2014年厦门市中考数学试题
- 格式:doc
- 大小:4.00 MB
- 文档页数:4
数学试J®第1页共4页2014年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 __________________ 姓名 _______________ 座位号 ________注童事项:1 •全卷三大题.26小题•试卷共4页,另有答题卡• 2.答案一律写在答题卡上•否则不能得分. 3•可直接用2B 铅笔画田・一、选择题(本大题有7小題,毎小题3分,共21分•毎小题都有四个选项•其中有且只有一个选 项正确)1. MR 30O 的值为A •斗B 咅C 卑D.l22 22. 4的算术平方根是A. 16B.2C. -2D. ±23. 3x 2可以表示为A. 9xB. / •宀 x 2C. 3x • 3x4•已知宜线AB.CBJ 在同一Y 面内.若朋丄1,垂足为丄人垂足也为氏则符合题意的B CC.5•巳知命题A :任何偶数祁足8的整数倍•在下列选項中•可以作为■命題A 足假命题”的 反例的足A. 2kB. 15C.246. 如图1,在 MBC 和NBDE 中,点C 在边BD 上,边AC 交边BE 于点F, 若AC = BD.AB = EDJ3C = BE,则乙*CB 等于 A.乙 EDB B.乙 BEDc. +乙m7. 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学 的年龄登记错误,将14岁写成15岁•经重新计算后■正确的平均数为a 岁•中位数为b 岁.则下列结论中正确的是A.D. 42D ・2乙ABFB.A. a < 13t6 = 13B. a < 13,6 <13C. a > 13# < 13D. a > 13,6 = 13数学试题第2页共4页二、填空题(本大題有10小BL毎小题4分•共40分)8.—个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞银,飞標落在转盘上,则落在黄色区域的概率是__________ •9.代数式/T二T在实数范围内冇意义,则X的取值范国是__________ .10._____________________ 四边形的内角和是.II •在平面直角坐标系中,已知点0(0,0),4(1,3),将线段04向右平移3个m位,得到线段O/i,则点O x的坐标是 __________ 3,的坐标是____________12.已知一组数据是:6,6,6,6,6,6,则这组数抿的方差是 _____________ •【注:计算方差的公式是於=+〔(卸+ (舸-x)2+…+ (x. -X)2)]13.方程x+5 = y(x+3)的解是_______________ .14 •如图2,在等腰梯形ABCD中.AD// BC9若/ID = 2、BC梯形的高泉3 ■则乙B的度数是________ •15•设a = 192 x 918,6 = 8882・30Sc = 10532 - 747%则数a9b9c按从小到大的顺序排列, 结果是 ______ <________ < ______ •16•某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时•則这台机器每小时生产____________ 个零件.17•如图3,正六边形ABCDEF的边长为2疗■延长&4,EF交于点0.以0为原点,以边所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是( __________ ■ ________ ).18•(本題满分21分)(1)计算:(-1) x(-3) +( ■再)。
2014年厦门市2014年厦门市中考数学真题(附详细解析)2014年厦门市中考数学真题(附详细解析)一、选择题(本大题共7小题,每小题3分,共21分)1.sin30°的值是()A. B. C. D. 1 2.4的算术平方根是() A. 16 B. 2 C.�2 D.±2 3.3x2可以表示为() A.9x B.x2•x2•x2 C.3x•3x D. x2+x2+x2 4.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()【答案】C. 【解析】试题分析:根据题意可得图形C. 故选C.【考点】垂线. 5.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是() A.2k B. 15 C. 24 D. 42 6.如图,在△ABC和△BDE 中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BE D C.∠AFB D.2∠ABF ∠ACB= ∠AFB,故选:C.【考点】全等三角形的判定与性质. 7.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是() A. a<13,b=13 B.a<13,b<13 C.a>13,b<13 D. a>13, b=13 【答案】A. 【解析】试题分析:∵原来的平均数是13岁,∴13×23=299(岁),∴ 正确的平均数a= ≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b= 13;故选A.【考点】1.中位数;2.算术平均数.二、填空题(本大题共1 0小题,每小题4分,共40分) 8.)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是【考点】几何概率. 9.若在实数范围内有意义,则x的取值范围是【答案】x≥1.【解析】试题分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.试题解析:∵ 在实数范围内有意义,∴x�1≥0,解得x≥1.【考点】二次根式有意义的条件. 10.四边形的内角和是°. 11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是. 12.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是S2= [(x1�)2+(x2�)2+…+(xn�)2]】【答案】0. 【解析】试题解析:去分母得:2x+10=x+3,解得:x=�7.【考点】解一元一次方程. 14.如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B 的度数是【答案】45°.【解析】【考点】等腰梯形的性质. 15.设a=192×918,b=8882�302,c=10532�7472,则数a,b,c按从小到大的顺序排列,结果是 b=8882�302=(888�30)(888+30)=858×918, c=10532�7472=(1053+747)(1053�747)=1800×306=600×918,所以a<c<b.【考点】因式分解的应用. 16.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产个零件.【考点】分式方程的应用. 17.如图,正六边形ABCDEF的边长为2 ,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(,).【答案】( ,4). 