选项逐个分析,即可得到答案.【详解】对“神舟十三号载人飞船”零部件的检查,采用全面调查的方式,故选项A不正确;为调查某品牌方便面的色素含量是否符合国家标准,采用抽样调查的方式,故选项B不正确;为了解全市中学生的睡眠情况,应该采用抽样调查的方式,故选项C不正确;了解小米手机的使用寿命,采用抽样调查的方式,故选项D正确;故选:D.【点拨】本题考查了调查统计的知识;解题的关键是熟练掌握抽样调查和全面调查的性质,从而完成求解.题型03 总体、个体、样本、样本容量【例3】(2022·贵州贵阳·统考模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是400【答案】B【分析】根据总体、个体、样本、样本容量的知识解答.总体是指所要考查对象的全体;个体是指每一个考查对象;样本是指从总体中抽取的部分考查对象称为样本;样本容量是指样本所含个体的个数(不含单位).【详解】解:A.总体是该校4000名学生的体重,此选项正确,不符合题意;B.个体是每一个学生的体重,此选项错误,符合题意;C.样本是抽取的400名学生的体重,此选项正确,不符合题意;D.样本容量是400,此选项正确,不符合题意;故选:B.【点拨】本题主要考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体和样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数量,不能带单位.【变式3-1】(2023·江苏无锡·统考二模)为了调查我市某校学生的视力情况,在全校的2000名学生中随机抽取了300名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是300C.2000名学生是总体D.被抽取的每一名学生称为个体【答案】B【分析】根据全面调查与抽样调查,总体、个体、样本、样本容量的意义逐一判断即可解答.【详解】解:A.此次调查属于抽样调查,故此选项不合题意;B.样本容量是300,故此选项符合题意;C.2000名学生的视力情况是总体,故此选项不合题意;D.被抽取的每一名学生的视力情况称为个体,故此选项不合题意.故选:B.【点拨】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,掌握这些数学概念是解题的关键.【变式3-2】(2023·福建龙岩·统考一模)某市有3万名学生参加中考,为了考察他们的数学考试成绩,抽样调查了2000名考生的数学成绩,在这个问题中,下列说法正确的是( )A.3万名考生是总体B.每名考生的数学成绩是个体C.2000名考生是总体的一个样本D.2000名是样本容量【答案】B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.3万名学生的数学成绩是总体,故A不符合题意;B.其中的每名考生的数学成绩是个体,故B符合题意;C.2000名考生的数学成绩是总体的一个样本,故C不符合题意;D.2000是样本容量,故D不符合题意;故选:B.【点拨】本题考查了个体,总体,样本,样本容量等知识,解题的关键在于对知识的熟练掌握.题型04 抽样调查的可靠性【例4】(2022·河南南阳·统考一模)为了解游客在开封、洛阳和安阳这三个城市旅游的满意度,数学小组的同学商议了几个收集数据的方案.方案一:在多家旅游公司调查1000名导游;方案二:在洛阳调查1000名游客;方案三:在开封调查1000名游客;方案四:在三个城市各调查1000名游客.其中最合理的是().A.方案一B.方案二C.方案三D.方案四【答案】D【分析】采取抽样调查时,应能够保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性偏差的可能性是极小的,样本对总体的代表性很强.【详解】解:方案一、方案二、方案三选项选择的调查对象没有代表性.方案四在三个城市各调查1000名游客,具有代表性.故选:D.【点拨】本题考查了抽样调查的可靠性.抽样调查是实际中经常用采用的调查方式,如果抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果会偏离总体的情况.【变式4-1】(2020·浙江杭州·模拟预测)抽样调查放学时段,学校附近某路口车流量情况的样本中,下列最合适的是( )A.抽取一月份第一周为样本B.抽取任意一天为样本C.选取每周日为样本D.每个季节各选两周作为样本【答案】D【分析】根据样本是总体中所抽取的一部分个体,样本要具有代表性,可得答案.【详解】A:样本容量太小,不具代表性,故A错误;B:样本容量太小,不具代表性,故B错误;C:样本不具代表性,故C错误;D:春夏秋冬各选两周作为样本,样本具代表性,故D正确;故选D【点拨】本题考查了样本,样本是总体中所抽取的一部分个体,样本要具有代表性.【变式4-2】(2022·河南新乡·统考二模)小明、小红、小亮三名同学想要了解本市老年人的健康状况,他们各自进行了如下调查.题型05 用样本估计总体A.24B.26C.52D.54【答案】C【分析】根据喜欢乒乓球的人数和扇形图的圆心角可以求出总人数,再求出乒乓球和足球的百分比的和,即可求出m与n的和.=50(人),【详解】解:调查的学生总人数为:10÷72360×100%=48%,乒乓球和足球的百分比的和为10+1450∴m%+n%=100%―48%=52%,∴m+n=52.故选:C.A.64B.380【答案】C【分析】用2000乘以样本中喜欢【详解】解:2000×32%=∴估计喜欢木工的人数为640【详解】解:1200×(300÷400)=900(人).故答案是:900人.【点拨】本题考查了用样本估计总体,关键是得到符合条件的人数所占的百分率.题型06 统计表类型一条形统计图【例6】(2021·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考二模)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【答案】A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点拨】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.【变式6-1】(2022·云南·统考一模)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012―2019年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务【答案】A【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.【详解】A.1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B.2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C.9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D.根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A.【点拨】本题考查了条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【变式6-2】(2021·广东中山·校联考一模)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:键.【变式6-3】(2023·内蒙古呼伦贝尔·统考一模)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【详解】(1)解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:(2)由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为=7万元;平均数为:3×1+4×4+5×3+7×1+8×2+10×3+18×115(3)月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点拨】题目主要考查条形统计图及相关统计数据的计算方法,包括众数、中位数、平均数,以及利用平类型二扇形统计图【例7】(2023·河南驻马店·驻马店市第二初级中学校考二模)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有()A.75人B.90人C.108人D.150人【答案】B【分析】根据信息技术的人数和所占的百分比可以计算出本次参加兴趣小组的总人数,然后根据劳动实践所占的百分比,即可计算出劳动实践小组的人数.【详解】解:本次参加课外兴趣小组的人数为:60÷20%=300,劳动实践小组有:300×30%=90(人),【点拨】本题考查扇形统计图,解答本题的关键是明确题意,求出本次参加兴趣小组的总人数.【变式7-1】(2023·河南濮阳·统考一模)如图,文博学校对学生上学方式进行抽样调查的结果,绘制了一个不完整的扇形统计图,已知文博学校共有4000名学生,被调查的学生中乘车的有18人,则下列四种说法中,正确的是()A.