你能证明它们吗教案(4)
- 格式:docx
- 大小:26.73 KB
- 文档页数:2
第一章证明(二)单元总览1.1你能证明它们吗(1)目标导航1.了解作为证明基础的几条公理的内容;掌握证明的基本步骤和书写格式.2.能够用综合法证明等腰三角形的有关性质(等边对等角,三线合一).基础过关1.边边边公理的内容是.2.边角边公理的内容是.3.角边角公理的内容是.4.全等三角形的相等,相等.5.角角边推论的内容是.6.三角形ABC中,如果AB=AC,则.7.等腰三角形的、、互相重合.8.等边三角形的各边都,各角都是.能力提升9.下列说法中,正确的是()A.两边及一角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边对应相等的两个三角形全等10.若等腰△ABC 的顶角为∠A ,底角为∠B =α,则α的取值范围是( )A. α<45°B. α<90°C.0°<α<90°D.90°<α<180°11.△ABC 中, AB =AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE =DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.68°B.52°C.51°D.78° 12.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90-2 nC.2n D.90°-n °13.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.14.等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________. 15.如图,∆ABC 中,AB=AC, ∠BAD=︒30 ,AE=AD,则∠EDC= .EDCBA15题图 16题图16.如图,在△ABC 中,∠A =20°,D 在AB 上,AD =DC ,∠ACD ∶∠BCD =2∶3,求:∠ABC 的度数.17.已知:如图∆ABD 、∆ACE 都是等边三角形,求证:BE=DC.EDCBA18.如图,在∆ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求∠ADB 的度数.DCBA聚沙成塔已知:如图,D 是等腰ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF.当D 点在什么位置时,DE=DF ?并加以证明.1.1你能证明它们吗(2)目标导航1.能够用综合法证明等腰三角形的有关性质.2.了解并能证明等腰三角形的判定定理.3.结合实例体会反证法的含义. 基础过关1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.4.在△ABC 中,AB=AC ,∠A=︒36,BD 是的角平分线,图中等腰三角形有( )A.1个B.2个C.3个D.4个5.在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( ) A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)BAC BAC B AC B AP EDCBA(1) (2) (3) (4) 7题图 能力提升6.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.7.如图,在△ABC 中,BC=5cm,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD//AB ,PE//AC ,则△PDE 的周长是 .8.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( )A.15B.12C.15或12D.以上都不正确 9.已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.10.如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BAC.11.用反证法证明:△ABC 中至少有两个角是锐角.12.如图,小明欲测量河宽,选择河流北岸的一棵树(点A )为目标,然后在这棵树得正南岸(点B )插一小旗作标志,从B 点沿南偏东︒60方向走一段距离到C 处,使∠ACB 为︒30,这时小明测得BC 的长度,认为河宽AB=BC ,他说得对吗?为什么?60︒CBA13.如图,在ABC Rt ∆中,∠CAB=︒90,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F.求证:△AEF 为等腰三角形.F EDCBA14.如图,在△ABC 中,AB=AC,P 是BC 上一点,PE ⊥AB, PF ⊥AC,垂足为E 、F,BD 是等腰三 角形腰AC 上的高, ⑴求证:BD=PE +PF.⑵当点P 在BC 边的延长线上时,而其它条件不变,又有什么样的结论呢?请用文字加以说明本题的结论.FEPC A D聚沙成塔如图所示,点O 是等边△ABC 内一点,∠AOB=110。
初三数学上册全册教案(北师大版)北师大版九年级数学上全册精品教案第一证明(二)(时安排)1.你能证明它们吗?3时2.直角三角形2时3.线段的垂直平分线2时4.角平分线1时1你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。
能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。
2.等边三角形三边相等,三个角都相等,并且每个角都等于延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理:1两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2两条平行线被第三条直线所截,同位角相等;3两边夹角对应相等的两个三角形全等; (SAS)4两角及其夹边对应相等的两个三角形全等; (ASA)三边对应相等的两个三角形全等; (SSS)6全等三角形的对应边相等,对应角相等三、推论两角及其中一角的对边对应相等的两个三角形全等。