【解析】试题分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F 点坐标,进而求出直线DF的解析式,进而求出横坐标为时,其纵坐标即可得出答案.试题解析:连接AE,DF,故直线DF的解析式为:y= x+2,当x= 时,y= × +2=4,∴直线DF与直线AE的交点坐标是:(,4).【考点】1.正多边形和圆;2.两条直线相交或平行问题.三、解答题(共13小题,共89分) 18.计算:(�1)×(�3)+(�)0�(8�2)【答案】-2. 【解析】试题分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=3+1�6 =�2.【考点】实数的混合运算 19.在平面直角坐标系中,已知点A(�3,1),B(�1,0),C(�2,�1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形. 20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.【答案】.【解析】【考点】列表法与树状图法. 21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.【考点】相似三角形的判定与性质. 22 .化简下式,再求值:(�x2+3�7x)+(5x�7+2x2),其中x= +1.【答案】�3.【解析】 23.解方程组.【答案】.【解析】试题分析:方程组利用加减消元法求出解即可.【考点】解二元一次方程组. 24.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.【答案】【解析】∴AB=AD,∴四边形ABCD是菱形.【考点】菱形的判定. 25.已知A(x1,y1),B(x2,y2)是反比例函数y= 图象上的两点,且x1�x2=�2,x1•x2=3,y1�y2= ,当�3<x<�1时,求y的取值范围.∵y1�y2= ,∴ �= ,∴ ,∵x1�x2=�2,x1•x2=3,∴ ,解得k=�2,∴反比例函数解析式为y=�,当x=�3时,y= ;当x=�1时,y=2,∴当�3<x<�1时,y的取值范围为<y<2.【考点】反比例函数图象上点的坐标特征. 26.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由. [注:单循环比赛就是小组内的每一个队都要和其他队赛一场].若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.【考点】推理与论证. 27.已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC= ,根据题意画出示意图,并求tanD的值.∵∠ACB=∠D +∠CAD,∠ACB=2∠D,∴∠CAD=∠D,【考点】解直角三角形. 28.当m,n是正实数,且满足m+n=mn时,就称点P (m,)为“完美点”,已知点A(0,5)与点M都在直线y=�x+b 上,点B,C是“完美点”,且点B在线段AM上,若MC= ,AM=4 ,求△MBC的面积.∴P(m,m�1),∴直线AM与直线y=x�1垂直,∵点B是直线y=x�1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,【考点】一次函数综合题. 29.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O 的半径.【答案】(1)证明见解析;(2).【解析】∴AC⊥BD;(2)作直径DE,连接CE、BE.∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴弧CE=弧AB,∴CE=AB.根据勾股定理,得 CE2+DC2=AB2+DC2=DE2=20,∴D E= ,∴OD= ,即⊙O的半径为.【考点】1.垂径定理;2.勾股定理;3.圆周角定理. 30.如图,已知c<0,抛物线y= x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC= ,求函数y=x2+bx+ c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.【答案】(1) �.(2) y=�x2�4x�4(x>�).【解析】∴抛物线的解析式为:y=x2+x�2.转化为y=(x+ ) 2�;∴函数y=x2+bx+c的最小值为�.∴顶点的纵坐标随横坐标变化的函数解析式为:y=�x2�4x�4(x>�).【考点】二次函数综合题.。
2014厦门中考数学填空题压轴题训练 1.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1), A 5(2,1),…,则点A 2010的坐标是__________________.2.在Rt △ABC 中,∠C =90°,AC =3,BC =4.若以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________.3.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________.4.已知抛物线y =ax2+2ax +4(0<a<3),A (x 1,y 1),B (x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”)5.如图,△ABC 中,BC =8,高AD =6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为___________.6.如图是一个矩形桌子,一小球从P 撞击到Q ,反射到R ,又从R 反射到S ,从S 反射回原处P ,入射角与反射角相等(例如∠PQA =∠RQB 等),已知AB =8,BC =15,DP =3.则小球所走的路径的长为_____________. 7.如图,在△ABC 中,∠ABC =60°,点P 是△ABC 内的一点,且∠APB =∠BPC =∠CP A ,且P A =8,PC =6,则PB =________.A PB C8.如图,AB 、CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是________.9.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2.作△ABC 的高CD ,作△CDB 的高DC 1,作△DC 1B 的高C 1D 1,……,如此下去,则得到的所有阴影三角形的面积之和为__________.10.如图,在直角三角形ABC 中,∠A =90°,点D 在斜边BC 上,点E 、F 分别在直角边AB 、AC 上,且BD =5,CD =9,四边形AEDF 是正方形,则阴影部分的面积为__________.1.(503,-503)解:通过观察,不难发现以下规律:A 1、A 5、A 9、…A n 在同一直线上,其通式为4n -3(n 为正整数) A 2、A 6、A 10、…A n 在同一直线上,其通式为4n -2(n 为正整数) A 3、A 7、A 11、…A n 在同一直线上,其通式为4n -1(n 为正整数) A 4、A 8、A 12、…A n 在同一直线上,其通式为4n (n 为正整数) 当A n 为A 2010时,只有4n -2=2010的解为整数,n =503 故点A 2010的坐标是(503,-503) 2.r =512或3<r ≤4 解:过C 作CD ⊥AB 于D ,则CD =512 当r =CD =512时,圆与斜边AB 只有一个公共点D ; OCDAB1234 C当512<r ≤AC =3时,圆与斜边AB 有两个公共点; 当3<r ≤BC =4时,圆与斜边AB 也只有一个公共点 当r >4时,圆与斜边AB 没有公共点 综上所述,r =12或3<r ≤44.