水力学工程流体力学
- 格式:docx
- 大小:4.13 MB
- 文档页数:23
水力学工程流体力学实验指导书及实验报告专业农田水利班级学号姓名河北农业大学城乡建设学院水力学教研室目录(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1)(二)不可压缩流体恒定流淌量定律实验 (4)(三)雷诺实验 (8)(四)文丘里实验 (10)(五)局部水头缺失实验 (14)(六)孔口与管嘴出流实验 (18)(一)不可压缩流体恒定流能量方程(伯诺里方程)实验一.实验目的要求:1.把握流速、流量、压强等动水力学水力要素的实验两侧技术;2.验证恒定总流的能量方程;3.通过对动水力学诸多水力现象的实验分析研究,进一步把握有压管流中动水力学的能量转换特性。
二.实验装置:本实验的装置如图1.1所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;6.恒压水箱;7.测压计;8.滑动测量尺;9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调剂阀。
三.实验原理:在实验管路中沿管内水流方向取n个过水断面,能够列出进口断面(1)至断面(i)的能量方程式(2,3,,i n =⋅⋅⋅⋅⋅⋅)1i z ++=z +++22111122i i i w i p v p vh g g取121n a a a ==⋅⋅⋅=,选好基准面,从已设置的各断面的测压管中读出z+p值,测出通过管路的流量,即可运算出断面平均流速v 及22v g,从而即可得到各断面测管水头和总水头。
四.实验方法与步骤:1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3.打开阀13,观看测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观看当流量增加或减少时测管水头的变化情形。
4.调剂阀13开度,待流量稳固后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
工程流体力学(水力学)——禹华谦—章习题解答--—-—-—-—-————-———————————-—————作者: -——--————----—-————-———--—-—————日期:第一章 绪论1—1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)?[解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dy du-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22。
620 (见图示),求油的粘度.uθδ[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg dd sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
《工程流体力学(水力学)》第二版禹华谦课后习题答案西南交通大学出版社欢迎光临阳光大学生网, 提供最全面的大学生课后习题答案和复习试题免费下载,////0>.阳光大学生网我们希望呵护您的眼睛,关注您的成长,给您一片绿色的环境,欢迎加入我们,一起分享大学里的学习和生活感悟,免费提供:大学生课后答案 ,大学考试题及答案 ,大学生励志书籍。
《水力学》李炜徐孝平主编 2000 年 6 月武汉水利电力大学出版社共 12 章全部习题的解答第一章1-1 解:3 3 3ρ 1.03g cm 1030kg m , 比重s 1.03, γ 10.094kN m1-2 解:2γ9789N /m3ρ 998.88kg m ,g 9.8?3 2μ gμ9.8 ×1.002 ×10 N ?S /m?6 2ν 1.003 ×10 m /sργ 9789?4γ11.82 × 0.15 ×10?5 2以上为水,以下为空气μρνν 1.089 ×10 N ?S /m g 9.81-3 解:d ν9 7dp ?K ?2.19 ×10 × ?1% 2.19 ×10 Pav1-4 解:3 3γ G v 0.678 /10 678kgf /m①用工程单位制:2 4ργ g 678 / 9.8 69.18kgfs /mγγ ×9.8N kgf 6644.4N m②用国单位制: (SI 制) :3ργ g 678kg m1-5 解:du u 1.531流速梯度 3.75 ×10 3sdy δ 0.4 ×10u3 2切应力τμ 0.1 ×3.75 ×10 3.75 ×10 Paδ2活塞所受的摩擦阻力 F τ A τπdl 3.75 ×10 ×3.14 ×0.14 ×0.16 26.38N1-6 解:作用在侧壁上粘性切力产生的力矩du r 0.2M A μr 2 πr h μω+1 2 ×3.14 × 0.2 × 0.4 × μ×101 + 68.3 μdy δ 0.003M 4.905∴μ 0.072Pa ?S68.3 68.31-7 解:2设u Ay +By +c; ①根据实际流体的无滑移现象,当 y0 时 u0∴C 0 (第三个常数项为零); ②∵y0.04m 时,u1m/sdu2则有 1A ×0.04 +B ×0.04; ③E 点的流体切应力为零,有 2Ay +B 0 , dy10.0016A + 0.04B 1 A ?625?则由联立方程求得解得:0.08A +B 0 B 50?du du-3?6τμυρ 1.0 ×10 ×1000 × 2 Ay+B )1 ×10 (-1250y+50 )dy dy-2当y0 处,τ 5 ×10 Pa-2当y0.02 处,τ 2.5 ×10 Pa当 y0.04 处,τ0 Pa由此可见均匀流横断面上切应力是呈直线分布的。