扇形图中,乘车部分所对应的圆心角为45°B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有700人D.被调查的学生有120人【答案】D【分析】根据被抽查的学生中乘车的人数及所占比例,即可求得被调查的学生总人数;根据扇形统计表中的比例关系即可求得每种方式各自有多少人,即可作出判断;用360°乘15%即可求出乘车部分所对应的圆心角度数.【详解】解:因为乘车的有18人,占总调查人数的15%,所以调查的总人数为:18÷15%=120(人),故选项D符合题意;被调查的学生中,步行的有:120×(1―5%―35%―15%)=54(人),不选项B不符合题意;扇形图中,乘车部分所对应的圆心角为:360°×15%=54°,故选项A不符合题意;估计全校骑车上学的学生有:4000×35%=1400(人),故选项C不符合题意.故选:D.【点拨】此题考查了扇形统计图以及用样本估计总体,扇形统计图直接反映部分占总体的百分比大小,正确求出调查的总人数是解答本题的关键.【变式7-2】(2023·江苏苏州·统考二模)如图是某饰品店甲,乙,丙,丁四种饰品出售情况的扇形统计图,若想销量更大,获利更多,该店进货时,应多进的饰品是()A.甲B.乙C.丙D.丁【分析】根据各个部分所占百分比的大小进行判断即可.【详解】解:“丁”所占的百分比为1﹣35%﹣25%﹣30%=10%,由于35%>30%>25%>10%,所以进货时,应多进的饰品“丙”,故选:C.【点拨】本题考查扇形统计图,理解各个部分所占整体的百分比的大小是正确判断的前提.【变式7-3】(2022·浙江温州·统考一模)如图是某班证明勾股定理的学生人数统计图.若会三种证法的人有6人,则会两种证法的人数有()A.4人B.6人C.14人D.16人【答案】D【分析】先求出总人数,再用总人数乘以40%,即可求解.【详解】解:根据学生的总人数为6÷15%=40人,∴会两种证法的人数有40×40%=16人.故选:D【点拨】本题主要考查了扇形统计图,能准确从统计图获取信息是解题的关键.【变式7-4】(2022·黑龙江大庆·统考二模)某学校初一年级学生来自农村,牧区,城镇三类地区,下面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有()①该校初一学生在这三类不同地区的分布情况为3:2:7②若已知该校来自牧区的初一学生为140人,则初一学生总人数为1080人.③若从该校初一学生中抽取120人作为样本调查初一学生父母的文化程度,则从农村、牧区、城镇学生中分别随机抽取30、20、70人,样本更具有代表性.类型三折线统计图【例8】(2022·福建·统考模拟预测)2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.F1B.F6C.F7D.F10【答案】D【分析】根据折线统计图,观察图中的各个数据,根据数据信息逐项判定即可.【详解】解:结合题意,综合指数越小,表示环境空气质量越好,根据福建省10个地区环境空气质量综合指数统计图可直观看到F10的综合指数最小,从而可知环境空气质量最好的地区就是F10,故选:D.【点拨】本题考查折线统计图,根据图中所呈现的数据信息得出结论是解决问题的关键.【变式8-1】(2023·湖南株洲·模拟预测)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误(9.4―9)A.共有500名学生参加模拟测试B.从第1月到第4月,测试成绩“优秀”的学生人数在总人数中的占比逐渐增长C.第4月增长的“优秀”人数比第3月增长的“优秀”人数多D.第4月测试成绩“优秀”的学生人数达到100人【答案】D【分析】根据条形统计图和折线统计图分别判断即可.【详解】解:A.测试的学生人数为:10+250+150+90=500(名),故不符合题意;B.由折线统计图可知,从第1周到第4周,测试成绩“优秀”的学生人数在总人数中的占比逐周增长,故不符合题意;C.第4月增长的“优秀”人数为500×17%―500×13%=20(人),第3月增长的“优秀”人数500×13%―500×10%=15(人),故不符合题意;D.第4月测试成绩“优秀”的学生人数为:500×17%=85(人),故符合题意.故选:D.【点拨】此题考查了条形统计图和折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.类型四频数分布直方图(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 (5)按规定,九年级学生每天课后书面作业时长不得超过钟内(包括90分钟)完成当日课后书面作业的学生共有 【答案】(1)抽样(2)18,74.5(3)见解析(4)因为A学校的方差为127.36,B学校的方差为127.36<144.12,∴课后书面作业时长波动较小的是A学校,故答案为:A.(5)500×5+15+18+850+500×7+10+12+1750=920故答案为:920.【点拨】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【变式9-1】(2023·湖南湘西·统考一模)今年是中国共产主义青年团成立请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上。
初中数学竞赛辅导讲义及习题解答第15讲统计的思想方法统计学作为一门数学学科,研究的是群体或者集体的数值特征和变异程度。
它既是一种思维方式,也是一种独特的数据处理方法。
统计的思想方法可以帮助我们更好地理解和解决实际问题。
本文将介绍统计学的思想方法,并提供一些习题解答供初中生参考。
统计学的思想方法主要包括以下几个方面:1.数据的收集:收集数据是进行统计研究的基础。
收集数据的方法有实地观察、实验、调查等。
在收集数据过程中,需要尽量采集准确、全面、有效的数据。
2.数据的整理与归纳:将收集到的数据进行整理和归纳,可以利用统计图表、频数表等形式来呈现数据。
通过整理和归纳,可以更清晰地了解数据的特点和规律。
3.数据的描述与分析:根据整理和归纳的数据,对数据进行描述和分析。
描述统计通过一些统计指标(例如平均数、中位数、众数、方差等)对数据进行总结和概括。
统计分析则是利用概率和统计方法对数据进行推断和预测。
4.推断与判断:在统计学中,在样本基础上推断总体情况是一种常见的方法。
通过抽取部分样本进行统计分析,然后推断总体特征。
但需要注意,推断的结果具有一定的误差。
下面是一些相应的习题解答,供初中生进行练习:1.班级有40名学生,其中男生23人,女生17人。
求男生和女生所占的百分比。
解答:男生所占的百分比=(男生人数/总人数)×100%=(23/40)×100%=57.5%女生所占的百分比=(女生人数/总人数)×100%=(17/40)×100%=42.5%2.一次考试共有80名学生参加,成绩的平均分是78分,标准差是5、如果以60分为及格线,请问有多少人及格?解答:设及格人数为x,则不及格人数为80-x。
根据标准差的概念,有:(78-60)/5=(60-78)/5解方程组得:x=70。
所以及格人数为70人。
3.学校进行了一项针对学生的调查,调查结果显示有30%的学生喜欢读书,其中60%的学生是男生。
初中数学竞赛辅导讲义---统计的思想方法20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求.统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示.(1)由观察所得, 班的标准差较大;(2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 分数 0 1 2 3 4 5 6 7 8 9 人数 1 3 5 7 6 8 6 4 3 2思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案.注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的:(1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”;(2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势.【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( )A .2a+3bB .b a +32C .6a+9bD .2a+b思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.【例3】某班同学参加环保知识竞赛.将学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图(如图).图中从左到右各小组的小长方形的高的比是1:3:6:4:2,最右边—组的频数是6.结合直方图提供的信息,解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以上(不含60分)的学生占全班参赛人数的百分率.思路点拨读图、读懂图,从图中获取频率、组距等相关信息.