<解:由题意得:y 1=ax12+2ax 1+4,y 2=ax22+2ax 2+4y 1-y 2=a (x12-x22)+2a (x1-x2)=a (x1-x2)(x1+x2+2)=a (x1-x2)(3-a ) ∵x 1<x 2,0<a<3,∴y 1-y 2<0,∴y 1<y 25.12解:设FG =x ,则AK =6-x ∵HG ∥BC ,∴△AHG ∽△ABC ∴8HG =66x-,HG =34(6-x ) S 矩形EFGH =34(6-x )x =-34(x -3)2+12 当x =3时,矩形EFGH 的面积取得最大值12 6.34解:方法一:易知四边形PQRS 是平行四边形.由△QBR ≌△SDP 及△SDP ∽△SCR ,得DS 3=DS8315--,∴DS =58 SP =22583)(+=517,PQ =22588315)()(-+-=4×517因而小球所走的路径长为:2(SP +PQ )=10×517=34 7.34解:∵∠APB +∠BPC +∠CPA =360°,∠APB =∠BPC =∠CPA ∴∠APB =∠BPC =∠CPA =120°,∴∠PCB +∠PBC =60° 又∠ABC =∠ABP +∠PBC =60°,∴∠PCB =∠ABP ∴△PAB ∽△PBC ,∴PC PB =PBPA即6PB =PB 8,∴PB =34 8.108°解:设∠AOB =x ,则∠C =∠D =180°-x∠COD =180°-2∠C =2x -180°∠A =∠B =21(180°-x ) ∵∠COD =∠A ∴2x -180°=21(180°-x ) 解得x =108° 9.376解:由已知条件得AB =4,BC =32,CD =3 ∵所有的直角三角形都是相似三角形∴Rt CDC 1的面积 : Rt △△ACD 的面积=CD 2: AC 2=(3)2: 2 2=43从而Rt △t CDC 1的面积 : 直角梯形ACC 1D 的面积=73 叠加得所有阴影三角形的面积之和 : Rt △ABC 的面积=73 故所有阴影三角形的面积之和=73×21×2×32=376 10.245解:如图,将△BDE 绕点D 顺时针旋转90°,得到直角三角形GDC 故阴影部分的面积=21×5×9=245。
2014年福建省厦门市中考数学试卷一、选择题(本大题共7小题,每小题3分,共21分)1.(3分)(2014年福建厦门)sin30°的值是()A.B. C. D. 1分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.(3分)(2014年福建厦门)4的算术平方根是()A.16 B. 2 C.﹣2 D.±2考点:算术平方根.分析:根据算术平方根定义求出即可.解答:解:4的算术平方根是2,故选B.点评:本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.3.(3分)(2014年福建厦门)3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2考点:单项式乘单项式;合并同类项;同底数幂的乘法.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:3x2可以表示为x2+x2+x2,故选D点评:此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)(2014年福建厦门)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.考点:垂线.分析:根据题意画出图形即可.解答:解:根据题意可得图形,故选:C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.5.(3分)(2014年福建厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014年福建厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DEB.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.7.(3分)(2014年福建厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13考点:中位数;算术平均数.分析:根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.解答:解:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选D.点评:此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共10小题,每小题4分,共40分)8.(4分)(2014年福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.9.(4分)(2014年福建厦门)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.(4分)(2014年福建厦门)四边形的内角和是360°.考点:多边形内角与外角.专题:计算题.分析:根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.解答:解:(4﹣2)•180°=360°.故答案为360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.11.(4分)(2014年福建厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是(3,0),A1的坐标是(4,3).考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:解:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O1的坐标是(3,0),A1的坐标是(4,3).故答案为:(3,0),(4,3).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(4分)(2014年福建厦门)已知一组数据:6,6,6,6,6,6,则这组数据的方差为0.【注:计算方差的公式是S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]】考点:方差.分析:根据题意得出这组数据的平均数是6,再根据方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],列式计算即可.解答:解:∵这组数据的平均数是6,∴这组数据的方差=[6×(6﹣6)2]=0.故答案为:0.