第章恒流源电路
- 格式:ppt
- 大小:554.00 KB
- 文档页数:38
模电复习习题一、选择题1.测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是A 。
A.输入电压幅值不变,改变频率B.输入电压频率不变,改变幅值C.输入电压的幅值与频率同时变化2.大电路在高频信号作用时放大倍数数值下降的原因是,而低频信号作用时放大倍数数值下降的原因是A 。
A.耦合电容和旁路电容的存在B.半导体管极间电容和分布电容的存在。
C.半导体管的非线性特性D.放大电路的静态工作点不合适3.当信号频率等于放大电路的fL 或fH时,放大倍数的值约下降到中频时的B。
A.0.5倍B.0.7倍C.0.9倍即增益下降A 。
A.3dBB.4dBC.5dB4. 多级直接耦合放大电路中,(A)的零点漂移占主要地位。
A) 第一级B) 中间级C) 输出级5. 一个三级放大电路,测得第一级的电压增益为0dB,第二级的电压增益为40dB,第三级的电压增益为20dB,则总的电压增益为(B)A) 0dB B) 60dB C) 80dB D) 800dB6.在相同条件下,多级阻容耦合放大电路在输出端的零点漂移(B )。
A)比直接耦合电路大B)比直接耦合电路小C)与直接耦合电路基本相同7.要求静态时负载两端不含直流成分,应选( D )耦合方式。
A)阻容B)直接C)变压器D)阻容或变压器8.差动放大电路是为了(C)而设置的。
A) 稳定增益B) 提高输入电阻C)克服温漂D) 扩展频带9. 差动放大电路抑制零点漂移的能力,双端输出时比单端输出时(A )A) 强B) 弱C)相同10. 在射极耦合长尾式差动放大电路中,eR 的主要作用是(B )A) 提高差模增益 B )提高共模抑制比C) 增大差动放大电路的输入电阻 D) 减小差动放大电路的输出电阻11. 差动放大电路用恒流源代替发射极电阻是为了( A )。
A )提高共模抑制比 B )提高共模放大倍数 C )提高差模放大倍数 12. 集成运放的输出级一般采用(C )。
通信电子电路基础第一章半导体器件§1-1 半导体基础知识一、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。
(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)二、半导体的导电特性本征半导体――纯净、晶体结构完整的半导体称为本征半导体。
硅和锗的共价键结构。
(略)1、半导体的导电率会在外界因素作用下发生变化•掺杂──管子•温度──热敏元件•光照──光敏元件等2、半导体中的两种载流子──自由电子和空穴•自由电子──受束缚的电子(-)•空穴──电子跳走以后留下的坑(+)三、杂质半导体──N型、P型(前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。
•N型半导体(自由电子多)掺杂为+5价元素。
如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。
载流子组成:o本征激发的空穴和自由电子──数量少。
o掺杂后由P提供的自由电子──数量多。
o空穴──少子o自由电子──多子•P型半导体(空穴多)掺杂为+3价元素。
如:硼;铝使空穴大大增加原理:Si──+4价B与Si形成共价键后多余了一个空穴。
B──+3价载流子组成:o本征激发的空穴和自由电子──数量少。
o掺杂后由B提供的空穴──数量多。
o空穴──多子o自由电子──少子结论:N型半导体中的多数载流子为自由电子;P型半导体中的多数载流子为空穴。
§1-2 PN结一、PN结的基本原理1、什么是PN结将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。
2、PN结的结构分界面上的情况:P区:空穴多N区:自由电子多扩散运动:多的往少的那去,并被复合掉。
留下了正、负离子。
(正、负离子不能移动)留下了一个正、负离子区──耗尽区。
由正、负离子区形成了一个内建电场(即势垒高度)。
方向:N--> P大小:与材料和温度有关。
(很小,约零点几伏)漂移运动:由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。
【转】微恒流源电路-恒流原理-三极管恒流源电路2010-11-01 12:53转载自fujianhuangjia最终编辑fujianhuangjia恒流源的输出电流为恒定。
在一些输入方面如果应用该电路则能够有效保护输入器件。