工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。
试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。
解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a xμμ∂'=-=-∂,24y y u p a y μμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。
试求在这种流动情况下,两平板间的速度分布。
(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。
由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,y u v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。
它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。
当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。
若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2xg u zhz ,单宽流量3sin 3gh q。
水力学工程流体力学水力学工程流体力学是关于液体(水)的运动和力学特性的研究。
在水利工程中,水力学工程流体力学是一个非常重要的学科,许多水利工程涉及到液体流动的问题,如水利水电站的设计、水渠的设计、堤坝的设计等等。
水力学工程流体力学的主要研究内容是如何研究水的流动性质及其影响因素,并且对其进行分析和控制。
流体力学这个学科已经发展了数百年,许多科学家进行了大量的实验和理论研究,使得水力学工程流体力学的理论和实践基础更加丰富和成熟。
水力学工程流体力学的基本概念液体的运动可以分为两种形式:一是定量流动,二是非定量流动。
定量流动是指液体的质量、能量和动量在空间和时间上的连续性,如河流、水库、水道等的流动。
非定量流动是指液体的质量、能量和动量在空间和时间上不能保持连续性的流动,如涡流、隆起等的流动。
水力学工程流体力学的主要参数是:流速、流量、压强、密度、粘度等。
其中,最基本的参数是流量,流量是单位时间内流过一个截面的液体量,它的单位是立方米每秒(m3/s)。
流速是液体通过一个截面的速度,它的单位是米每秒(m/s)。
压强是液体单位面积上的压力,它的单位是帕斯卡(Pa)。
密度是液体的密度,它的单位是千克每立方米(kg/m3)。
粘度是液体的黏性特征,它的单位是牛顿·秒每平方米(N·s/m2)。
水力学工程流体力学的应用水力学工程流体力学的应用非常广泛,包括以下几个方面:1. 水电站的设计:水力学工程流体力学在水电站的设计中是必不可少的。
设计中需要计算水流流量、流速、压强等参数,这些参数对水轮机的选择和发电量的计算有着很大的影响。
2. 水渠的设计:在水渠的设计中,水力学工程流体力学的应用也非常重要。
需要计算流量、流速、压强等参数来确定水渠的尺寸和流动的方式,以便有效地输送水流。
3. 堤坝的设计:在堤坝的设计中,水力学工程流体力学的应用也是非常重要的。
需要计算流量、流速、压强等参数来确定堤坝的高度、长度和角度等。
流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。
流体的特点是没有固定的形状,能够顺应容器的形状而流动。
2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。
这些性质对于流体的流动行为具有重要的影响。
3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。
流体静力学奠定了流体力学的基础。
4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。
流体动力学研究的是流体的流动行为及其相关问题。
5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。
这些方程描述了流体的运动规律,是解决流体力学问题的基础。
6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。
常见的模型包括理想流体模型、不可压缩流体模型等。
二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。
这些性质对于水力学问题具有重要影响。
2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。
3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。
这些定律是解决水力学问题的基础。
4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。
5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。