点评:本题考查了方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(4分)(2014年福建厦门)方程x+5=(x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.14.(4分)(2014年福建厦门)如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是45°.考点:等腰梯形的性质.分析:首先过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,易得四边形AEFD 是长方形,易证得△ABE是等腰直角三角形,即可得∠B的度数.解答:解:过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,∵AD∥BC,∴四边形AEFD是长方形,∴EF=AD=2,∵四边形ABCD是等腰梯形,∴BE=(8﹣2)÷2=3,∵梯形的高是3,∴△ABE是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(4分)(2014年福建厦门)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c 按从小到大的顺序排列,结果是a<c<b.考点:因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.解答:解:a=192×918=361×918,b=8882﹣302=(888﹣30)(888+30)=858×918,c=10532﹣7472=(1053+747)(1053﹣747)=1800×306=600×918,所以a<c<b.故答案为:a<c<b.点评:本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.16.(4分)(2014年福建厦门)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产15个零件.考点:分式方程的应用.分析:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,根据这台机器生产60个零件比8个工人生产这些零件少用2小时,列方程求解,继而可求得机器每小时生产的零件.解答:解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.17.(4分)(2014年福建厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(2,4).考点:正多边形和圆;两条直线相交或平行问题.分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解析式,进而求出横坐标为2时,其纵坐标即可得出答案.解答:解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F(,3),D(4,6),设直线DF的解析式为:y=kx+b,则,解得:,故直线DF的解析式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:(2,4).故答案为:2,4.点评:此题主要考查了正多边形和圆以及待定系数法求一次函数解析式等知识,得出F,D点坐标是解题关键.三、解答题(共13小题,共89分)18.(7分)(2014年福建厦门)计算:(﹣1)×(﹣3)+(﹣)0﹣(8﹣2)考点:实数的运算;零指数幂.分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3+1﹣6=﹣2.点评:本题考查的是实数的运算,熟知0指数幂的运算法则是解答此题的关键.19.(7分)(2014年福建厦门)在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.考点:作图-轴对称变换.分析:根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案.解答:解:如图所示:△DEF与△ABC关于y轴对称的图形.点评:此题主要考查了轴对称变换,得出对应点坐标是解题关键.20.(7分)(2014年福建厦门)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码都是1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,这两个小球的号码都是1的只有1种情况,∴这两个小球的号码都是1的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2014年福建厦门)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得的值.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴==.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.22.(6分)(2014年福建厦门)先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.23.(6分)(2014年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(6分)(2014年福建厦门)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.25.(6分)(2014年福建厦门)已知A(x1,y1),B(x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1•x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,利用y1﹣y2=﹣,得到﹣=﹣,再通分得•k=﹣,然后把x1﹣x2=﹣2,x1•x2=3代入可计算出k=﹣2,则反比例函数解析式为y=﹣,再分别计算出自变量为﹣3和﹣1所对应的函数值,然后根据反比例函数的性质得到当﹣3<x<﹣1时,y的取值范围.解答:解:把A(x1,y1),B(x2,y2)代入y=得y1=,y2=,∵y1﹣y2=﹣,∴﹣=﹣,∴•k=﹣,∵x1﹣x2=﹣2,x1•x2=3,∴k=﹣,解得k=﹣2,∴反比例函数解析式为y=﹣,当x=﹣3时,y=;当x=﹣1时,y=2,∴当﹣3<x<﹣1时,y的取值范围为<y<2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.26.(6分)(2014年福建厦门)A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].考点:推理与论证.分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.解答:解:每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.点评:本题考查了正确进行推理论证,在本题中正确确定A队可能的得分情况是关键.27.(6分)(2014年福建厦门)已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.28.