比如RS422通讯中采用该电路将有效保护该通讯。
在一定电压方位内可以起到过压保护作用。
以下引用一段恒流源分析。
恒流源是输出电流保持不变的电流源,而理想的恒流源为:a)不因负载(输出电压)变化而改变。
b)不因环境温度变化而改变。
c)内阻为无限大。
恒流源之电路符号:理想的恒流源实际的流源理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。
实际的恒流源皆有内阻R。
三极管的恒流特性:从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。
因此,只要IB值固定,IC亦都可以固定。
输出电流IO即是流经负载的IC。
电流镜电路Current Mirror:电流镜是一个输入电流IS与输出电流IO相等的电路:Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。
优点:三极管之β受温度的影响,但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经Q2去决定输出电流IO(IC2 = IO)。
例:三极管射极偏压设计范例1:从左边看起:基极偏压所以VE=VB - 0.6=1.0V又因为射极电阻是1K,流经射极电阻的电流是所以流经负载的电流就就是稳定的1mA范例2.这是个利用稳压二极管提供基极偏压5.6V VE=VB - 0.6=0.5V流经负载的电流范例3.这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。
VE=VB + 0.6=8.8VPNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA晶体恒流源应用注意事项如果只用一个三极管不能满足需求,可以用两个三极管架成:或是也可以是请您注意:恒流源是一个二端子的零件.市面上也有“稳流二极管” (current regulating diode, CRD)供小电流应用.大电流应用时,可以用IC稳压器串联电阻,或是使用MOSFET的方法。
重庆大学生本科毕业设计(论文)第三章恒流源模块的设计第三章恒流源模块的设计ICP加速度传感器的输出信号是带有一定的直流分量的模拟信号,因此不能直接被A/D采集电路采集,恒流源模块必须为其供给恒流电,并同时将传感器输出信号调理成标准的信号(如±5V)。
原理图见图 3.2:因为ICP传感器本身输出的信号就是已经被放大了的,因此干扰对其的影响微乎其微,甚至可以忽略,信噪比高,即使在条件恶劣的工厂环境下,ICP加速度传感器也都可以正常使用。
故需要为ICP传感器设计一个合适的恒流源电路。
3.2供电电路的实现恒流源的设计实现有很多的方法最简单的恒流源电路就是FET或者恒流二极管,但是这些电路实现的恒流源的稳定度也是比较差的,我们对折现恒流源电路进行分析,选出一种适合我们ICP 传感器供电电路的。
3.2.1 采用集成运放构成的线性恒流源其结构原理图如图3.3所示:图3.3 集成运放构成的线性恒流源如图3.3所示其工作原理是:电源的波动降低U in , 从而负载电流会响应减小,则取样电压U S 也将随之减小, 从而使U S 与基准电压的差值(U S -U ref )相应减小。
由于U 1A 为反相放大器, 因此其输出电压 U b = ( R 5/R 4 ) ×U a 升高, 从而通过调节环节使U S 升高,恢复到原来的稳定值, 保证了U S 的电压稳定,也就稳定了电流调整R W , 能够调节出大小在0~4A 之间的电流。
它实现的是较大的恒流源电流,而我们的ICP 传感器所需要的是小电流,所不适合我们作为我们ICP 传感器的恒流源。
3.2.2 采用集成稳压器构成的开关恒流源图3.4 采用集成稳压器构成的开关恒流源如图3.4所示,LM7824为常用的24V 三端稳压器,RW 为可调电阻,RL为负载电阻。
通过调节可变电阻器RW 的值,来改变输出电流,这个电路的输出电流为:q w out L I R U I +=)/( . ……………………………………(式3.1)由于7824本身的稳压就存在误差,而且此电路实现的也主要是较大电流,因此也是不适合做我们的ICP 传感器的供电电路。
单片机恒流源电路单片机恒流源电路是一种常用的电路设计,用于实现对电路中负载电流的精确控制。
它通过对电路中的电流进行监测和调节,以保持负载电流恒定不变。
这种电路在很多应用中都有广泛的应用,例如LED照明、电池充放电等。
单片机恒流源电路的原理非常简单。