【例4】为估计,一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店中抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:0.6 3.7 2.2 1.5 2.8 1.7 1.2 2.1 3.2 1.0(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子(每年按350个营业日计算);(2)2001年又刘该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是l0个样本饭店每个饭店平均每天使用一次性筷子2.42盒,求该县2000年、2001年这两年一次性木质筷子用量平均每年增长的百分率(2001年该县饭店数、全年营业天数均与1999年相同);(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07米3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅.计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5克,所用木材的密度为0.5×103千克/米3;(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来.思路点拨用样本的平均水平去估计总体的平均水平.注:(1)运用数学知识解决实际问题的过程是:从实际问题中获取必要的信息——分析处理有关信息——建立数学模型——解决这个数学问题.(2)通过图表获取数据信息,收集、整理分析数据,再运用统计量的意义去分析,这是用统计的思想方法解决问题的基本方式.思路点拨【例5】编号为1到25的25个弹珠被分放在两个篮子A和B中,15号弹珠在篮子A中,把这个弹珠从篮子A移到篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加41,B 中弹珠号码数的平均数也等于原平均数加41,问原来在篮子A 中有多少个弹珠?思路点拨 用字母分别表示篮子A 、B 弹珠数及相应的平均数,运用方程、方程组等知识求解.学历训练1.某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是 ,培训后考分的中位数所在的等级是 .(2)这32名学生经过培训,考分等级“不合格”的百分比由 下降到 .(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有 名. (4)你认为上述估计合理吗?理由是什么?答: ,理由 .2.某商店3、4月份出售同一品牌各种规格的空调销售台数如下表: 根据表中数据回答:(1)商店平均每月销售空调 (台);(2)商店出售的各种规格的空调中,众数是 (匹); (3)在研究6月份进货时,商店经理决定 (匹)的空调要多进; (匹)的空调要少进.3.为了了解某中学初三年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,求得5.94 样本x .下面是50名学生数学成绩的频率分布表:分 组 频数累计频数 频率60.5~70.5 正 3 a70.5~80.5 正正 6 0.12 80.5~90.5正正90.1890.5~100.5正正正正170.34100.5~110.5正正b0.2110.5~120.5正50.1合计501根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是;(2)频率分布表中的数据a= ,b= ;(3)估计该校初三年级这次升学考试的数学平均成绩约为分;(4)耷这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为人.4星期日一二三四五六周平均体温体温36.6 36.7 37.0 37.3 36.9 37.1 36.9其中星期四的体温被墨迹污染,根据表中数据,可得此日的体温是( ) A.36.?℃B.36.8℃C.36.9℃D.37.0℃5.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:班级参加人数中位数方差平均字数甲55149191135乙55151110135②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大,上述结论正确的是( )A.①②③B.①②C.①③D.②③6.今年春季,我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日至30日每天全国的SARS新增确诊病例数据图,将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28;其中正确的有( )A.0个B.1个C.2个D.3个7.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?8.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.平均数方差中位数命中9环以上次数甲7 1.2 1乙5.4(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).9.明湖区一中对初二年级女生仰卧起坐的测试成绩进行统计分析,将数据整理后,画出如下频率分布直方图,已知图中从左到右的第一、第二、第三、第四、第六小组的频率依次是0.10、0.15、0.20、0.30、0.05,第五小组的频数是36,根据所给的图填空:(1)第五小组的频率是,请补全这个频率分布图;(2)参加这次测试的女生人数是;若次数在24(含24次)以上为达标(此标准为中考体育标准),则该校初二年级女生的达标率为.(3)请你用统计知识,以中考体育标准对明湖区十二所中学初二女生仰卧起坐成绩的达标率作一个估计.10.我国于2000年11月1日起进行了第五次全国人口普查的登记工作,据第五次人口普查,我国每10万人中拥有各种受教育程度的人数如下:具有大学程度的为3611人;具有高中程度的为11146人;具有初中程度的为33961人;具有小学程度的为35701人.(1)受教育程度每10万人中所占百分比(a%)( a精确到0.01)大学程度高中程度初中程度小学程度(2)以下各示意图中正确的是( ).(将正确示意图数字代号填在括号内)11.新华高科技股份有限公司董事会决定今年用13亿资金投资发展项目,现有6个项目可供选择(每个项目或者被全部投资,或者不被投资),各项目所需投资金额和预计年均收益如下表:项目 A B C D E F 投资(亿元) 5 2 6 4 6 8收益(亿元) 0.55 0.4 0.6 0.4 0.9 l如果要求所有投资的项目的收益总额不得低于1.6亿元,那么,当选择的投资项目是时,投资的收益总额最大.12.新华社4月3日发布了一则由国家安全生产监督管理局统计的信息;2003年1月至2事故类型事故数量死亡人数(单位:人)死亡人数占各类事故总死亡人数的百分比火灾事故(不含森林草原火灾)54773 610铁路路外伤亡事故1962 1409工矿企业伤亡事故1417 1639道路交通事故115815 17290合计173967 20948(1)请你计算出各类事故死亡人数占总死亡人数的百分比,填入上表(精确到0.01);(2)为了更清楚地表示出问题(1)中的百分比,请你完成下面的扇形统计图;(3)请根据你所学的统计知识提出问题(不需要作解答,也不要解释,但所提的问题应是利用表中所提供数据能求解的).13.将最小的31个自然数分成A 、B 两组,10在A 组中,如果把10从A 组移到B 组,则A 组中各数的算术平均数增加21,B 组中各数的算术平均数也增加21.问A 组中原有多少个数?14.某次数学竞赛共有15道题,下表是对于做对n (n =0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了多少人?参考答案。
2018年中考数学复习专题讲座:数学思想方法<2)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:<1)求这两年我国公民出境旅游总人数的年平均增长率;<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为5000<1+x)万人次,2018年公民出境旅游总人数 5000<1+x)2 万人次.根据题意得方程求解;<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
第12讲 统计与概率知识纵横统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学。
在自然界和人类社会中,严格确定性的现象十分有限,不确定性现象却是不量寻在的,而概率正是对随机现象的一种数学的描述,数学钟用概率来表示事件发生的机会大小,概率是一个比值,用字母P 表示,计算公式是: 事件发生概率所有可能结果结果该事件发生的所有可能P在具体的计算中,常用到树形图、列表、穷举等方法。
统计与概率互为基础,概率这一概念是建立在频率这一统计量稳定性的基础上,而统计推断、估计等统计方法的科学性有赖于概率理论的严密性。
例题求解【例1】一枚质地均匀的正方体骰子的六个面上的数字分别为1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别为1,3,4,5,6,8,同时掷这两枚骰子,其朝上的面两数之和为7的概率是(2011年“《数字学报》杯”全国初中数学竞赛题)思路点拨 用列表法列出所有情形。