6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。
这些问题对水力工程设计和建设具有重要影响。
三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。
在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。
2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。
第二章 流体静力学•静水压强特性:(1)第一特性:静水压强的方向与作用面的内法线方向重合(2)第二特性:静止流体中某一点静水压强的大小与作用面的方位无关(只与深度位置有关)•流体平衡微分方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂⋅-=∂∂⋅-=∂∂⋅-010101z p Z y p Y x p X ρρρ流体处于平衡状态时,作用于流体上的质量力与压强递增率间的关系 用途:质量力已知时,用该式求静止流体内的压强分布规律)(Zdz Ydy Xdx dp ++=ρ dz zW dy y W dx x W dW ∂∂+∂∂+∂∂= 势函数;有势的力zW Z y W Y x W X ∂∂=∂∂=∂∂=;; dW dp ρ= 积分得:p W C ρ=+ 当某点压强0p 、力的势函数0W 已知时(即边界条件已知)得 00()p p W W ρ=+-•静水压强分布规律:〖一〗 'pC z C γγ+== 或 1212p p z z γγ+=+z :单位重量流体具有的位能或位置水头;γp:单位重量流体具有的压能或压强水头; γp z +:单位重量流体具有的总势能或测压管水头(测压管液面相对于基准面的高度);C p z =+γ: 表明静止流体中单位重量流体具有的总势能守恒或测压管水头为常数物理意义:静止液体中各点单位重量液体具有的总势能相等几何意义:静止液体中各点的测压管水头相等,测压管水头线是水平线从能量意义上来说:静止流体中各点的位置水头与压强水头之和都相等,或者静止流体中各点的测压管水头线为一水平线。
〖二〗边界条件:0z z =时,0p p =则0p p h γ=+•22/10132533.107601m N O mH mmHg atm ===(标准大气压)22/98070107361m N O mH mmHg at ===(工程大气压)•压强表示方法:绝对压强:绝对真空状态做为压强起始计算零点,以abs p 表示;相对压强:一个大气压做为压强起始计算零点,以p 表示;•等压面及其性质:①等压面与质量力正交②水平面是等压面的条件:由于等压面与质量力正交,静止流体中等压面是水平面。
工程流体力学及水力学实验报告及分析讨论实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析及讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P B<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度及测压管2液面低于水箱液面的高度相等,亦及测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水及玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
工程流体力学水力学第三版教学设计1. 课程概述《工程流体力学水力学》是土木、水利、环境、能源等专业的一门重要课程。
本课程旨在介绍流体力学的基本概念和理论,以及在水力学领域的应用。
本课程分为两个部分:理论知识和实际应用。
其中,理论知识部分包括基本方程的推导和应用、流动特性和分析、流动控制等方面;实际应用部分包括流体结构相互作用、水泵设计、船舶液体力学等方面。
2. 教学目标本课程的教学目标主要有以下几个方面:1.掌握基本流体力学的概念和理论知识。
2.能够应用流体力学理论解决实际问题。
3.理解水力学在环境、能源等领域的应用。
4.培养学生分析问题和解决问题的能力。
3. 教学内容与安排本课程分为理论部分和实践部分,具体内容如下:3.1 理论部分3.1.1 流体力学基本概念1.流体的定义和基本特性2.流体静力学和动力学基本概念3.流体的物理量和受力分析3.1.2 基本方程推导及应用1.连续性方程和动量方程及其物理意义2.应力张量和牛顿黏性定律3.偏微分方程组的求解方法3.1.3 流动控制1.流动稳定性和不稳定性分析2.层流和湍流的特性及其转换3.转捩流动及其分析3.2 实践部分3.2.1 实验室教学1.流体的基本测量和分析方法2.基本流量测量和分析实验3.基本型号泵的测量及系统分析实验3.2.2 课程设计1.构建简单流动模型并进行仿真分析2.基于流体力学理论设计水泵4. 教学方法本课程教学方法主要包括理论授课、实验教学和课程设计。
具体来说,理论部分以教师讲解为主,辅以课件、案例、视频等教学资料。
实验室教学部分将采用现场观察、数据分析等方式进行教学。
课程设计部分鼓励学生独立思考和解决问题。
5. 教学评估本课程的评估方式主要采用作业和考试相结合的方式。
其中,作业占课程总成绩的30%,考试占70%。
作业包括课前预习、实验报告和课程设计报告等。
考试形式为闭卷笔试,考试内容包括理论知识和实际应用。
6. 教学资源为了给学生提供更好的教学资源,本课程还将提供以下教学资源:1.相关课程资料和教学视频2.网上实验模拟软件3.学生互动讨论平台7. 教学团队本课程的教学团队由三名专业教师组成,分别负责理论教学、实验教学和课程设计。
