最新三章应用软件集成体系结构
- 格式:ppt
- 大小:1.39 MB
- 文档页数:7
三层架构详解范文三层架构是一种软件设计模式,将应用程序分为三个主要层次:表示层、业务逻辑层和数据访问层。
每个层次都具有不同的职责和功能,使得系统更易于维护、扩展和测试。
1.表示层:表示层是用户与系统之间的接口,负责接收用户输入、展示输出结果。
它是系统的外部界面,可以是一个网页、桌面应用程序、移动应用程序等。
表示层通常包括用户界面设计、用户体验设计和前端开发等方面,它负责与用户进行交互,将用户的请求传递给业务逻辑层进行处理,并将处理结果展示给用户。
2.业务逻辑层:业务逻辑层是系统的核心,负责处理系统的业务逻辑。
它包括了业务规则、工作流程和数据处理等方面。
业务逻辑层接收来自表示层的请求,根据业务规则进行数据处理和业务逻辑的计算,最后将结果返回给表示层。
在这个层次上,开发人员可以将系统的业务逻辑进行封装,使得系统的可复用性和可维护性更高。
3.数据访问层:数据访问层是负责对数据进行持久化存储和访问的层次。
它包括了数据库的管理和访问,以及与其他数据源的交互等。
数据访问层将业务逻辑层的数据请求转化为数据库操作,通过与数据库进行交互来进行数据的增删改查。
在这个层次上,开发人员可以实现数据缓存、事务管理、数据访问的优化等功能。
三层架构的主要优点有:1.松耦合:三层架构将整个系统分为三个独立的层次,各层次之间通过接口进行交互,使得各层次之间的耦合度降低。
这样,在修改或拓展其中一层次的功能时,不会对其他层次造成影响,提高了系统的灵活性和可维护性。
2.可扩展性:由于每个层次都有明确的功能和职责,因此可以很容易地拓展系统的功能。
例如,可以通过增加实现新的表示层、业务逻辑层或者数据访问层来实现系统功能的扩展。
3.可测试性:每个层次的功能相对独立,因此可以单独对每个层次进行测试。
这样可以更容易地进行单元测试和集成测试,提高了系统的可测试性和稳定性。
4.可维护性:三层架构将系统分为多个层次,使得每个层次的功能和职责更加清晰明确,减少了系统的复杂性。
基于软件三层架构的研究报告引言三层结构是传统的客户/服务器结构的发展,代表了企业级应用的未来,典型的有Web下的应用。
多层结构和三层结构的含义是一样的,只是细节有所不同。
之所以会有双层、三层这些提法,是因为应用程序要解决三个层面的问题。
一、软件架构和分层(一)软件架构(software architecture)是一系列相关的抽象模式,用于指导大型软件系统各个方面的设计。
软件架构是一个系统的草图。
软件架构描述的对象是直接构成系统的抽象组件。
各个组件之间的连接则明确和相对细致地描述组件之间的通讯。
在实现阶段,这些抽象组件被细化为实际的组件,比如具体某个类或者对象。
在面向对象领域中,组件之间的连接通常用接口(计算机科学)来实现。
软件体系结构是构建计算机软件实践的基础。
与建筑师设定建筑项目的设计原则和目标,作为绘图员画图的基础一样,一个软件架构师或者系统架构师陈述软件构架以作为满足不同客户需求的实际系统设计方案的基础。
(二)分层分层是表示将功能进行有序的分组:应用程序专用功能位于上层,跨越应用程序领域的功能位于中层,而配置环境专用功能位于低层。
分层从逻辑上将子系统划分成许多集合,而层间关系的形成要遵循一定的规则。
通过分层,可以限制子系统间的依赖关系,使系统以更松散的方式耦合,从而更易于维护。
子系统的分组标准包含以下几条规则可见度。
各子系统只能与同一层及其下一层的子系统存在依赖关系。
(三)使用分层架构开发的必要性1、分层设计允许你分割功能进入不同区域。
换句话说层在设计是就是逻辑组件的分组。
例如,A层可以访问B层,但B层不能访问A 层。
2、用分层的方法,以提高应用程序的可维护性,并使其更容易扩展,以提高性能。
(四)设计分层的原则1、层意味着组建的逻辑分组。
例如,对用户界面,业务逻辑和数据访问组表的Select,Insert,Update,Delete的操作。
如果要加入ORM的元素,那么就会包括对象和数据表之间的mapping,以及对象实体的持久化。
软件体系结构概述软件体系结构是指软件系统的组织方式和结构框架,包括系统的组件、模块、连接方式以及它们之间的关系。
软件体系结构定义了系统的主要构成和交互方式,以及系统的整体特性和行为。
软件体系结构的设计和选择对于系统的可维护性、可扩展性、可靠性和性能等方面都有重要影响。