【例2】一项“过关游戏”规定:在第n 关要掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于432,则算过关;否则不算过关,现有下列说法;①过第一关是必然事件;②过第二关的概率是3536;③可以过第四关;④过第五关的概率大于零。
其中,正确说法的个数为( )A、4B、3C、2D、1(天津市竞赛题)思路点拨对于(2),在理解“过关”意义基础上,逐步计算相关概率。
【例3】小明准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清,如果用x、y表示这连个看不清的数字,那么小陈的手机号码为139x370y580(手机号码由11个数字组成),小明记得这11个数字之和是20的整数倍,求小明一次拨对小陈手机号码的概率、(2011年南通市中考题)思路点拨建立关于x、y的不定方程,由此可得x、y可能的对应值的所有情形。
【例4】杨华与李红用5张同样规格的硬纸片作拼图游戏,正面如图1所示,背面完全一样,将它们与背面朝上均匀后,同时抽出两张。
初中数学统计题解题方法归纳统计题在初中数学中是一个常见的考点,它涉及到数据收集、整理、分析和解释等方面的技巧。
掌握解题方法可以帮助我们更好地理解和应用统计知识。
本文将归纳总结一些常见的解题方法,以帮助同学们更好地解决初中数学统计题。
一、数据的收集和整理在统计题中,我们首先需要收集和整理数据。
通常情况下,数据会以表格、图表或者文字的形式给出。
我们需要注意以下几个方面:1. 读懂问题:仔细阅读问题中的文字描述,明确问题的要求和条件。
2. 提取有效信息:根据问题的要求,从给出的数据中提取出与问题相关的信息。
3. 分类整理:对数据进行分类整理,便于后续的分析和计算。
比如,将数据按照性别、年龄、兴趣等因素进行分类。
二、数据的分析和解释在对数据进行整理之后,我们需要对数据进行分析和解释,从中提取有用的信息。
1. 频数和频率:频数指某个数据出现的次数,频率指某个数据出现的次数与总次数之比。
在统计题中,我们通常需要计算频数和频率,以便更好地理解数据的分布情况。
2. 中位数和众数:中位数是将一组数据按照大小排列后的中间值,众数是一组数据中出现次数最多的数。
在解决统计题时,我们经常需要计算中位数和众数。
3. 范围和极差:范围指一组数据的最大值与最小值之间的差,极差指一组数据的最大值减去最小值的结果。
计算范围和极差可以帮助我们了解数据的变化程度。
4. 平均数和标准差:平均数是一组数据的总和除以数据的个数,标准差是一组数据与其平均数之差的平方和的平均数的平方根。
平均数和标准差常常用于描述数据的集中程度和变异程度。
5. 数据分布图:根据数据情况,我们可以绘制直方图、折线图、饼图等各种图形,以更直观地展示数据的分布情况。
三、解题技巧在解决统计题时,掌握一些解题技巧可以帮助我们更快地找到解题思路。
1. 关注关键词:仔细阅读问题中的关键词,如“最大值”、“最小值”、“比较”、“大于”、“小于”等词语,这些关键词可以指明问题的解题方向。
第十五讲统计的思想方法20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求.统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学.随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律.【例题求解】【例1】现有A,B两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如图所示.(1)由观察所得,班的标准差较大;(2)若两班合计共有60人及格,问参加者最少获分才可以及格.A班思路点拨对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案.注:平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的:(1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势.【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( )A .2a+3bB .ba +32C .6a+9bD .2a+b思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.【例3】 某班同学参加环保知识竞赛.将学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图(如图).图中从左到右各小组的小长方形的高的比是1:3:6:4:2,最右边—组的频数是6.结合直方图提供的信息,解答下列问题: (1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以上(不含60分)的学生占全班参赛人数的百分率. 思路点拨 读图、读懂图,从图中获取频率、组距等相关信息.【例4】为估计,一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店中抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:0.6 3.7 2.2 1.5 2.8 1.7 1.2 2.1 3.2 1.0(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子(每年按350个营业日计算);(2)2001年又刘该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是l0个样本饭店每个饭店平均每天使用一次性筷子2.42盒,求该县2000年、2001年这两年一次性木质筷子用量平均每年增长的百分率(2001年该县饭店数、全年营业天数均与1999年相同);(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07米3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅.计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5克,所用木材的密度为0.5×103千克/米3;(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来.思路点拨用样本的平均水平去估计总体的平均水平.注:(1)运用数学知识解决实际问题的过程是:从实际问题中获取必要的信息——分析处理有关信息——建立数学模型——解决这个数学问题.(2)通过图表获取数据信息,收集、整理分析数据,再运用统计量的意义去分析,这是用统计的思想方法解决问题的基本方式.思路点拨【例5】编号为1到25的25个弹珠被分放在两个篮子A和B中,15号弹珠在篮子A中,把这个弹珠从篮子A移到篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加41,B 中弹珠号码数的平均数也等于原平均数加41,问原来在篮子A 中有多少个弹珠?思路点拨 用字母分别表示篮子A 、B 弹珠数及相应的平均数,运用方程、方程组等知识求解.学历训练1.某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是 ,培训后考分的中位数所在的等级是 .(2)这32名学生经过培训,考分等级“不合格”的百分比由 下降到 .(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有 名. (4)你认为上述估计合理吗?理由是什么?答: ,理由 .2.某商店3、4月份出售同一品牌各种规格的空调销售台数如下表: 根据表中数据回答:(1)商店平均每月销售空调 (台);(2)商店出售的各种规格的空调中,众数是 (匹);(3)在研究6月份进货时,商店经理决定 (匹)的空调要多进; (匹)的空调要少进.3.为了了解某中学初三年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,求得5.94 样本x .下面是50名学生数学成绩的频率分布表:根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是 ; (2)频率分布表中的数据a =,b = ;(3)估计该校初三年级这次升学考试的数学平均成绩约为 分;(4)耷这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人. 4.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染,根据表中数据,可得此日的体温是( )A.36.?℃B.36.8℃C.36.9℃D.37.0℃5.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大,上述结论正确的是( )A.①②③B.①②C.①③D.②③6.