more than moore,MEMS
- 格式:pptx
- 大小:8.02 MB
- 文档页数:47
国际半导体技术发展路线图为了回答如何保持半导体产业按照摩尔定律继续发展的问题,国际上主要的半导体协会共同组织制定了国际半导体技术发展路线图ITRS《International technology roadmap for semiconductors》它为半导体产业界提供了被工业界广泛认同的;对未来十年内研发需求的最佳预测以及可能的解决方案,它对整个半导体茶叶需要开发什么样的技术起到了一个导向作用。
国际半导体技术发展路线图一、半导体产业生态环境半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。
到了80年代,系统规范牢牢地掌握在系统集成商手中。
存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。
在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。
技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成电路(IC)制造商中。
他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。
21世纪的前十年,半导体行业全新的生态环境已经形成:一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。
此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。
这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。
二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计。
三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。
系统级封装技术(SiP)引领封测 产业的 混搭 潮 产业的“混搭”潮2010年6月25号混搭英文原词为Mix and Match。
混搭是一个时尚界专用名词,指将不同 风格,不同材质,不同身价的东西按照个人口味拼凑在 起,从而混合 风格,不同材质,不同身价的东西按照个人口味拼凑在一起,从而混合 搭配出完全个人化的风格,就是不要规规矩矩,是一种时髦,但决不能 等同于胡穿乱配的毫无章法。
混搭最典型的莫过于韩式混搭,韩国街头流行起一种更实用,更有味道 的混搭新哲学。
穿出层次,叠穿法则是混搭哲学中最基础课程,其中最 奏 重要的是搭配的节奏感,这也正是混搭风能在当今流行的重要原因。
系统级封装技术的特点非常符合和“混搭”的精髓,有一 脉相承 异曲同工之处 脉相承、异曲同工之处内容1、系统级封装的发展背景 2、系统级封装的定义 系统级封装的定义 3、系统级封装的优势 系统级封装的优势 4、系统级封装的成本 5、长电科技系统级封装技术及服务的介绍 6、长电科技系统级封装产品及应用 长电科技系统级封装产品及应用 7、总结1、系统级封装的发展背景¾当今社会,电子系统的发展趋势是小型化、高性能、多功能、高 可靠性和低成本,在这些需求的强力驱动下,电子产品的演进速度 超乎寻常 ¾在物联网、移动支付、移动电视、移动互联网、3G通讯等新生应 用的引导下,一大批新型电子产品孕育而生 ¾目前系统级封装产品在计算机、汽车电子、医疗电子、军事电子、 消费类电子(手机 蓝牙 消费类电子(手机、蓝牙、Wi-Fi、交换机等)等领域内都有巨大 交换机等)等领域内都有巨大 的市场 ¾系统级芯片(System 系统级芯片(S t on Chip, Chi SoC)的发展随着摩尔定律的脚 S C)的发展随着摩尔定律的脚 步不断演进,然而随着SoC发展至深次微米以下先进制程世代后, 已经面临极大的技术发展瓶颈,SoC已难面面俱到。
2022年第5期 总第198期科学传播后摩尔时代的特色工艺及中国发展机遇◎ 张 波我国是集成电路的市场大国,半导体工艺技术的发展,怎么也绕不开摩尔定律。
1965年,时任美国仙童半导体(Fairchild Semiconductor)公司研发主管的摩尔(Gordon E. Moore)博士为《电子学》杂志撰写了一篇文章“Cramming More Components onto integrated circuits”,预测集成电路的集成度(单芯片集成晶体管数目)每年增加一倍。
1975年,已参与创建英特尔(Intel)公司的摩尔博士在IEDM(国际电子器件年会)以“Progress in digital integrated electronics”为题做主题报告,进一步将集成电路集成度的发展速度修订为每两年增加一倍。
这就是半导体业界著名的“摩尔定律”(Moore's Law)。
一、半导体行业进入后摩尔时代摩尔定律自诞生以来一直指引着半导体工艺技术的发展,这也是英特尔公司很长一段时间坚持两年一代工艺和Tick-Tock发展战略的主要依据。
长期以来,集成电路集成度的提升依赖于工艺线宽的不断缩小,从早期的10微米工艺线宽逐步缩小到现在的7纳米、5纳米工艺节点,这是以摩尔定律为引领的单一维度创新发展。