(AAS)证明过程:已知:∠A=∠D,∠B=∠E,B=EF求证:△AB≌△DEF证明:∵∠A+∠B+∠=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠=∠F又∵B=EF(已知)∴△AB≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
1.3证明(2)教案课题证明(2)单元第一章学科数学年级八年级学习目标情感态度和价值观目标学生在学完证明之后,能够对数学的逻辑推理严密思维有一定的体验和感受,并利用这种思维解决更多的问题。
能力目标通过简单命题的证明,训练学生的逻辑推理能力和自主探究能力知识目标1.掌握三角形的内角和定理及推论,并能进行简单的运用;2.了解证明命题的格式和一般步骤.重点探索三角形内角和定理的证明难点复杂命题的证明,多个定理的运用学法自主探究教法讲授法、引导法教学过程教学环节教师活动学生活动设计意图回忆旧知上节课我们学习了证明的概念,以及平行线性质的相关证明题。
下面来做题巩固练习。
1.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.证明:∵AE平分∠DAC,∴∠1=∠2。
(角平分线的定义)∵AE∥BC,∴∠1=∠B,(两直线平行,同位角相等)∠2=∠C。
(两直线平行,内错角相等)∴∠B=∠C。
∴AB=AC。
(等角对等边)回忆旧知,做练习引导学生回忆所学,通过对比引出新知2.证明“直角三角形斜边上的中线等于斜边的一半”是真命题。
思考:这一题与上一题最大的不同在哪里?上一题已知和求证是给出的,这一题需要将文字转化为数学语言。
讲授新课画:根据题意,画出图形写:找出命题的条件和结论。
“已知”----条件,“求证”----结论.已知:如图,在△ABC中,∠ACB=90°,CD 是斜边AB上的中线求证:CD=AB.证:在“证明”中写出推理过程证明:如图,延长CD到E,使DE=CD,连接AE、BE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形AEBC是平行四边形,∵∠ACB=90°,∴四边形AEBC是矩形,∴AD=BD=CD=DE,∴CD=AB.思考回答问题通过做题来归纳证明的步骤总结归纳证明几何命题的一般格式:思考总结及时总结归纳⑴按题意画出图形;⑵分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;⑶在“证明”中写出推理过程小试牛刀分析下列命题的条件和结论,画出图形,写出做练习做题检测巩固已知和求证1、等腰梯形的对角线相等已知:在梯形ABCD中,AD∥BC,AB=CD.求证:AC=BD.2、在一个三角形中,等角对等边已知:如在△ABC中,∠ABC=∠ACB,求证:AB=AC思考总结及时小结总结归纳证明几何命题的一般步骤:⑴按题意画出图形;⑵分清命题的条件和结论,结合图形,在“已∵∠1+∠2+∠3=180°∴∠A+∠B+∠C=180°总结归纳• 1.辅助线是为了证明需要在原图上添画的线.(辅助线通常画成虚线)• 2.它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用.• 3.添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定,平时做题时要注意总结.总结思考让学生明白辅助线的作用以及添加方式讲授新知如图,∠ACD是由△ABC的一条边BC的延长线和另一条相邻的边CA组成的∠ACD,这样的角叫做该三角形的外角。
1.1你能证明它们吗(1)教师寄语:良好的开端是成功的一半学习目标:1、了解作为证明基础的几条公理内容,掌握证明的基本步骤步骤和书写格式。
2、经历“探索---发现---猜想---证明”,能够用综合法证明等腰三角形的有关性质定理。
3、通过探究,养成严谨的科学态度、不懈的探究精神和良好的说理方法。
学习过程:一、前置准备:1、请你用自己的语言说一说证明的基本步骤。
2、列举我们已知道的公理:(1)公理:同位角,两直线平行。
(2)公理:两直线,同位角。
(3)公理:的两个三角形全等。
(4)公理:的两个三角形全等。
(5)公理:的两个三角形全等。
(6)公理:全等三角形的对应边,对应角。
注:等式的有关性质和不等式的有关性质都可以看作公理。
二、自主学习:利用已有的公理和定理证明:“两角及其中一角的对边对应相等的两个三角形全等。
”三、合作交流:议一议:(1)还记得我们探索过的等腰三角形的性质吗?角:三线:(2)用已有的公理及定理证明这些结论。
四、例题解析:在△ABC中,AD是角平分线,DE⊥AB, DF⊥AC,试猜想EF与AD之间有什么关系?并证明你的猜想。
五、当堂训练:1、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.3、如果等腰三角形的一个内角等于500则其余两角的度数为。
4、(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为。
(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为。
5、△ABC中, AB=AC, 且BD=BC=AD,则∠A的度数为。
§ 1.1、你能证明它们吗(一)
一、教学目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索一发现一猜想一证明”的过程。
能够用综合法证明等腰三角形的关性质定理和判
丁中
疋疋理。
3、结合实例体会反证法的含义。
二、教学重点:
了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。
三、教学难点:
能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。
四、教学方法:观察法。
五、教学过程:
复习:
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?