今年春季,我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日至30日每天全国的SARS新增确诊病例数据图,将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28;其中正确的有( )A.0个B.1个C.2个D.3个7.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?8.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).9.明湖区一中对初二年级女生仰卧起坐的测试成绩进行统计分析,将数据整理后,画出如下频率分布直方图,已知图中从左到右的第一、第二、第三、第四、第六小组的频率依次是0.10、0.15、0.20、0.30、0.05,第五小组的频数是36,根据所给的图填空:(1)第五小组的频率是,请补全这个频率分布图;(2)参加这次测试的女生人数是;若次数在24(含24次)以上为达标(此标准为中考体育标准),则该校初二年级女生的达标率为.(3)请你用统计知识,以中考体育标准对明湖区十二所中学初二女生仰卧起坐成绩的达标率作一个估计.10.我国于2000年11月1日起进行了第五次全国人口普查的登记工作,据第五次人口普查,我国每10万人中拥有各种受教育程度的人数如下:具有大学程度的为3611人;具有高中程度的为11146人;具有初中程度的为33961人;具有小学程度的为35701人.(1)根据以上数据填写下表:(2)以下各示意图中正确的是( ).(将正确示意图数字代号填在括号内)11.新华高科技股份有限公司董事会决定今年用13亿资金投资发展项目,现有6个项目可供选择(每个项目或者被全部投资,或者不被投资),各项目所需投资金额和预计年均收益如下表:如果要求所有投资的项目的收益总额不得低于1.6亿元,那么,当选择的投资项目是时,投资的收益总额最大.12.新华社4月3日发布了一则由国家安全生产监督管理局统计的信息;2003年1月至2月全国共发生事故17万多起,各类事故发生情况具体统计如下:(1)请你计算出各类事故死亡人数占总死亡人数的百分比,填入上表(精确到0.01);(2)为了更清楚地表示出问题(1)中的百分比,请你完成下面的扇形统计图;(3)请根据你所学的统计知识提出问题(不需要作解答,也不要解释,但所提的问题应是利用表中所提供数据能求解的).13.将最小的31个自然数分成A 、B 两组,10在A 组中,如果把10从A 组移到B 组,则A 组中各数的算术平均数增加21,B 组中各数的算术平均数也增加21.问A 组中原有多少个数?14.某次数学竞赛共有15道题,下表是对于做对n (n =0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了多少人?参考答案。
1、(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、统计)一个样本为1,3,2,2,a,b,c. 已知这个样本的众数为3,平均数为2,那么这个样本的方差为 ( )A.8B.4C.87 D.47解析:已知样本平均数为2,得1+3+2+2+a+b+c=2×7=14,所以a+b+c = 6. 又因为样本众数为3,所以a,b,c三数中至少有两个3,则另一个为0.所以样本方差s2=17(1+1+0+0+1+1+4)=87⋅答案:C .技巧:理解平均数、众数、方差、标准差等统计术语的意义才能正确的求出这些数值.易错点:容易混淆平均数与众数、方差与标准差等概念而致错.2、(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、概率)六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面展开图如下图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标,按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标,已知小明前两次掷得的两个点能确定一条直线l,且这条直线l经过点P(4,7),那么他第三次掷得的点也在直线l上的概率是( )A.23 B.12C.13D.16解析:每掷一次可能得到6个点的坐标是其中有两个点是重合的:1,1,1,1,2,3,3,2,3,5,5,3,通过描点和计算可以发现,经过1,1,2,3,3,5三点中的任意两点所确定的直线都经过点P4,7,所以小明第三次掷得的点也在直线l上的概率是46=23⋅答案:A.技巧:求事件发生的概率,要分析清楚该事件发生的所有可能情况,不能遗漏.易错点:求概率时容易遗漏可能发生的情况而致错.3、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、概率)平面直角坐标系内任选一点,它的坐标都是绝对值小于或等于4的整数,且所有这样的点被选中的概率相等,则所选的点到原点的距离至多是2个单位的概率是( )A.1381 B.1581C.1364D.π16解析:坐标是绝对值小于或等于4的整数的点,构成以原点为中心的9×9的点阵列. 而这些点中有13个点到原点的距离小于或等于2个单位,所以所求概率为1381⋅答案:A技巧:理解题意,分析清楚该事件发生的所有可能情况,不能遗漏.易错点:求概率时容易遗漏可能发生的情况而致错.4、(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、统计)五次测验的平均成绩是90,中位数(即5个成绩按大小次序排列,居中的那个数)是91,众数(即5个成绩中出现次数最多的那个数)是94,则最低两次测验的成绩之和是___________ .解析:比中位数91大的数至多2个,众数94至少出现2次,所以94恰好出现2 次.最低2次测验成绩之和是90×5−91−94×2=450−91−188=171.答案:171.技巧:把握题意,理解平均数、众数和中位数的概念,弄清要求的是什么.易错点:容易混淆平均数、众数和中位数的概念而致错.5、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、统计)有甲、乙、丙、丁四人,每三人的平均年龄加上余下一人的年龄之和分别为29岁、23岁、21岁和17岁,则这四个人中最大年龄与最小年龄的差是____ 岁.解析:设年龄最大的a岁,年龄最小的d岁,另外两人的年龄为b岁和c岁,则有a +b +c +d 3=23a +a +b +c +d3=29, ①d +a +b +c 3=23d +a +b +c +d3=17,② 由①一②得23(a −d )=12,a −d =12×32=18.即所求的差是18. 答案:18.技巧: 根据题意设参数列出等式,然后通过变形来整体求值. 易错点:等式变形过程中容易出现计算失误.6、(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、概率) 某广场地面铺满了边长为36cm 的正六边形地砖. 现在向上抛掷半径为6 3cm 的圆碟,圆碟落地后与地砖边缘不相交的概率大约是__ __.解析:欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、且边与地砖边彼此平行、距离为6 3cm 的小正六边形内(见下图).作OC 1⊥A 1A 2于C l ,交B 1B 2于C 2,则C l C 2=6 3cm. 因为A 1A 2=A 2O =36,A 2C 1=18,所以C 1O =32A 2O =18 3,C 2O =C 1O −C 1C 2=12 3. 又因为C 2O =32B 2O ,所以B 2O =32O = 3×12 3=24. 而B 1B 2=B 2O ,则小正六边形的边长为24cm. 故所求概率P =小正六边形的面积正六边形的面积=(B 1B 2A 1A 2)2=(2436)2=49⋅答案:49.技巧:理解本题中几何图形落点的概率求法P =小正六边形的面积正六边形的面积.易错点:本题在求概率的时候容易理解成求圆碟的面积与正六边形地砖的面积之比而致错.7、(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、统计) 某校为了了解学生环保情况,对部分学生进行了一次环保知识测试(分数为整数,满分100分),根据测试成绩(最低分53分)分别绘制如下统计表和统计图,请你根据统计表和统计图回答下列问题:(1)这次参加测试的总人数为多少?(2)在76.5~84.5这一小组内的人数为多少? (3)这次测试成绩的中位数落在哪个小组内? (4)成绩在84.5~89.5之间的人数为多少? 分析:通过观察图表即可得出所需要的数据.详解:(1)因为3+42=45,所以这次参加测试的总人数为45. (2)在76.5~84.5这一小组内的人数为45-3-7-10-8-5= 12. (3)这次测试成绩的中位数落76.5~84.5这一小组内.(4) 89.5分以上为8人,92.5分以上为5人,则89.5分到92.5分的有8-5=3人;又84.5~92.5之间的人数为8 人,所以成绩在84.5~89.5之间的人数为8-3=5人.8、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、统计) 某个学生参加军训,进行打靶训练,必须射击10次. 