一\选择题部分(1在水力学中,单位质量力是指(答案:ca、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。
(2在平衡液体中,质量力与等压面(答案:da、重合;b、平行c、相交;d、正交。
(3液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4水力学中的一维流动是指(答案:da、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。
(5有压管道的管径d与管流水力半径的比值d /R=(答案:ba、8;b、4;c、2;d、1。
(6已知液体流动的沿程水力摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于答案:ca、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区(7突然完全关闭管道末端的阀门,产生直接水击。
已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为答案:ca、1.54m b 、2.0m c 、2.45m d、3.22m(8在明渠中不可以发生的流动是(答案:ca、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。
(9在缓坡明渠中不可以发生的流动是(答案:b。
a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。
(10底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为答案:ba、缓流;b、急流;c、临界流;(11闸孔出流的流量Q与闸前水头的H(答案:d 成正比。
a、1次方b、2次方c、3/2次方d、1/2次方(12渗流研究的对象是(答案:a 的运动规律。
a、重力水;b、毛细水;c、气态水;d、薄膜水。
(13测量水槽中某点水流流速的仪器有答案:ba、文丘里计b、毕托管c、测压管d、薄壁堰(14按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为答案:da、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。
水力学、工程流体力学、流体力学的联系与区别水力学,流体力学,工程流体力学,都是力学的一个分支。
水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。
工程流体力学包含于水力学体系之中。
流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。
水力学侧重于研究液体的宏观机械运动,而流体力学侧重于研究流体的力学运动规律。
1水力学水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。
水力学包括水静力学和水动力学。
1.1水静力学水静力学研究液体静止或相对静止状态下的力学规律及其应用,探讨液体内部压强分布,液体对固体接触面的压力,液体对浮体和潜体的浮力及浮体的稳定性,以解决蓄水容器,输水管渠,挡水构筑物,沉浮于水中的构筑物,如水池、水箱、水管、闸门。
堤坝、船舶等的静力荷载计算问题。
1.2水动力学水动力学研究液体运动状态下的力学规律及其应用,主要探讨管流、明渠流、堰流、孔口流、射流多孔介质渗流的流动规律,以及流速、流量、水深、压力、水工建筑物结构的计算,以解决给水排水、道路桥涵、农田排灌、水力发电、防洪除涝、河道整治及港口工程中的水力学问题。
1.3水力学作用随着经济建设的发展,水力学学科衍生了一些新的分支,以处理特定条件下的水力学问题,如以解决河流泥沙运动所导致的河床演变问题的动床水力学,以解决风浪对防护构筑物的动力作用和对近岸底砂的冲淤作用等问题的波浪理论等。
2流体力学流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。
主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。
流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。
在生活、环保、科学技术及工程中具有重要的应用价值。
流体力学分为理论流体力学、实验流体力学、计算流体力学、应用流体力学。
作者: 闻德荪
作者机构: 东南大学土木工程系 教授
出版物刊名: 中国大学教学
页码: 30-31页
主题词: 工程流体力学;指导思想;给水排水工程;环境类;八十年代;高等教育出版社;一维流动;
三维流动;紊流射流;伯努利方程
摘要: 由我主编的适用于环境类专业、给水排水工程等专业的《工程流体力学(水力学)》教材(上、下册),已先后在1990年、1991年由高等教育出版社出版。
在此介绍一下我们编写该教材的指导思想和对一些问题的考虑和处理。
1.从调查研究入手,明确目标和要求。
七、八十年代以来,国内外出版的工程流体力学或水力学教材,有几十种(本)。
它们都有各自的优点和特色,亦各有不足之处。
在对国外教材的体系、内容、论述方。