首先,我们需要一个电流传感器来监测电路中的电流。
常用的电流传感器有霍尔传感器、电阻传感器等。
这里我们以霍尔传感器为例。
霍尔传感器可以根据电流的大小产生相应的电压信号。
接下来,我们需要一个单片机来读取霍尔传感器输出的电压信号,并根据设定的目标电流值来调节电路中的电流。
最后,根据单片机的控制信号,通过PWM技术来调节电路中的开关管的导通时间,从而实现对电路中负载电流的精确控制。
在设计单片机恒流源电路时,我们需要考虑几个关键因素。
首先是电流传感器的选择。
不同的应用场景需要不同的电流传感器,如电流量级、响应速度等。
其次是单片机的选择。
单片机需要具备足够的计算能力和IO口数量,以满足电流控制的要求。
另外,还需要考虑电路的稳定性和可靠性,以及对电流源的精确控制。
在实际应用中,单片机恒流源电路可以实现对LED照明的亮度调节。
LED的亮度与其通电电流成正比,通过对电路中的电流进行精确控制,可以实现LED的亮度调节。
此外,单片机恒流源电路还可以用于电池充放电控制。
通过对电池充电电流或放电电流的精确控制,可以提高电池的使用寿命和安全性。
总结一下,单片机恒流源电路是一种常用的电路设计,用于实现对电路中负载电流的精确控制。
它通过对电流进行监测和调节,以保持负载电流恒定不变。
在实际应用中,它可以实现LED照明的亮度调节、电池充放电控制等功能。
通过合理选择电流传感器和单片机,并进行精确控制,可以提高电路的稳定性和可靠性。
希望本文对单片机恒流源电路的理解和应用有所帮助。
单片机恒流源电路单片机恒流源电路是一种常见的电子电路,用于控制电流的大小保持恒定。
它在许多应用中都扮演着重要的角色,比如电池充电、发光二极管(LED)驱动和电阻等。
本文将介绍单片机恒流源电路的原理、设计和应用。
一、原理单片机恒流源电路的原理是通过负反馈控制电流的大小。
它由一个电流传感器、一个运算放大器和一个功率放大器组成。
电流传感器用于检测电流的大小,运算放大器用于比较检测到的电流与设定的目标电流,功率放大器用于根据比较结果来调节输出电流。
二、设计单片机恒流源电路的设计需要考虑多个因素,包括电流范围、精度要求和稳定性。
首先,确定所需的电流范围,即电流的最大和最小值。
然后,选择适当的电流传感器和运算放大器,以满足所需的精度要求。
最后,设计功率放大器的控制电路,使其能够根据比较结果来调节输出电流。
三、应用单片机恒流源电路在许多应用中都有广泛的应用。
以下是一些常见的应用示例:1. 电池充电:单片机恒流源电路可以用于控制电池的充电电流,以避免过充或过放。
通过监测电池电流并根据需要调节充电电流,可以保证电池的安全充电。
2. LED驱动:单片机恒流源电路可以用于驱动LED,以保持恒定的亮度。
通过监测LED电流并根据需要调节驱动电流,可以确保LED 的稳定亮度。
3. 电阻:单片机恒流源电路可以用于测试电阻的阻值。
通过控制电流的大小并测量电压,可以计算出电阻的阻值。
四、总结单片机恒流源电路是一种常见的电子电路,广泛应用于电池充电、LED驱动和电阻测试等领域。
它通过负反馈控制电流的大小,使其能够保持恒定。
设计单片机恒流源电路需要考虑电流范围、精度要求和稳定性等因素。
通过合理设计和应用,单片机恒流源电路能够实现各种电流控制和测量需求。
第一章 电路的基本概念及基本定律第一节 电路的概念、组成和作用一、电路的概念电路是电流的通路,是为了某种需要而由一些电工设备或元件按照一定方式联接而成的闭合回路。
二、电路的组成电路由电源、负载和中间环节三个基本部分组成的(一)电源电源是供应电能的设备。
它把其他形式的能量转化为电能。
(二)负载负载,是对取用电能设备的统称。
(三)中间环节中间环节是指联接电源和负载的部分.三、电路的作用(一)电路能够实现电能的传输、分配和转换。
(二)电路能够实现信号的传递和处理。
四、电路的激励与响应激励(输入):作用在电路上的电源或信号源的电压或电流.响应(输出):由于激励在电路各部分产生的电压和电流。
第二节 电路的基本物理量一、电流(一)电流的概念把电荷有规则的定向运动现象,称为“电流”。
(二)电路的大小和种类所谓电流强度就是单位时间内通过导体横截面的电量。
电流分直流电流和交流电流两种。
1.直流电流大小和方向都不随时间的变化而变化的电流,称为直流电流.2.交流电流大小和方向都随时间的变化而变化的电流,称为“交流电流.对于直流,其电流强度(I )等于单位时间(t )内通过导体横截面的电量(Q )。
I=tQ (1-1) (三)电流的单位在国际单位制中,电流(I)----安(A );电量(Q )----库仑(C );时间(t )----秒(s )(四)电流的方向习惯上规定正电荷运动的方向为电流的方向。