在第6次、第7次、第8次、第9次射击中,分别得到9.O 环、8.4环、8.1环、9.3环,他的前9次射击所得的平均环数高于前5次射击所得的平均环数,如果要使10次射击的平均环数超过8.8环,那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)分析:由于每次射击所得环数都精确到0.1环,故前9次射击的总环数至多为8.7×9−0.1环;要使10次射击的平均环数超过8.8环,则第10次最少要得(8.8×10+0.1)−78.2环. 详解:前9次射击的总环数至多为8.7×9−0.1=78.2,故第10次射击至少得(8.8×10+0.1)−78.2=9.9(环).答:第10次射击至少要得9.9环.技巧:理解平均数的概念,以及“精确到0.1环” 和“高于”、“至少”等关键词之间的联系才能正确解答本题.易错点:容易忽视“精确到0.1环”和“高于”、“至少”等关键词之间的联系而致错.9、(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、统计) 某学生为了描点作出函数y =ax 2+bx +c (a ≠0)的图象,取了自变量的7个值: x 1<x 2<⋯<x 7,且x 2−x 1=x 3−x 2=⋯=x 7−x 6,分别算出对应的y 的值,列出下表:但由于粗心算错了其中一个y 值,请指出算错的是哪一个值?正确的值是多少?并说明理由.分析:根据x 2−x 1=x 3−x 2=⋯=x 7−x 6,找出y k +1与y k 之间的联系,然后对照表格来发现规律.详解:设x 2−x 1=x 3−x 2−⋯=x 7−x 6=d >0,且x i 对应的函数值为y i . 则Δk =y k +1−y k = ax k +12+bx k +1+c − ax k 2+bx k +c =a (x k +d )2−x k 2 +b x k +d −x k =2adx k + ad 2+bd ,故Δk +1−Δk =2ad (x k +1−x k )=2ad 2(常数). 由给出的数据y i :51 107 185 285 407 549 717 得Δk :56 78 100 122 142 168 Δk +1-Δk : 22 22 22 20 26由此可见,x 6=549是被算错的y 值,其正确值应该是407+(122+22)=551. 技巧:通过研究Δk +1与Δk 之间的关系来对照表格是解答本题的关键所在. 易错点:这类题容易被题目大量的数据所困惑,放弃理性思考数据的规律而致错.。
中考数学复习专题-数学思想方法(一)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 10.(德州)已知,则a+b等于()A.3 B.C.2D.1考点:解二元一次方程组。
810360专题:计算题。
分析:①+②得出4a+4b=12,方程的两边都除以4即可得出答案.解答:解:,∵①+②得:4a+4b=12,∴a+b=3.故选A.点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.运用整体思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析。
28.计数方法知识纵横所谓计数,通俗地说就是数数,即把我们研究的对象的个数数出来.当研究的对象比较简单,且数目也不大时,枚举法是最基本而又简单的方法,•即把对象的所有可能一一列举出来,数出总数即可.当研究的对象比较复杂,且数目较大时,计数时常常要用到如下两原理: 加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N=m 1+m 2+…m n 种不同的方法.乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法……做第n 步有m n 种不同的方法,那么完成这件事共有N=m 1·m 2·…m n 种不同的方法.例题求解 【例1】如图,从甲地到乙地共有4条路可走,从乙地到丙地有3条路可走,从甲地到丙地有5条路可走,那么从甲地到丙地共有_______条. (2000年重庆市竞赛题)思路点拨 从甲地到丙地可分两类办法:直达和转乙地. 解:17 提示:共有3×4+5=17(条)路可走【例2】右图中的小方格是边长为1的正方形,则从图中一共可以数出( )个正方形.A.24B.210C.50D.90(2001年“五羊杯”邀请赛题)思路点拨 图中的正方形可以分成边长为1,边长为2,边长为3,边长为4这4种类型,分别求出每种规格的正方形个数.解:选C 提示:边长为1的正方形为4×6个,边长为2的正方形有3×5个,边长为3的正方形有2×4个,边长为4的正方形有1×3个,共有4×6+3×5+2×4+1×3=50(个)【例3】我们知道,两条直线相交,有且只有一个交点,三条直线相交,•最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n 条直线最多有多少个交点?说明理由.思路点拨 从特殊情况入手,由简到繁,深入思考,从中发现规律.解:提示:三条直线的情形:若平面上已有两条直线,再添一条直线,•则这条直线和原来平面上的两条直线各有一个交点,所以有1+2个交点,同理,4•条直线的情形为在原来三条直线的基础上添加一条直线,共多出3个交点,所以有1+2+3个交点.•一般地,n 条直线两丙乙甲B n+1B i+1B i A n+1A n两相交,其交点数为1+2+…+(n-1)= (1)2n n 个. 【例4】由0、1、2、3、4、5、6这7个数字,可以组成(1)多少个四位数,其中有多少个奇数,有多少个偶数?(2)多少个没有重复数字的四位数,其中有多少个奇数,有多少个偶数?思路点拨 要确定四位数,必须一位一位来考虑,显然计数时,需要用乘法原理,(2)问与(1)问的差别在于,增加了“没有重复”的限制.解:提示:(1)这个四位数的最高位不是0,故最高位有6种选法(即选1~6•中的任一个数字),其余各位,可以从0~6这7个数字中任选,故共有6×7×7×7=2058个四位数,在这些四位数中,奇数的个数也可用类似方法获得,有6×7×7×3=882•个,•偶数2058-882=1176个.(2)同理,没有重复数字的四位数有6×6×5×4=720个,其中奇数有3×5×5×4=300个,其中偶数有720-300=420个.【例5】两条平行直线上各有n 个点,用这n 对点按如下规则连接线段:•①同一直线上的点之间不连接,②连接的任意两条线段可以有共同的端点,但不得有其他的交点.(1)画图说明当n=1,2,3时,连接的线段最多各有多少米?(2)由(1)猜想n(n 为正整数)对点之间连接的线段最多有多少条,证明你的结论;(3)当n=2003时,所连接的线段最多有多少条? (第14•届“希望杯”邀请赛试题) 思路点拨 把直线标记为L 1,L 2,它们上面的点从左到右分别为A 1,A 2,A 3,…A n 和B 1,B 2,•B 3,…B n ,设这n 对点之间连接的直线段最多有p n 条,解题的关键是探讨p n+1与p n 的关系.解:(1)由下图①可以看出,n=1时,最多可以连接1条线段,n=2时,•最多可以连接3条线段,n=3时,最多可以连接5条线段.n=1n=2n=3图① 图②(2)猜想:对于正整数n,这n 对点之间连接的直线段最多有2n-1条.证明:将直线标记为L 1、L 2,它们上面的点从左到右排列分别为A 1,A 2,A 3,…A n 和B 1,B 2,•B 3,…,B n ,设这n 对点之间连接的直线段最多有P n 条,显然,其中必有A n B n 这一条,否则,P n 就不是最多的数.当在L 1、L 2上分别加上第n+1个点时,不妨设这两个点在A n 与B n 的右侧,•那么除了原来已经有的P n 条直线段外,还可以连接A n+1Bn,A n+1B n+1这两条线段,或连接A n B n+1,A n+1B n+1这两条线段.所以P n+1≥P n +2,另一方面,设对于n+1对点有另一种连法:考虑图②中以A n+1为端点的线段,若以A n+1为端点的线段的条数大于1,•则一定可以找到一个i ≤n,使得对于任意的j<i,A n+1B j 都不在所画的线段中,这时,B i+1,B i+2,…,B n+1只能与A n+1连接,不妨设A n+1B i+1,A n+1B i+2,…,A n+1B n+1都已连接,此时图中的线段数为P n+1,我们做如下操作:去掉A n+1B i,连接A n B i+1,得到新的连接图,而新的连接图满足要求且线段总数不变,将此操作一直进行下去,直到与A n+1连接的线段只有一条A n+1B n+1为止.最后图中,与点B n+1相关的线段只剩两条,即A n B n+1,A n+1B n+1,去掉这两条线段,则剩余P n+1-2条线段,而图形恰是n•对点的连接图,所以P n+1-2≤P n.由此我们得到P n+1=P n+2,而P1=1,P2=3,所以P n=1+2×(n-1)=2n-1.(3)当n=2003时,P2003=4005(条).学力训练一、基础夯实1.第一个口袋中装2个球,第二个口袋中装4个球,第三个口袋中装5个球,所有三个口袋中的球各不相同.(1)从口袋中任取一个球,共有______种不同的取法.(2)从三个口袋中各取一个球,有_______种不同的取法.2.如图,在四个正方形拼接成的图形中...,以A1、A2、A3…、A10这十个点中任意三点为顶,共能组成______个等腰直角三角形. (2003年泉州市中考题)(第2题)(第4题)3.