(6分)(2014年福建厦门)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.考点:一次函数综合题.分析:由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.解答:解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM•BC=.点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.29.(10分)(2014年福建厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.考点:垂径定理;勾股定理;圆周角定理.分析:(1)根据题意不难证明四边形ABCD是正方形,结论可以得到证明;(2)作直径DE,连接CE、BE.根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE∥AC,根据平行弦所夹的弧相等,得弧CE=弧AB,则CE=AB.根据勾股定理即可求解.解答:解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)作直径DE,连接CE、BE.∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴弧CE=弧AB,∴CE=AB.根据勾股定理,得CE2+DC2=AB2+DC2=DE2=20,∴DE=,∴OD=,即⊙O的半径为.点评:此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键.30.(10分)(2014年福建厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.。
2014年厦门市同安区中考数学模拟卷适用年级:九年级建议时长:0分钟试卷总分:150.0分一、选择题(本大题有7题,每小题3分,共21分,每小题都有四个选项,其中有且只有一个选项是正确的)1.(2014厦门,1)下列各数中正数是().(3.0分)(单选)A. 2B. -C. 0D. ﹣2.(2014厦门,2)下列运算正确的是().(3.0分)(单选)A. •=B. (=C. ÷=mD. 3m﹣m=23.(2014厦门,3)下列事件中是必然事件的是().(3.0分)(单选)A. 任意买一张电影票,座位号是偶数B. 打开电视机,正在播动画片C. 掷一枚骰子,得到数字为偶数D. 通常加热到100℃时,水沸腾4.(2014厦门,4)立体图形中,它的三视图能是如图的是().(3.0分)(单选)A. 圆锥B. 球C. 圆柱D. 三棱锥5.(2014厦门,5)如图,在圆内接四边形ABCD中,若∠C=80°,则∠A等于().(3.0分)(单选)A. 120°B. 100°C. 80°D. 90°6.(2014厦门,6)下列函数中,y随x的增大而增大的是().(3.0分)(单选)A. y=﹣x+1B. y=xC. y=﹣1D. y=7.(2014厦门,7)在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(﹣1,)的对应点为,则的坐标为().(3.0分)(单选)A. (,1)B. (1,)C. (﹣,﹣1)D. (﹣1,﹣)二、填空题(本大题有10小题,每小题4分,共40分)1.(2014厦门,8)|﹣2|=____.(4.0分)2.(2014厦门,9)若式子有意义,则实数x的取值范围是____.(4.0分)3.(2014厦门,10)已知∠A=40°,则∠A的余角的度数是____度.(4.0分)4.(2014厦门,11)地球绕太阳公转的速度约为110000千米/时,将这个数用科学记数法表示为____.(4.0分)5.(2014厦门,12)一个圆形转盘被平均分成红、黄、蓝3个扇形区域,转动指针,停止后指针指向红色区域的概率是____.(4.0分)6.(2014厦门,13)方程组的解是____.(4.0分)7.(2014厦门,14)如图,已知在直角三角形ABC中,∠C=90°,AC=4,AB=8,则∠B=____度.(4.0分)8.(2014厦门,15)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=26,BD=10,E、F分别是线段OD、OA的中点,则EF的长为____.(4.0分)9.(2014厦门,16)如图,扇形AOB的圆心角为直角,正方形OCDE内接于扇形,点C、E、D分别在OA、OB、上,如果正方形的边长为1,那么阴影部分的面积为____.(4.0分)10.(2014厦门,17)如图,直线y=﹣x+b与双曲线y=﹣(x<0)交于点A,与x轴交于点B,则﹣=____.(4.0分)三、解答题(本大题有9题,共89分)1.(2014厦门,18)计算:﹣(﹣2+(.(5.0分)2.(2014厦门,19)在如图的平面直角坐标系中,已知点A(﹣2,﹣1),B (0,﹣3),C(1,﹣2),请在如图上画出△ABC和与△ABC关于x轴对称的△.(6.0分)3.(2014厦门,20)如图,已知∠ABD=40°,∠ADB=65°,AB∥DC,求∠ADC 的度数.(6.0分)4.(2014厦门,21)先化简,再求值:[(a﹣2b)2﹣(a+2b)(a﹣2b)]÷4b,其中a=2,b=﹣1.(6.0分)5.(2014厦门,22)水资源越来越缺乏,全球提倡节约用水,水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,有关数据如下:月用水量(m) 10 13 14 17 18户数 2 2 3 2 1如果该小区有500户家庭,根据上面的统计结果,估计该小区居民每月需要用水多少立方米?(写出解答过程).(6.0分)6.(2014厦门,23)如图,在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC的位置关系,并说明理由.(6.0分)7.(2014厦门,24)袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.(6.0分)8.(2014厦门,25)如图,点E为平行四边形ABCD中DC延长线上的一点,且CE=DC.连结AE,分别交BC、BD于点F、G.若BD=6,求DG的长.(6.0分)9.(2014厦门,26)用一条长40cm的绳子能否围成一个面积为110cm的矩形?如能,说明围法;如果不能,说明理由.(6.0分)10.(2014厦门,27)如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,垂足分别为点E、F.请判断AP与EF的数量关系,并证明你的判断.(8.0分)11.(2014厦门,28)如图,BC是半圆O的直径,点A在半圆O上,点D是AC的中点,点E在上运动.若AB=2,tan∠ACB=,请问:分别以点A、E、D为直角顶点的等腰三角形AED存在吗?请逐一说明理由.(8.0分)12.(2014厦门,29)已知反比例函数y=(x>0)的图象经过点A(2,a)(a>0),过点A作AB⊥x轴,垂足为点B,将线段AB沿x轴正方向平移,与反比例函数y=(x>0)的图象相交于点F(p,q).(1)当F点恰好为线段的中点时,求直线AF的解析式(用含a的代数式表示);(2)若直线AF分别与x轴、y轴交于点M、N,当q=﹣a2+5a时,令S=S△ANO+S△MFO(其中O是原点),求S的取值范围.(10.0分)13.(2014厦门,30)菱形与正方形的形状有差异,我们将菱形与正方形的接近程度记为“接近度”.设菱形相邻的两个内角的度数分别为m°和n°,将菱形与正方形的“接近度”定义为|m﹣n|.在平面直角坐标系中,抛物线y=+bx+c(b<0)交y轴于点A(与原点O不同),以AO为边作菱形OAPQ.(1)当c=﹣b时,抛物线上是否存在点P,使菱形OAPQ与正方形的“接近度”为0,请说明理由.(2)当c>0时,对于任意的b,抛物线y=+bx+c上是否存在点P,满足菱形OAPQ与正方形的“接近度”为60?若存在,请求出所有满足条件的b与c的关系式;若不存在,请说明理由.(10.0分)。