二、电压(一)电压的概念定义:a 、b 两点间的电压U ab 在数值上等于把单位正电荷从a 点移到b 点,电场力所作的功。
(二)电压的大小和单位用公式表示为(1-2) 上式说明:(1)a 、b 两点间的电压U ab 在数值上等于电场力把单位正电荷从a点移到b 点所作的功,也就是单位正电荷从a 点到b 点所失去的能量。
(2)电路中任意两点间的电压等于这两点的电位之差,所以电压又叫做“电位差”。
(三)电压的方向电压方向规定为高电位点指向低电位点。
运放和三极管组成的恒流源电路一、引言恒流源电路是电子电路中常见的一种重要电路,它具有稳定的电流输出特性,能够应用于各种场合。
运放和三极管是恒流源电路中常用的元件,它们相互结合可以构成不同类型的恒流源电路,具有较为灵活的特性。
本文将从运放和三极管的原理、恒流源电路的基本结构和工作原理、以及具体的应用案例等方面进行深入探讨。
二、运放和三极管的原理1.运放的原理运放是一种集成电路,它具有高输入阻抗、低输出阻抗、大增益、宽带宽等特性。
在通常情况下,运放有两个输入端和一个输出端。
运放的工作原理是利用电压负反馈使得输入端的电压等于输出端的电压,从而实现电压的放大、滤波、求和等功能。
运放内部包含多个晶体管、电阻、电容等元件,通过这些元件的组合可以实现各种功能。
2.三极管的原理三极管是一种半导体器件,它主要由P型半导体、N型半导体和P型半导体三层组成。
三极管具有放大作用,一般有三个引脚,分别为发射极、基极和集电极。
当在基极加上一个电压时,三极管就会发生放大作用,将输入信号放大到输出端。
三极管也可以作为电流源使用,通过控制其工作点,可以实现恒流输出。
三、恒流源电路的基本结构和工作原理恒流源电路是利用特定的电路结构和元件特性来实现恒定电流输出的电路。
在运放和三极管组成的恒流源电路中,通常是利用三极管的特性来实现电流源,而运放则用来提供稳定的电压给三极管。
下面以一个简单的电路来作为例子来说明。
恒流源电路的基本结构如下图所示:从图中可以看出,基本的恒流源电路由一个三极管、一个运放和若干个电阻组成。
运放的正输入端与负输入端通过一个电阻连接,正输入端与输出端通过一个电阻连接,三极管的发射极与负输入端相连,而负输入端则通过一个电流源与地相连。
在这样的电路结构下,当运放的输出电压发生变化时,会使得三极管的工作点发生变化,从而控制电流的大小,实现恒流输出。
四、具体的应用案例恒流源电路在实际应用中有着广泛的应用。
其中,一种典型的应用是LED的恒流驱动器。
恒流源电路原理
恒流源电路是一种电路设计,用于提供固定的电流输出。
它的原理基于一种基本的电流控制原理,即稳定电流的传导。
该电路的核心是一个恒流源,它能够持续地提供特定的电流。
恒流源通常由一个反馈回路和一个电流传感器组成。
电流传感器用于监测电路中的电流,并将反馈信号发送回恒流源,以调整输出电流。
在恒流源电路中,负载的电流会通过反馈回路被检测,并与恒定的参考电流进行比较。
如果负载电流低于参考电流,则恒流源将增加输出电流,以使其保持恒定。
反之,如果负载电流高于参考电流,则恒流源会降低输出电流。
通过这种反馈机制,恒流源能够自动调整输出电流,以保持所需的稳定电流。
恒流源电路常用于需要固定电流的应用中,如LED驱动、电流源驱动器等。
它能够确保在负载变化或环境条件变化时,输出电流始终保持恒定,提高了电路的稳定性和可靠性。
总之,恒流源电路通过反馈回路和电流传感器实现对输出电流的监测和调整,以提供稳定的电流输出。
它是一种常用的电流控制电路,在许多应用中发挥着重要的作用。
信号恒流源电路
信号恒流源电路是一种能够提供稳定电流的电子电路,它在许多领域都有广泛的应用,如通信、医疗、工业控制等。
恒流源电路的主要特点是能够提供稳定的电流,不受电源电压波动或负载变化的影响。
信号恒流源电路的基本原理是利用负反馈来控制电流的输出。
在电路中,一个电压或电流的取样信号与参考信号进行比较,然后将比较结果反馈到输入端,以调整输入信号的幅度或相位,从而保持输出电流的恒定。
信号恒流源电路通常由电源、取样电阻、比较器和放大器等元件组成。
其中,取样电阻用于将输出电流转换为电压信号,比较器用于比较取样电压和参考电压,并将比较结果反馈到放大器。
放大器则根据反馈信号调整输入信号的幅度或相位,以保持输出电流的恒定。
信号恒流源电路的特点是输出电流稳定、精度高、负载调整率低等。
它可以用于驱动各种不同类型的负载,如LED灯、传感器、继电器等。