新课讲解:
在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理
本套教材选用如下命题作为公理:
1. 两直线被第三条直线所截,如果同位角相等,那么这两条直线平行
2. 两条平行线被第三条直线所截,同位角相等;
3. 两边夹角对应相等的两个三角形全等;(SAS
4. 两角及其夹边对应相等的两个三角形全等;(ASA
5. 三边对应相等的两个三角形全等;(SSS
6. 全等三角形的对应边相等,对应角相等.
由公理5、3、4、6可容易证明下面的推论:
推论两角及其中一角的对边对应相等的两个三角形全等。
(AAS
证明过程:
已知:/ A=Z D, / B=Z E,BC=EF 求证:△ ABC^^ DEF
D 证明:•••/ A+Z B+Z C=180 ,
/ D+Z E+Z F=180°
(三角形内角和等于180°)
•••Z C=180° -(Z A+Z B)
Z F=180° -(Z D+Z E)
又T Z A=Z D, Z B=Z E (已知)
• Z C=Z F
又••• BC=EF(已知)
• △ABC^A DEF( ASA
(这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做
准备。
)
议一议:
(1 )还记得我们探索过的等腰三角形的性质吗?(教师提出问题,并利用等腰三角形纸片帮议
助学生回忆。
学生充分讨论问题1,借助等腰三角形纸片回忆有关性质。
)
(2)你能利用已有的公理和定理证明这些结论吗?
(等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。
)
定理:等腰三角形的两个底角相等。
这一定理可以简单叙述为:等边对等角。
已知:如图,在ABC中,AB= AG
求证:/ B=Z C
(引导学生证明定理“等腰三角形的两个底角相等”,重点引导学生做辅助线,将等腰三角形分成两个全等的三角形:我们刚才利用折叠的方法说明了这两个底角相等。
实际上,折痕将等腰
三角形分成了两个全等三角形。
能否通过作一条线段,得到两个全等的三角形,从而证明
这两个底角相等呢?)证明:取BC的中点D,连接AD。
•/ AB= AC, BD= CD AD= AD,
•••△ AB(△也△ ACD (SSS)
•••/ B=Z C (全等三角形的对应边角相等)
(让同学们通过探索、合作交流找出其他的证明方法。
做/ BAC的平分线,交
BC边于D;过点A做AD丄BC。
学生指出该定理的条件和结论,写出已知、求证,画
出图形,并选择一种方法进行证明。
)想一想: 在上图中,线段AD还具有
怎样的性质?为什么?由此你能得到什么结论?
(应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段
和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。
)推
论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习:
做教科书第4页第1, 2题。
(引导学生分析证明方法,学生动手证明,写出证明过程。
)
课堂小结:
通过这节课的学习你学到了什么知识?
(学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。
经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理和判定定理。
探体会了
反证法的含义。
)
六、作业:
1、基础作业:P5页习题1.1 1、2。
2、拓展作业:《目标检测》
3、预习作业:P5-6页议一议
七、板书设计:
§ 1.1、你能证明它们吗(一)
公理:SAS
ASA
SSS
推论:AAS
三线合一
八、课后记:。