2014年厦门市高中阶段招生考试数学参考答案及评分标准一.选择题(本题有6个小题,每小题4分,共24分)二.填空题(本题有8个小题,每小题4分.共40分)7.1 8. 2(13)a b - 9. (6,-5) 10. 95011.1 12.322d ≤≤13. 2 14. 1或0( 答对一个给3分,答错0分) 三.解答题(本题有8个小题,共86分) 15. (本题满分7分)解: 原式111()42-=++--4分12=++ ………………………6分3= …………………………………………7分16. (本题满分9分)解:∵22222(2+22)(2)2x xy y x xy y xy y y ----+-÷-=………………………3分∴2(2)(2)2xy y y --÷-=. ………………………4分24x y ∴+= ………………………5分∴原式=82(2)(2)2x x y x y x y-+-- ………………………6分82(2)(2)(2)x x y x y x y -+=+- ………………………7分22x y=+ ………………………8分12=………………………9分17.(本题满分10分)过A 作AD 垂直x 轴于D 点BM x AD BM ⊥∴ 轴…………………1分∴=AB DM BC CM …………………2分22AB BCDM CM =∴=…………………4分3::1:2:1OM MCOD DM MC =∴= …………………6分C (4,0)a ,∴则A (,)ka a…………………8分1482OAC kS a a∆∴=⨯⨯=…………………9分∴k=4 …………………10分由表知, ………………………2分解得k =﹣20,b =1500, ………………………3分D即y 1=﹣20x +1500(0<x ≤20,x 为整数) …………………4分. (2)同(1)求出B 产品采购单价y 2与产品采购数量x 的关系式为2101300y x =-+ …………………6分令总利润为W ,设A 产品采购数量为m[1760(201500)][1700(10(20)1300)](20)W m m m m ∴=--++---+-…………………8分则W =30m 2﹣540m +12000, …………………9分 =30(m ﹣9)2+9570, …………………10分 ∵a =30>0,∴当m ≥9时,W 随x 的增大而增大, …………………11分 ∵11≤m ≤15,∴当m =15时,即A 产品采购数量为15时总利润W 最大=10650; …………………12分 20. (本题满分12分)(1)连结AD090,CAB D BC ∠= 为中点AD BD CD ∴==AD BC∴⊥045BAD C ∴∠=∠= …………………1分 0122390∴∠+∠=∠+∠=13∴∠=∠ …………………2分∴△AED ≌△CFD …………………3分 ∴CF=AE ∵BE+CF=4∴AB=BE+EA=BE+CF=4 …………………4分 ∴S 四边形AEDF =S △ADC =4 …………………5分 (2)延长FD 至M 点,使得DM=DF,连结EM 、BM ∵ED FD ⊥EM EF ∴= …………………6分,,BD DC BDM CDF DM DF =∠=∠=∴△BDM ≌△CDF …………………7分BM CFMBD FCD∴=∠=∠ …………………8分BM AC ∴ …………………9分090A ∠=090ABM ∴∠= …………………10分 222EM BE BM ∴=+ ………………… 11分222EF BE CF ∴=+ …………………12分21. (本题满分13分)(1)解:∵α、β为方程x 2-( m +n +1)x +m =0(n ≥0)的两个实数根∴△=( m +n +1)2-4m =( m +n -1)2+4n ≥0,1122m n m n αβ++++∴==…………………2分 ∴α+β=m +n +1, …………………3分1122m n m n αβ+++++⋅=2(1)4m n m ++-∆==············································································· 4分(2)解:要使m +n = 5 4 成立,只需α+β=m +n +1= 94 …………………5分①当点P (α,β)在BC 边上运动时由B (1 2 ,1),C (1,1),得 12 ≤α≤1,β=1 …………………6分而α= 9 4 -β= 9 4 -1= 54>1∴在BC 边上不存在满足条件的点 ···························································································· 7分 ②当点P (α,β)在AC 边上运动时由A (1,2),C (1,1),得α=1,1≤β≤2 …………………8分 此时β= 9 4 -α= 9 4 -1= 5 4 ,又∵1< 54<2∴在AC 边上存在满足条件的点,其坐标为(1,54 ) ··························································· 9分③当点P (α,β)在AB 边上运动时由A (1,2),B (1 2 ,1),得 12 ≤α≤1,1≤β≤2由对应线段成比例得1-α 1- 1 2= 2-β2-1,∴β=2α …………………10分由 ⎩⎪⎨⎪⎧α+β= 9 4 β=2α 解得α= 3 4 ,β=3 2…………………11分 又∵1 2 < 3 4 <1,1< 32<2∴在AB 边上存在满足条件的点,其坐标为(3 4 ,32)…………………12分综上所述,当点点P (α,β)在△ABC 的三条边上运动时,存在点(1,5 4 )和点(3 4 ,32 ),使m +n = 54 成立 …………………13分22. (本题满分13分) (1)设21(0)y ax bx c a =++≠ 根据题意,得210949303432943392424a b c c a a c a b c y x x -+=⎧⎪⎪=⎨⎪++=⎪⎩⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩∴=-++ 解得分(2)①213(1)34(1,3)y x M =--+∴ …………………3分 设B(1,m),直线l 1与直线l 2相交于C,则A(x,t),C(1,t)22222(1)()AB AC BC x m t ∴=+=-+- …………………4分222222(3)(1)()(3)MB m AB x m t m =-=∴-+-=-22(26)(1)9t m x t ∴-=-+- …………………5分23(1)3262t x t m t ≠-+∴=+- …………………6分l 2l 123MB APm t y =∴-=- …………………7分22(1)3262x t y t -+∴=-+- (3)t ≠ …………………8分②22123(1)3(1)34262x t y y x t -+-=--++--21133(1)4(3)2t tx t --=-+- …………………9分 当121113003t y -=-=-<时,y ,符合题意…………………10分 当1211300t y -≠-<时,y 恒成立,有11304(3)302tt t -⎧<⎪-⎪⎨-⎪<⎪⎩ …………………11分113t ∴>…………………12分 综上所述:113t ≥ …………………13分。