软件体系结构可以理解为一个软件系统的蓝图或者设计模板,它指导和限制了系统在开发和维护过程中的各个方面,并对系统的演化和重用性提供支持。
常见的软件体系结构包括客户端-服务器体系结构、分层体系结构、面向对象体系结构、面向服务体系结构等。
客户端-服务器体系结构是最常见的软件体系结构之一,它将软件系统划分为客户端和服务器两部分。
客户端负责用户界面和用户交互,服务器负责处理业务逻辑和数据存储。
这种体系结构可以提高系统的可伸缩性和可靠性,同时也增加了系统的复杂性和通信开销。
分层体系结构将软件系统划分为多个层次,每个层次具有特定的功能。
常见的层次包括表示层、业务逻辑层和数据访问层。
表示层负责用户界面的展示和交互,业务逻辑层负责系统的业务逻辑处理,数据访问层负责数据的存储和访问。
分层体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和通信开销。
面向对象体系结构利用面向对象的思想和技术进行软件系统的设计和实现。
它将软件系统划分为多个对象,每个对象具有特定的属性和方法,并通过消息传递进行交互。
面向对象体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和内存开销。
面向服务体系结构将软件系统划分为多个服务,每个服务具有特定的功能和接口。
这些服务通过网络进行通信和交互,从而实现系统的功能需求。
面向服务体系结构可以提高系统的可扩展性和跨平台性,同时也增加了系统的通信开销和服务管理的复杂性。
除了以上常见的软件体系结构外,还有其他一些特定领域的体系结构,如实时系统体系结构、并行系统体系结构等。
实时系统体系结构适用于对响应时间有严格要求的系统,它需要快速的响应和高可靠性。
1.软件体系结构建模的种类◎结构模型◎框架模型◎动态模型◎过程模型◎功能模型2.4+1模型4+1视图模型从5个不同的视角包括逻辑视图、进程视图、物理视图、开发视图和场景视图来描述软件体系结构。
每一个视图只关心系统的一个侧面,5个视图结合在一起才能反映系统的软件体系结构的全部内容。
逻辑视图:逻辑视图主要支持系统的功能需求,即系统提供给最终用户的服务。
在逻辑视图中,系统分解成一系列的功能抽象,这些抽象主要来自问题领域。
这种分解不但可以用来进行功能分析,而且可用作标识在整个系统的各个不同部分的通用机制和设计元素。
在面向对象技术中,通过抽象、封装和继承,可以用对象模型来代表逻辑视图,用类图来描述逻辑视图。
要保持单一内聚的对象模型开发视图开发视图也称模块视图,主要侧重于软件模块的组织和管理。
开发视图要考虑软件内部的需求,如软件开发的容易性、软件的重用和软件的通用性,要充分考虑由于具体开发工具的不同而带来的局限性。
开发视图通过系统输入输出关系的模型图和子系统图来描述。
在开发视图中,最好采用4-6层子系统,而且每个子系统仅仅能与同层或更低层的子系统通讯,这样可以使每个层次的接口既完备又精练,避免了各个模块之间很复杂的依赖关系。
设计时要充分考虑,对于各个层次,层次越低,通用性越强,这样,可以保证应用程序的需求发生改变时,所做的改动最小。
开发视图所用的风格通常是层次结构风格。
进程视图进程视图侧重于系统的运行特性,主要关注一些非功能性的需求。
进程视图强调并发性、分布性、系统集成性和容错能力,以及从逻辑视图中的主要抽象如何适合进程结构。
它也定义逻辑视图中的各个类的操作具体是在哪一个线程中被执行的。
进程视图可以描述成多层抽象,每个级别分别关注不同的方面。
在最高层抽象中,进程结构可以看作是构成一个执行单元的一组任务。
它可看成一系列独立的,通过逻辑网络相互通信的程序。
它们是分布的,通过总线或局域网、广域网等硬件资源连接起来。
软件体系结构的概念
软件体系结构指的是软件系统中各个部分之间的组织方式和相
互关系,并且对于软件系统的整体性能和质量具有重要影响。
软件体系结构可以分为多层次,包括应用程序、操作系统和硬件等多个层次。
软件体系结构具有以下几个方面的概念:
1. 模块化:将软件系统分解为多个模块,每个模块具有明确的
职责和功能,便于管理和维护。
2. 接口定义:模块之间通过明确的接口定义来进行通信和交互,从而实现系统的协作和集成。
3. 分层结构:软件体系结构可以分为多个层次,每个层次负责
不同的功能,便于组织和管理。
4. 过程控制:软件体系结构可以通过定义明确的流程和控制机
制来实现对软件系统开发和维护的有效控制。