画一条直线,可将平面分成2个部分,画2条直线,最多可将平面分成4个部分,•那么,画6条直线最多可将平面分成______个部分. (第14届“希望杯”邀请赛试题)4.一条信息可通过如图的网络线由上(A点)往下向各站点传送.例如信息到b2•点可由经a1的站点送达,也可由经a2的站点送达,共有两条途径传送,则信息由A•点到达d3的不同途径共有( ).A.3条B.4条C.6条D.12条 (2003年南宁市中考题)5.如图,图中不同的线段的条数有( ).A.52条B.63条C.141条D.154条(第5题)(第7题)6.平面内的7条直线任两条都相交,交点数最多有a个,最少有b个,则a+b等于( • ).A.42B.41C.21D.22 (2003年北京市竞赛题)7.如图,在表板上有4个开关,如果相邻的2个开关不能同时是关的,•那么所有不同的状态有( ).A.4种B.6种C.8种D.12种 (第15届江苏省竞赛题)8.如图,左右相邻两点,上下相邻两点之间距离都等于1厘米,把这些点连接起来,作为三角形的顶点,那么可以组成多少个直角三角形?9.用数字0,1,2,3,4可以组成多少个(1)四位数? (2)四位偶数?(3)没有重复数字的四位数?(4)没有重复数字的四位偶数?二、能力拓展10.5人站成一排照相,其中一人必须站在中间,有_____种站法.11.在1到300这300个自然数中,不含有数字3的自然数有_______个.12.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳1格或2格,•那么人从格外跳到第6格可以有______种方法. (第15届江苏省竞赛题)(第12题) (第13题)13.如图,由18个边长相等的正方形组成的长方形ABCD 中,•包含“※”在内的长方形及正方形一共有_____个. (北京市“迎春杯”竞赛题)14.如图,正方形被分成9个相同的小正方形,一共16个顶点,•以其中不在同一直线上的3个顶点为顶点,可以构成三角形,在这些三角形中,与阴影面积相等的三角形有_______个.(第14题) (第15题) (第16题)15.如图,一共能数出( )个长方形(正方形也算作长方形).A.64B.63C.60D.48 (2000年“五羊杯”竞赛题)16.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指数轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,•右图轮子上方的箭头指着的数字为b,数对(a,b)所有可能的个数为n,其中a+b 恰好偶数的不同数对的个数为m,则m n等于( ). A. 12 B. 16 C. 512 D. 34 (2000年山东省竞赛题) 17. (2002年重庆市竞赛题)如图,从A 点B 点(只从左向右,从上到下),共有( )种不同的走法.A.24B.20C.16D.12A18.平面上5个圆最多能把平面分成多少个部分?一般地,n•个圆最多能把平面分成多少个部分?19.5个人站成一排照相.(1)若甲、乙两人必须相邻,则有多少不同的站队方法?(2)若甲、乙两人必不相邻,则有多少不同的站队方法?三、综合创新20. (第11届“希望杯”邀请赛试题)将编号为1,2,3,4,5的5个小球放入编号为1,2,3,4,5的5个盒子中,每个盒子中只放入一个.(1)一共有多少种不同的方法?(2)若编号为1的球恰好放在1号盒子中,共有多少种不同的放法?(3)若至少有一个球放入了同号的盒子中(即对号放入)共有多少种不同的放法?答案1.2+4+5=11(种),2×4×5=40(种)2.243.22 提示:一般地n条直线最多将平面分为2+2+3+…+n=1+1+2+…+n=12(n2+2n+2)部分. 4.C5.D 提示:水平方向上的一类线段共有(6+5+4+3+2+1)×4=84(条)(只考虑线段BC上共有多少条不同的线段),同理,斜方向上的线段共有(4+3+2+1)×7=70条.6.D7.C8.将图中的每一点作为直角三角形的直角顶点时,•这样的直角三角形个数一一算出,注意图形的对称性,共有4×4+5×4+8×1=44(个)9.(1)4×5×5=500(个);(2)4×5×5×3=300(个);(3)4×4×3×2=96(个);(•4)96-2×3×3×2=60(个).10.24 提示:4×3×2×1=24(种)11.242 提示:按数的位数分类:不含3的一位数有8个,不含3的二位数有72个,•不含3的三位数有162个.12.每次跳1格,有惟一的跳法,仅有一次跳2格,其余各次跳1格,有4种跳法,有两次跳2格,其余各次跳1格,有3种跳法,共有1+4+3=8种跳法.13.3614.48 提示:图中等积三角形可分为:底长为3,高长为2的一类三角形有24个;•底长为2,高长为3一类的三角形有32个,扣除其中重复的,故有48个.15.B 提示:不包括第一行的三个小正方形时,可数出(1+2)(1+2+3+4+5)=45•个长方形;包括时,可数出3×(1+2+3)=18个长方形,共计63个.16.C17.B 提示:从A→A n点的走法数量,等于从A到A n•左边一个点的走法数量加上从A到A n上边一个点的走法数量A→B=(A→a14)+(A→a11)=10+10=20(种),•这种计数方法称为逐点标数累计法.18.提示:1个圆最多能把平面分成2个部分,2个圆最多能把平面分成4个部分;•3个圆最多能把平面分成8个部分;现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点,如图所示,因此得6个交点,这6个交点将第4•个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,•于是4个圆最多将平面分成8+6=14个部分.同理,5个圆最多将平面分成14+8=22个部分,•一般地,n个圆最多分平面为:2+1×2+2×2+…+(n-1)×2=2+[1+2+…+(n-1)]=n2-n+2•个平面.19.提示:(1)把甲、乙两人看成一个整体,与剩下的3人看成4个对象,这4个对象站成一排,共有4×3×2×1×2=48种不同的站队方法(注:甲、•乙两人可以甲在乙左边或右边两种情况).(2)从5个人自由站队总数中减去甲、乙两人必须相邻的情况,剩下的就是甲、•乙两人必不相邻的情况,5个人自由站队总数是5×4×3×2×1=120种,故甲、乙两必不相邻的站队方法有120-48=72种.20.提示:(1)将第一个球先放入,有5种不同的放法;再放入第二个球,这时有4种不同的放法;依此类推,放入第三、四、五个球时,分别有3、2、1种放法,•所以总共有5×4×3×2×1=120种不同的放法.(2)将1号球放在1号盒子中,其余的4个球随意放,它们依次有4、3、2、1•种不同的放法,这样共有4×3×2×1=24种不同的放法。
初中数学培优竞赛讲座第28讲__计数方法计数方法是数学中一个非常重要的概念,它是解决组合问题的一种数学工具。
在初中数学培优竞赛中,计数方法常常会出现在组合数、排列组合、概率等相关题目中。
本次讲座将详细介绍计数方法的基本概念、常见的计数方法以及一些应用例题。
一、基本概念1.排列:从给定的数(或事物)中取出一部分按照一定的顺序排列起来。
例如,从5个人中选取3个人排成一排,按照顺序排列的不同可能性有P(5,3)=60种。
2.组合:从给定的数(或事物)中取出一部分,不考虑顺序,即无关顺序。
例如,从5个人中选取3个人,不考虑顺序的不同可能性有C(5,3)=10种。
3.排列数和组合数的计算公式:排列数:A(n,m)=n!/(n-m)!其中n为总的数目,m为要选择的数目,n!表示n的阶乘。
组合数:C(n,m)=n!/[(n-m)!m!]其中n为总的数目,m为要选择的数目,n!表示n的阶乘。
二、常见的计数方法1.加法原理:当两个事件不同时发生时,计算两个事件发生的可能的总数,需要使用加法原理。
例如,有5个男孩和4个女孩,从中选出2人组成一个小组,求男女合作和男男合作的可能性总数。
解:首先,男女合作的可能性总数为C(5,1)C(4,1)=20,然后,男男合作的可能性总数为C(5,2)=10。
最后,根据加法原理,男女合作和男男合作的可能性总数为20+10=30。
2.乘法原理:当两个或多个事件同时发生时,计算这些事件发生的可能的总数,需要使用乘法原理。
例如,一个编号为1、2、3、4、5的转盘,每个号码一个扇形,若按顺时针方向旋转则相邻两个号码不能相同。
问转动5下后的不同可能的总数。
解:首先,第1次转动可以有5种不同的可能,第2次转动可以有4种不同的可能,以此类推,最后第5次转动可以有1种不同的可能。
根据乘法原理,不同可能的总数为5×4×3×2×1=120。
3.基于递推关系的计数:(1)斐波那契数列:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,其中n为正整数)。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
【例题求解】
【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大;
(2)若两班合计共有60人及格,问参加者最少获 分才可以及格. A 班
2
思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案.