在实际应用中,信号恒流源电路可以通过调整参考信号的幅度或相位来改变输出电流的大小,从而实现电流的调节和控制。
此外,信号恒流源电路还可以采用数字化控制技术进行控制和调节。
数字化控制技术可以进一步提高恒流源电路的精度和稳定性,同时还可以实现远程控制和自动化控制等功能。
总之,信号恒流源电路是一种重要的电子电路,它在许多领域都有广泛的应用。
随着科技的不断发展和进步,信号恒流源电路的性能和应用范围也将不断得到提升和拓展。
第一章绪论众所周知,许多科学实验都离不开电源,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管来显示电压或电流,搭配电位器来调整所要的电压及电流输出值:使用上若要调整精确的电压或者电流输出,须搭配精确的显示仪表监测,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。
因此,如果直流电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,以精确的微机控制取代不精确的人为操作,在实验开始之前就对一些参数进行预设,这将会给各个领域中的实验研究带来不同程度的便捷与高效。
§1.1 恒流源的应用1.1.1 在计量领域中的应用电流表的校验宜用恒流源。
校验时,将待校的电流表与标准电流表串接于恒流源电路中,调节恒流源的输出电流大小至被校表的满度值和零度值,检查各电流表指示是否正确。
在广泛应用的DDZ系列自动化仪表中,为避免传输线阻抗对电压信号的影响,其现场传输信号均以恒流给定器提供的 0~10mA(适用于DDZ-II系列自动化仪表)或 4~20mA(适用于DDZ-III系列自动化仪表)直流电流作为统一的标准信号,便于对各种信号进行变换和运算,并使电气、数模之间的转换均能统一规定,有利于与气动仪表、数字仪表的配合使用。
在某些精密测量领域中,恒流源充当着不可替代的角色。
如给电桥供电、用电流电压法测电阻值等。
各种辉光放电光源:如光谱仪中的氢灯、氖灯,一旦被点燃,管内稀薄气体讯速电离。
由于离化过程的不稳定性并恒有增加的倾向,放电管中的电流将随之上升。
因此,在灯管上加以恒定电压时,它是不稳定的,其电流值可能增大到使灯管损坏。
为了稳定放电电流,从而稳定灯管的工作状态,最好采用恒流源供电。
各种标准灯(如光强度标准灯等)的冷态电阻接近于零,在使用时为防止电流冲击,一般通过调压器或限流电阻逐步加大电流至额定值,既不方便,又不安全。
双运放恒流源电路详解1.引言在文章中,1.1 概述部分旨在介绍双运放恒流源电路的背景和基本概念。
本文将详细阐述双运放恒流源电路的原理和应用前景,并对其进行总结。
首先,双运放恒流源电路是一种常见的电子电路设计技术,它通过使用两个运算放大器(运放)来实现一个可以输出稳定电流的电路。
这种电路在许多应用领域中得到了广泛的应用,如电源管理、仪器仪表以及通信系统等。
恒流源电路的基本原理是通过将一个稳定的参考电流与负载电阻相连接,从而实现一个稳定输出电流的源。
双运放恒流源电路的特点是它能够提供高的输出阻抗,从而减小对负载的影响,同时还有较好的稳定性和精度。
在本文的后续部分,我们将深入探讨双运放恒流源电路的基本原理。
首先,我们会详细介绍双运放的基本工作原理,包括其输入输出特性和放大功能。
随后,我们将进一步解释恒流源电路的原理,包括如何实现恒流输出以及如何保持输出的稳定性和精度。
而后,我们将探讨双运放恒流源电路的应用前景。
由于其具有稳定的输出特性和高输出阻抗,双运放恒流源电路在一些关键应用中具有重要的作用。
例如,在电源管理中,恒流源电路可以用于稳定电池充电,保证电池的使用寿命;在仪器仪表中,它可以作为精确且可靠的电流源,用于仪器的校准和运行;在通信系统中,恒流源电路可以提供稳定的电流驱动,保证数据传输的质量等。
最后,我们将总结本文的主要内容和观点。
通过对双运放恒流源电路的详细讲解,我们希望读者能够更好地理解其原理和应用,并在实际工程中灵活运用。
在接下来的章节中,我们将逐一阐述双运放恒流源电路的各个方面,带领读者深入理解这一电路设计技术的内涵。
1.2文章结构文章结构的部分内容可以如下编写:文章结构:本文主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
在概述中,将介绍双运放恒流源电路的背景和意义。
文章结构部分即为本节所述的内容,将对文章的整体结构进行说明,使读者能够清晰地了解文章的组成部分。
第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。