中考数学模拟试题 (1)一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1、-2的倒数是_________,()=-32 ________.2、9的平方根是__________,-8是_______的立方根.3、用四舍五入所得的数是-2.164,它精确到 位.4、计算:cos45︒= ,tan30︒= .5、函数y =11-x 中,自变量x 的取值范围是__________;函数yx 的取值范围是_________.6、在实数内分解因式:x 4-2x 2= .7、一个多边形的每个外角都等于30︒,这个多边形的内角和为_________度.8、下面一组数据表示初三(1)班23位同学衣服上衣口袋的数目,若任选一位同学,则其上衣口袋的数目为5的概率为 .3,4,2,6,5,5,3,1,4,2,4,2,4,5,10,6,1,5,5,62,10,3 9、一个矩形的周长为60㎝,其面积为S ,则S 的取值不超过 ㎝2.10、⊙O 的直径CD 与弦AB 交于点M ,添加条件 (写出一个即可)就可得到M 是AB 的中点.11、如下图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.12、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13、已知x =-1是方程x 2+mx +1=0的一个实数根,则m 的值是( ) A 、0 B 、1 C 、2 D 、-2 14、下列各式中,与3是同类二次根式的是( ) A 、9 B 、27 C 、18 D 、2415、如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是( )A 、()()b a b a b a -+=-22(1)(2)(3)第11题第12题ab abab b第15题B 、()2222b ab a b a ++=-C 、()2222b ab a b a +-=-D 、()()2222b ab a b a b a -+=-+16、在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交17、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛( )A 、平均数B 、众数C 、最高分数D 、中位数18、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( ) A 、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面” B 、两个形状大小完全相同,但一红一白的两个乒乓球 C 、扔一枚图钉D 、人数均等的男生、女生,以抽签的方式随机抽取一人19、相信同学们都玩过万花筒,右图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD 以A 为旋转中心( )A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到20、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN 裁剪,则可得( )A 、多个等腰直角三角形B 、一个等腰直角三角形和一个正方形C 、四个相同的正方形D 、两个相同的正方形三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 21、(本题共有3小题,每小题5分,共15分) (1)计算:()0020053323++-(2)已知不等式5(x -2)+8<6(x -1)+7的最小整数解是方程2x -ax =4的解,求a 的值.A B C DF EG 第19ABC D AB C DABCDABCD NNM(3)先化简,再求值:112223+----x x xx x x ,其中x =2.22、(本题满分6分)方格纸中每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.(1)在10³10的方格中(每个小方格的边长为1个单位),画一个面积为1的格点钝角三角形ABC ,并标明相应字母.(2)再在方格中画一个格点△DEF ,使得△DEF ∽△ABC ,且相似比为2,并加以证明.23、(本题满分7分)如图,给出五个条件:①AE 平分∠BAD ,②BE 平分∠ABC ,③E 是CD 的中点,④AE ⊥EB ,⑤AB=AD+BC(1)请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以说明; (2)请你以其中三个作为命题的条件,写出一个不一定能推出AD ∥BC 的正确命题,并举例说明.24、(本题满分6分)夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,52,5,8,0,5,5,2,5, 5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0. (1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;ABC DE(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?25、(本题满分8分)某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校. 若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得. 现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?26、(本题满分8分)某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.30元,卖出的价格为0.50元,卖不掉的报纸可以退还给报社,不过每份退还的钱数与退还的报纸的数量关系如下:现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.(1)通过在坐标系中(以退还的钱数为纵坐标,退还的报纸数量为横坐标)描出点,分析出退还的钱数y (元)与退还的报纸数量k (份)之间的函数关系式.(2)若该家报刊摊点每天从报社买进的报纸数x 份(满足100<x <150),则当买进多少报纸时,毛利润最大?最多可赚多少钱?27、(本题满分8分)在一块长16m 、宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半. 