但随着集成电路工艺线宽持续降低,特别是半导体微细加工工艺进入纳米尺度后,建厂成本、工艺研发和产品研制等费用急剧增加。
一条先进的集成电路生产线建厂成本已高达150亿~200亿美元,超过新一代航空母舰(130亿美元)或一座新核电站(40亿~80亿美元)的建设成本;一个采用5纳米工艺节点的先进集成电路产品开发成本也已超过5亿美元。
因此,从2005年开始,集成电路工艺技术逐渐从单一追求尺寸依赖的先进工艺,向先进工艺(More Moore)、非尺寸依赖的特色工艺(More than Moore)和先进封装(System in Package:SiP)三个维度并举发展,半导体行业进入后摩尔时代。
1什么是微电子学答: 微电子学作为电子学的一门分支科学,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。
2什么叫集成电路?答:Integrated Circuit,缩写IC通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能3集成电路的分类:按器件结构类型分类:双极集成电路,金属-氧化物-半导体(MOS)集成电路,双极-MOS(BiMOS)集成电路按集成电路规模分类↗小规模集成电路(Small Scale IC,SSI)↗中规模集成电路(Medium Scale IC,MSI)↗大规模集成电路(Large Scale IC,LSI)↗超大规模集成电路(Very Large Scale IC,VLSI)↗特大规模集成电路(Ultra Large Scale IC,ULSI)↗巨大规模集成电路(Gigantic Scale IC,GSI)按结构形式的分类:单片集成电路,混合集成电路(厚膜集成电路、薄膜集成电路)按电路功能分类:数字集成电路,模拟集成电路,数模混合集成电路4微电子学的特点答:(1)、微电子学是一门综合性很强的边缘学科涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试与加工、图论、化学等多个学科(2)、微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向(3)、微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等5半导体及其基本特征是什么?导体:自然界中很容易导电的物质称为导体绝缘体:有的物质几乎不导电,称为绝缘体,半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体固体材料:超导体: 大于106(Ωcm)-1导体: 106~104(Ωcm)-1半导体: 104~10-10(Ωcm)-1绝缘体: 小于10-10(Ωcm)-1半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点:(基本特征)1、在纯净的半导体材料中,电导率随温度的上升而指数增加;2、半导体中杂质的种类和数量决定着半导体的电导率,而且在重掺杂情况,温度对电导率的影响较弱;3、在半导体中可以实现非均匀掺杂;4、光的辐照、高能电子等的注入可以影响半导体的电导率。
电-热多物理场耦合的对偶有限元分析殷英;徐小宇;闰帅;任卓翔【摘要】随着集成电路、微机电系统的快速发展,各种物理场的交互作用成为影响电路可靠性或者增加设计难度的重要问题.其中,大量工程应用中都会发生稳恒电流场和热场的相互作用.电流场产生的焦耳热与电阻率的温变持性是这两个物理场之间双向相互耦合的联系因素.当几何结构复杂时,分析该多物理场问题会有计算方面的挑战.通常利用有限元法来求解多物理问题,其中采取节点单元法来处理电流场.本论文首先在多物理耦合分析中实现了棱边单元法来分析电流场,并通过一个典型的微阻梁算例问题,与常规方法进行充分对比,考察了随着网格加密、与热场耦合迭代深度的对偶持点及收敛持性.【期刊名称】《电子设计工程》【年(卷),期】2018(026)021【总页数】5页(P11-15)【关键词】对偶方程方法;有限元法;多物理场;稳态电热耦合【作者】殷英;徐小宇;闰帅;任卓翔【作者单位】中国科学院微电子研究所北京100029;中国科学院大学北京100049;三维及纳米集成电路设计自动化北京市重点实验室北京100029;中国科学院微电子研究所北京100029;三维及纳米集成电路设计自动化北京市重点实验室北京100029;中国科学院微电子研究所北京100029;三维及纳米集成电路设计自动化北京市重点实验室北京100029;中国科学院微电子研究所北京100029;三维及纳米集成电路设计自动化北京市重点实验室北京100029【正文语种】中文【中图分类】TN402集成电路沿着More Moore、More than Moore等方向不断迅速发展,一方面,集成电路的集成度越来越高,功耗与散热成为影响与制约电路性能与可靠性的核心因素,另一方面,各种物理效应也可以在微机电系统(MEMS)之中用于各类传感器、执行器等的设计。
因而,电磁学、热学、力学等多物理场的耦合分析变得尤其必要,并已经在集成电路领域受到关注及快速发展[1-5]。