注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的:
(1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势.
【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、
3332y x +的平均数为( )
A .2a+3b
B .b a +3
2
C .6a+9b
D .2a+b
思路点拨运用平均数计算公式并结合已知条件导出新数据的平均数.
【例3】某班同学参加环保知识竞赛.将学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布
直方图(如图).图中从左到右各小组的小长方形的高的比是1:3:6:4:2,最右边—组的频数是6.结
合直方图提供的信息,解答下列问题:
(1)该班共有多少名同学参赛?
(2)成绩落在哪组数据范围内的人数最多,是多少?
(3)求成绩在60分以上(不含60分)的学生占全班参赛人数的百分率.
思路点拨读图、读懂图,从图中获取频率、组距等相关信息.
【例4】为估计,一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店中抽取10家作样本,
这些饭店每天消耗的一次性筷子盒数分别为:0.6 3.7 2.2 1.5 2.8 1.7 1.2 2.1 3.2 1.0
(1)通过对样本的计算,估计该县1999年消耗多少盒一次性筷子(每年按350个营业日计算);
(2)2001年又刘该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是l0个样本饭店每个
饭店平均每天使用一次性筷子2.42盒,求该县2000年、2001年这两年一次性木质筷子用量平均每年增长
的百分率(2001年该县饭店数、全年营业天数均与1999年相同);
(3)在(2)的条件下,若生产一套中小学生桌椅需木材0.07米3,求该县2001年使用一次性筷子的木材可
以生产多少套学生桌椅.计算中需用的有关数据为:
每盒筷子100双,每双筷子的质量为5克,所用木材的密度为0.5×103千克/米3;
(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字
表述出来.
思路点拨 用样本的平均水平去估计总体的平均水平.
注:(1)运用数学知识解决实际问题的过程是:从实际问题中获取必要的信息——分析处理有关信息——建立数学模型——解决这个数学问题.
(2)通过图表获取数据信息,收集、整理分析数据,再运用统计量的意义去分析,这是用统计的思想方法解决问题的基本方式. 思路点拨
【例5】 编号为1到25的25个弹珠被分放在两个篮子A 和B 中,15号弹珠在篮子A 中,把这个弹珠从篮子A 移到篮子B 中,这时篮子A 中的弹珠号码数的平均数等于原平均数加4
1
,B 中弹珠号码数的平均数也等于原平均数加
4
1
,问原来在篮子A 中有多少个弹珠?
思路点拨 用字母分别表示篮子A 、B 弹珠数及相应的平均数,运用方程、方程组等知识求解.
学历训练
1.某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:
(1)这32名学生培训前考分的中位数所在的等级是 ,培训后考分的中位数所在的等级是 . (2)这32名学生经过培训,考分等级“不合格”的百分比由 下降到 .
(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有 名. (4)你认为上述估计合理吗?理由是什么?
答: ,理由 .
2.某商店3、4月份出售同一品牌各种规格的空调销售台数如下表:
根据表中数据回答:
(1)商店平均每月销售空调 (台);
(2)商店出售的各种规格的空调中,众数是 (匹);
(3)在研究6月份进货时,商店经理决定 (匹)的空调要多进; (匹)的空调要少进.
3.为了了解某中学初三年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,求得5.
x.下面是50名学生数学成绩的频率分布表:
94
样本
10
根据题中给出的条件回答下列问题:
(1)在这次抽样分析的过程中,样本是;
(2)频率分布表中的数据a= ,b= ;
(3)估计该校初三年级这次升学考试的数学平均成绩约为分;
(4)耷这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为人.
4.小明测得一周的体温并登记在下表(单位:℃)
其中星期四的体温被墨迹污染,根据表中数据,可得此日的体温是( )
A.36.?℃ B.36.8℃ C.36.9℃ D.37.0℃
5.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:
某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大,上述结论正确的是( )
A.①②③ B.①② C.①③ D.②③
6.今年春季,我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下图是某同学记载的5月1日至30日每天全国的SARS新增确诊病例数据图,将图中记载的数据每5天作为一组,从左至右分为第一组至第六组,下列说法:①第一组的平均数最大,第六组的平均数最小;②第二组的中位数为138;③第四组的众数为28;其中正确的有( )
A.0个 B.1个 C.2个 D.3个
7.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游
客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体实际?
8.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.
(1)请填写下表:
(2)请从下列四个不同的角度对这次测试结果进行分析.
①从平均数和方差相结合看;
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
9.明湖区一中对初二年级女生仰卧起坐的测试成绩进行统计分析,将数据整理后,画出如下频率分布直方图,已知图中从左到右的第一、第二、第三、第四、第六小组的频率依次是0.10、0.15、0.20、0.30、
0.05,第五小组的频数是36,根据所给的图填空:
(1)第五小组的频率是,请补全这个频率分布图;
(2)参加这次测试的女生人数是;若次数在24(含24次)以上为达标(此标准为中考体育标准),则该校初二年级女生的达标率为.
(3)请你用统计知识,以中考体育标准对明湖区十二所中学初二女生仰卧起坐成绩的达标率作一个估计.
10.我国于2000年11月1日起进行了第五次全国人口普查的登记工作,据第五次人口普查,我国每10万人中拥有各种受教育程度的人数如下:具有大学程度的为3611人;具有高中程度的为11146人;具有初中程度的为33961人;具有小学程度的为35701人.
(1)根据以上数据填写下表:
(2)以下各示意图中正确的是( ).(将正确示意图数字代号填在括号内)
11.新华高科技股份有限公司董事会决定今年用13亿资金投资发展项目,现有6个项目可供选择(每个项目或者被全部投资,或者不被投资),各项目所需投资金额和预计年均收益如下表:
)
如果要求所有投资的项目的收益总额不得低于1.6亿元,那么,当选择的投资项目是时,投资的收
益总额最大.
12.新华社4月3日发布了一则由国家安全生产监督管理局统计的信息;2003年1月至2月全国共发生事故17万多起,各类事故发生情况具体统计如下:
(1)请你计算出各类事故死亡人数占总死亡人数的百分比,填入上表(精确到0.01); (2)为了更清楚地表示出问题(1)中的百分比,请你完成下面的扇形统计图;
(3)请根据你所学的统计知识提出问题(不需要作解答,也不要解释,但所提的问题应是利用表中所提供数据能求解的).
13.将最小的31个自然数分成A 、B 两组,10在A 组中,如果把10从A 组移到B 组,则A 组中各数的算术平均数增加
21,B 组中各数的算术平均数也增加2
1
.问A 组中原有多少个数? 14.某次数学竞赛共有15道题,下表是对于做对
n (n =0,1
,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了多少人?
参考答案。