下面分别是小明和小颖的设计方案.12m16m 图(1) 图(2)12m16mx小明说:我的设计方案如图(1),其中花园四周小路的宽度相等. 通过解方程,我得到小路的宽为2m 或12m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x (精确到0.1m ).(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.四、动脑想一想(本大题共有2小题,共18分. 开动你的脑筋,只要你勇于探索,大胆实践,你一定会获得成功的!)28、(本题满分8分)如图,在△ABC 中,∠C=90°,AC=6,BC=8,M 是BC 的中点,P 为AB 上的一个动点,(可以与A 、B 重合),并作∠MPD=90°,PD 交BC (或BC 的延长线)于点D.(1)记BP 的长为x ,△BPM 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)是否存在这样的点P ,使得△MPD 与△ABC 相似?若存在,请求出x 的值;若不存在,请说明理由.29、(本题满分10分) 如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是ABC 的中点,弦DE ⊥AB ,垂足为F ,DE交AC 于点G.(1)图中有哪些相等的线段?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写出推理过程)(2)若过点E 作⊙O 的切线ME ,交AC 的延长线于点M (请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由.(3)在满足第(2)问的条件下,已知AF=3,FB=34,求AG 与GM 的比.〖第(1)的结论可直接利用〗12m16mABCP D M(B参考答案一、细心填一填1. ﹣21,﹣8 2. ±3 ,﹣125 3. 千分位 4. 22,33 5. x ≠1 ,x ≥3 6 . x 2(x+2)(x-2) 7. 1800 8. 2349. 225 10. CD ⊥AB 11. 179 12. 略 二、精心选一选13. C 14. B 15. A 16. C 17. D 18. C 19. D 20. C 三、认真答一答21. (1)3;(2)a=4 ; (3) 2x-1 ,3 22. 略 23.(1) ①②⑤⇒AD ∥BC .证明:在AB 上取点M ,使AM =AD ,连结EM ,可证△AEM ≌△AED , △BEM ≌△BCE ,∴∠D =∠AME , ∠C =∠BME ,故∠D +∠C =∠AME +∠BME =180° ∴AD ∥BC .(2)①②③⇒ AD ∥BC 为假命题 反例 :△ABM 中,E 是内心,过E 作DC ⊥EM ,显然有,AE 平分∠BAM ,BE 平分∠ABM ,ED =EC ,但AD 不平分于BC .24.(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2. (2)平均数是4.125,中位数是5,众数是5. (3)5元.25.(1)256;(2)503,252;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均位黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.26.(1)通过作图,知y =mk +n ,⎩⎨⎧+=+=,1020.0,525.0n m n m⎩⎨⎧=-=.3.0,1.0n m 当0<k <30,且为整数, y =﹣0.1k +0.3;当k ≥30 , y =0.02.(2) S =2³0.2x +100³10³0.2-(0.3-y)(x -100)= 4x +200-0.1(x -100)2=﹣0.1x +24x -800.当x =﹣)1.0(224-⨯=120时,即每天买进120份报纸时,可获最大毛利润为640元.27.(1)设小路的宽为x m ,则(16-2x )(12-2x )=21×16³12,解得x=2,或x=12(舍去). ∴x=2,故小明的结果不对.(2故有πr 2=21×16³12,解得r ≈5.5m. (3)依此连结各边的中点得如图的设计方案.28.(1)作PK ⊥BC 于K ,BM =4,AB =10,∵PK ∥AC ,∴8pk =10x ⇒pk =54x ,∴y =21³4³54x =58x (0<x<10). (2)①∠PMB=∠B, PM=PB ,MK=KB=2 ,10x =82, x=2.5; ②∠PMD=∠A, 又∠B =∠B ,∴△BPM ∽△BAC ,∴BP ²AB =BM ²BC , ∴10x=4³8 ,x =3.2,∴存在 x =2.5或3.2.29.(本题仅供学有余力的同学参考)(1)OA=OB ,DF=EF ,DE=AC ,AG=DG ,EG=CG .(2)ME=GM. 理由是:连EO 并延长交⊙O 于点N ,连结DN. ∵EM 是⊙O 的切线,∴∠OEM=90º,∴∠GEM+∠GEN=90º. ∵EN 是⊙O 的直径,∠N+∠GEN=90º,∴∠N=∠GEM. ∵AB 是⊙O 的直径,∴∠B+∠BAC=90º,∵∠AGF+∠GAF=90º,∴∠AGF=∠B ,∵∠AGF=∠CGE ,∴∠CGE=∠B. ∵AC=DE ,∴∠N=∠B ,∴∠GEM=∠CGE ,∴MG=ME. (3)答案:310.。
厦门一中2014年中考模拟考试数学试卷(试卷满分150分;考试时间120分钟)一、选择题(本大题有7小题,每小题3分,共21分)1.-5的相反数是( )A.5B.-5C.15D.152.已知∠1=30°,则∠1的余角度数是( )A.160°B.150°C.70°D.60°3.图1所示的几何体的主视图是()图1A.B.C.D.4.下列说法正确的是( )A.随机抛掷一枚均匀的硬币,落地反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为1%,说明买100张彩票,有1张中奖D.打开电视,中央一套正在播新闻联播5.某药品经过两次降价后,售价降为原来的64%,若两次降价的百分率相同,则这个百分率是( )A.20%B.32%C.20%或180%D.40%6.顺次连接菱形各边中点所得的四边形是( )A.平行四边形B.矩形C.菱形D.正方形7.图2是某种水杯横断面示意图,若对这水杯以固定的流量注水,则水的最大高度h与注水时间t之间的函数图象大致是( )图2 A.B.C.D.二、填空题(每小题4分,共40分)8.计算:sin30°= .9.分解因式:2a2-8=.10.如图3,DE//BC,D为AB中点,BC=12,则DE= .11.不等式组:21513xx+<⎧⎨-<⎩的解集是。
12.一只蚂蚁在如图4所示的树上寻觅食物,假设蚂蚁在每个岔路口都会随机选择一条路径,它获得食物的概率是。
B食物图3 图513.两直角边为3cm、4cm的三角形外接圆半径是cm。
14.如图5,正方形OABC的边长为1,以点A为圆心,AC为半径画弧交数轴于点D,则点D对应的数是15.如图6,等腰Rt△ABC绕点C按顺时针旋转到△A′B′C的位置(A、C、B′在同一直线上),∠B=90°,如果AB=1,那么点A运动到A′所经过的路程是.A图4 图616.小熊用“描点法”画二次函数y=ax2+bx+c的图像时,列了如下表格,根据表格上的信息回答问题:该二次函数y=ax2+bx+c当x=3时,y= 。