5. 性能优化:软件体系结构的设计应该考虑系统的性能和效率,通过合理的设计和优化来提高系统的性能和质量。
软件体系结构的设计需要考虑到多个方面的因素,包括系统需求、硬件环境、软件技术等等,需要综合考虑并进行优化。
一个好的软件体系结构设计可以提高系统的可维护性、可扩展性和可重用性,从而降低开发和维护成本,提高软件系统的质量和效率。
- 1 -。
一. 软件体系结构(架构)软件体系结构的定义通常,软件体系结构通常被称为架构,指可以预制和可重构的软件框架结构。
架构尚处在发展期,对于其定义,学术界尚未形成一个统一的意见,而不同角度的视点也会造成软件体系结构的不同理解。
比如,ANSI/IEEE 610.12-1990软件工程标准词汇对于体系结构定义是“体系架构是以构件、构件之间的关系、构件与环境之间的关系为内容的某一系统的基本组织结构以及知道上述内容设计与演化的原理(principle)”;而Garlan & Shaw模型的基本思想是:软件体系结构={构件(component),连接件(connector),约束(constrain)}。
对于软件项目的开发来说,一个清晰的软件体系结构是首要的。
传统的软件开发过程可以划分为从概念到实现的若干个阶段,包括问题定义、需求分析、软件设计、软件实现及软件测试等。
软件体系结构的建立就位于需求分析之后,软件设计之前。
在建立软件体系结构时系统设计师主要从结构的角度对整个系统进行分析,选择恰当的构件(Component)、构件间的相互作用以及它们的约束,最后形成一个系统框架(Framework)以满足用户的需求,为软件设计奠定基础。
软件体系结构风格软件体系结构设计的一个核心问题是能否使用重复的体系结构模式,即能否达到结构级的软件重用。
也就是说,能否在不同的软件体系中,使用同一体系结构。
基于这个目的,学者们开始研究和实践软件体系结构的风格问题。
软件体系结构风格(Software Architecture Style)是描述某一特定应用领域系统组织方式的惯用模式。
它反映了领域中众多系统所有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。
对软件体系结构风格的研究和实践促进了对设计的复用,一些经过实践证明的解决方案也可以可靠地用于解决新的问题。
体系结构风格的不变部分使不同的系统可以共享一个实现代码。
软件体系结构综述计算机应用专业赵诚 070321169随着计算机应用的日益普及,人们对软件的需求量急剧增加。
起初,人们把软件设计的重点放在数据结构和算法的选择上。
随着软件系统规模越来越大,越来越复杂,新的问题也随之而来, 大量实践统计表明:系统软件开发中,70%的错误是由软件设计阶段引入的; 而且错误在系统中存在的时间越长则越难发现, 解决这些错误的代价也越高,于是整个系统的结构和规格说明逐渐占有了重要的位置,软件体系结构这一概念也应运而生。
它成为了沟通软件需求和软件设计的一座桥梁。
1、软件体系结构的定义对于软件体系结构的定义,至今还没有一个统一的、得到广泛认可的解释,很多软件体系结构学者都提出了各自对体系结构的概念与定义。
软件体系结构的最核心概念有构件、连接件、配置、端口和角色。
构件是具有某种功能可重用的软件基本单元,表示软件系统中主要的计算元素和数据存储单元。
连接件表示了构件之间的交互,是构件与构件之间建立和维持行为关联和消息传递的途径。
包括实现构件之间的交互机制和管理这些交互的原则(协议)。
配置表示了构件和连接件之间的拓扑结构和逻辑约束,它是构件和连接件的集合。
总之,软件体系结构为软件系统提供了一个结构、行为和属性的高级抽象,由构成系统的元素的描述、这些元素的相互作用、指导元素集成的模式以及这些模式的约束组成。
软件体系结构不仅定义了系统的组织结构和拓扑结构,而且表示了系统的需求和构成系统的元素之间的对应关系提供了设计决策的基本原理和约束条件。
2、软件体系结构的风格软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。
它反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统,按这种方式理解,软件体系结构风格定义了用于描述系统的术语表和一组指导构件系统的规则。
2.1数据流系统数据流是一种将数据从输入端显式的输送到输出端的体系结构风格。
数据流风格的构件是数据的处理单元,连接件是连接处理单元的通道。