水力学工程流体力学实验指导书及实验报告专业农田水利班级学号姓名河北农业大学城乡建设学院水力学教研室目录(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1)(二)不可压缩流体恒定流动量定律实验 (4)(三)雷诺实验 (8)(四)文丘里实验 (10)(五)局部水头损失实验 (14)(六)孔口与管嘴出流实验 (18)(一)不可压缩流体恒定流能量方程(伯诺里方程)实验一.实验目的要求:1.掌握流速、流量、压强等动水力学水力要素的实验两侧技术;2.验证恒定总流的能量方程;3.通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。
二.实验装置:本实验的装置如图1.1所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;6.恒压水箱;7.测压计;8.滑动测量尺;9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀。
三.实验原理:在实验管路中沿管内水流方向取n 个过水断面,可以列出进口断面(1)至断面(i )的能量方程式(2,3,,i n =⋅⋅⋅⋅⋅⋅)1i z ++=z +++22111122i i i w i p v p v h g g 取121n a a a ==⋅⋅⋅=,选好基准面,从已设置的各断面的测压管中读出z+p值,测出通过管路的流量,即可计算出断面平均流速v 及22v g,从而即可得到各断面测管水头和总水头。
四.实验方法与步骤:1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3.打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测管水头的变化情况。
4.调节阀13开度,待流量稳定后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
5.再调节阀13开度1~2次,其中一次使阀门开度最大(以液面降到标尺最低点为限),按第4步重复测量。
五.实验成果及要求:实验台号No1.把有关常数记入表1.1表1.1 有关常数记录表 水箱液面高程0∇= cm,上管道轴线高程s ∇= cm 。
注:(1)打“*”者为毕托管测点(测点编号见图1.2)(2)2、3为直管均匀流段同一断面上的二个测压点,10、11为弯管非均匀流段同一断面上的二个测点。
2.量测(z+p)并记入表1.2。
表1.2 测记(z+p)数值表 (基准面选在标尺的零点上)表1.3 计算数值表 (1)流速水头(2)总水头(22pv z gαγ++)3.计算流速水头和总水头。
4.绘制上述成果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图 1.2,总水头线和测压管水头线可以绘在图1.2上)。
六.成果分析与讨论:1.测压管水头线和总水头线的变化趋势有何不同?为什么?2.流量增加,测压管水头线有何变化?为什么?3.测点2、3和测点10、11的测压管读数分别说明了什么问题?4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。
5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。
(二)不可压缩流体恒定流动量定律实验一.实验目的要求:1.验证不可压缩流体恒定流的动量方程;2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研究,进一步掌握流体动力学的动量守恒特性;3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。
二.实验装置:本实验的装置如图2.1所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴;7.集水箱;8带活塞的测压管;9.带活塞和翼片的抗冲平板;10.上回水管。
三.实验原理:1.仪器工作原理自循环供水装置1由离心式水泵和蓄水箱组合而成。
水本的开启、流量大小的调节由带开关的流量调节器3控制。
水流经供水管供给恒压水箱5,溢流水经回水管流回蓄水箱。
工作水流经管嘴6形成射流,射流冲击到带活塞和翼片的抗冲平板9上,并以与入射角成90°的方向离开冲击平板。
带活塞的抗冲平板在射流冲力和测压管8中的水压力作用下处于平衡h可由测压管8测出,由此可求得射流的冲力,即动量为F。
冲击后的状态。
活塞形心水深c弃水经集水箱7汇集后,再经上水水管10流出,出口处用体积法或重量法测定流量。
水流最后经漏斗和下回水管流回蓄水箱。
为了自动调节测压管内的水位,以使带活塞的平板受力平衡以及减小摩擦阻力对活塞的作用,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,具有如下的结构:带活塞和翼片的抗冲平板9和带活塞套的测压管8如图2.2所示,该图是活塞退出活塞套时的分部件示意图。
活塞中心设有一细导水管a ,进口端位于平板中心 ,出口端伸出活塞头部,出口方向与轴向垂直。
在平板上设有翼片b ,在活塞套上设有窄槽c 。
工作时,在射流冲击力作用下,水流经导水管a 向测压管内加水。
当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c 关小,水流外溢减少,使测压管内水位升高,水压力增大。
反之,活塞外移,窄槽开大,水流外溢增多,测管内水位降低,水压力减小。
在恒定射流冲击下,经短时段的自动调整,即可达到射流冲击力和水压力的平衡状态、这时活塞处在半进半出、窄槽部分开启的位置上,过a 流进测压管的水量和过c 外溢的水量相等。
由于平板上设有翼片b ,在水流冲击下,平板带动活塞旋转,因而客服了活塞在沿轴向滑移时的静摩擦力。
为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,认为地增减测压管中液位高度,可发现即使该变量不足总液柱高度的±5%,(约0.5~1mm ),活塞在旋转下亦能有效的客服动摩擦力而作轴向位移,开打或减小窄槽c ,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。
这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足动量力的5‰。
2.实验基本原理 恒定总流动量方程为2211()F Q V V ρββ=-取脱落体如图2.3所示,因滑动摩擦阻力水平分力0.5%x x f F =,可忽略不计,在x 方向上的动量方程为: 211(0)4x c cx F p A h D Q V πγρβ=-=-=-即:21104x c QV h D πβργ-=式中:c h ——作用在活塞圆心处的水深;D ——活塞的直径;Q ——射流流量; 1x V ——射流的速度;1β——动量修正系数。
实验中,在 平衡状态下,只要测量流量Q 、测管液柱c h 值,由给定的管嘴直径d 和活塞直径D ,便可验证动量方程并率定射流的动量修正系数1β值。
其中,测压管的标尺零点已固定在活塞的圆心处,标尺的液面读数,即为作用在活塞圆心处的水深。
四.实验方法与步骤:1.准备:熟悉实验装置各部分名称、结构特征、作用性能,记录有关常数。
2.开启水泵:打开调速器开关,水泵启动2~3分钟后,短暂关闭2~3秒钟,以利用回水排除离心式水泵内滞留的空气。
3.调整测压管位置:待恒压水箱满顶溢流后,松开测压管固定螺丝,调整方位,要求测压管垂直、螺丝对准十字丝中心,使活塞转动松快。
然后旋转螺丝固定好。
4.测读水位:标尺的零点已固定在活塞圆心的高程上。
当测压管你液面稳定后,记下测压管内液面的标尺读数,即c h 值、5.测量流量:利用体积时间法,在上回水管的出口处测量射流的流量。
流量时间要求在15~20秒以上。
可用塑料桶等容器,通过活动漏斗接水,再用量筒测量其体积(亦可用重量法测量)。
6.改变水头重复实验:逐次打开不同高度上的溢水孔盖,改变管嘴的作用水头。
调节调速器,使溢流量适中,待水头稳定后,按3~5步骤重复进行实验。
7.验证20x v ≠时Fx 的影响:取下平板活塞,使水流冲击到活塞套内,调整好位置,使反射水流的回射角一致,记录回射角度的目测值、测压管作用水深c h '和管嘴作用水头0H 。
五.实验成果及要求:实验台号No1.记录有关常数管嘴内径d = cm ,活塞直径D = cm 、 2.编制实验参数记录、计算表格并填入实验参数。
3.取某一流量,汇出脱离体图,阐明分析计算的过程。
六.成果分析与讨论:1.带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x 方向的动量方程有无影响?为什么?2.通过细导水管的分流,其出流角度与2r 相同。
试问对以上受力分析有无影响?3.滑动摩擦力x f 可以忽略不计?试用实验来分析验证x f 的大小,记录观察结果。
(提示:平衡时,向测压管内加入或取出1mm 左右深的水量,观察活塞及液位的变化)。
4.2x v 若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。
(三)雷诺实验一.实验目的要求:1.通过层流、紊流的流态观测和临界雷诺数的测量分析,掌握圆管流态转化的规律;2.进一步掌握层流、紊流两种流态的运动学特性与动力学特性;3.学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二.实验装置:本实验的装置如图3.1所示,图中:1.自循环供水器;2.试验台;3.可控硅无级调速器;4.恒压水箱;5.有色指示水供给箱;6.稳水孔板;7溢流板;8.实验管道;9.实验流量调节阀。
三.实验原理:4Revd QKQ dv;V QT四.实验方法与步骤:1.测记本实验的有关常数。
2.观察两种流态。
打开开关3使水箱充水至溢流水位,经稳定后,微微开启调节阀9,并注入颜色水于实验管内,使颜色水流成一直线。
通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征,待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。
3.测定下临界雷诺数。
(1)将调节阀打开,使管中呈完全紊流,再逐步关小调节阀使流量减小,当流量调节到使颜色水在全管刚刚拉直成一直线状态时,即为下临界状态。
每调节阀门一次,均需等待稳定几分钟。
(2)待管中出现临界状态时,用体积法测定流量。
(3)根据所测流量计算下临界雷诺数。
(4)重新打开调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次。
(5)同时由水箱中的温度计测记水温,从而查得水的运动粘度。
注意:流量不可开的过大,以免引起水箱中的水体紊动,若因水箱中水体紊动而干扰进口水流时,须关闭阀门,静止3~5分钟,再按步骤(1)重复进行。
4.测定上临界雷诺数逐渐开启调节阀,使管中水流由层流过渡到紊流,当有色水线刚开始散开时,即为上临界状态,测定上临界雷诺数1~2次。