2012-2013华农《概率论》期末考试试卷参考答案
- 格式:doc
- 大小:366.50 KB
- 文档页数:7
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
3《概率论与数理统计》期末考试试题答案A卷华中农业⼤学本科课程考试参考答案与评分标准考试课程:概率论与数理统计学年学期:试卷类型:A 卷考试时间:⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每⼩题2分,共10分。
)1. 设A 、B 满⾜1)(=A B P ,则.【 d 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ?;(d ))()(B P A P ≤.2. 设X ~N (µ,σ2),则概率P (X ≤1+µ)=()【 d 】 A )随µ的增⼤⽽增⼤; B )随µ的增加⽽减⼩; C )随σ的增加⽽增加; D )随σ的增加⽽减⼩.3. 设总体X 服从正态分布),(N 2σµ,其中µ已知,2σ未知,321X ,X ,X 是总体X 的⼀个简单随机样本,则下列表达式中不是统计量的是.【 c 】(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )µ+2X .4. 在假设检验中, 0H 表⽰原假设, 1H 表⽰备择假设, 则成为犯第⼆类错误的是.【 c 】(a )1H 不真, 接受1H ;(b )0H 不真, 接受1H ;(c )0H 不真, 接受0H ;(d )0H 为真, 接受1H .5.设n 21X ,,X ,X 为来⾃于正态总体),(N ~X 2σµ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S µ--=∑=,2n1i i24)X(n1S µ-=∑=,则服从⾃由度为1-n 的t 分布的随机变量是 . 【 b 】(a )1n S X T 1-µ-=;(b )1n S X T 2-µ-=;(c )nS X T 3µ-=;(d )nS X T 4µ-=.⼆、填空题(将答案写在该题横线上。
第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率.3518第二章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe33-_____.3.设随机变量X 的分布函数为F (x )=⎩⎨⎧≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=_____3231_______. 6.X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]8.设随机变量X 的分布律为 =X 2,记随机变量Y 的分布函数为F Y (y 9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e ?|x |, ?∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).21 21(1-e ??) ⎪⎩⎪⎨⎧≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e⎩⎨⎧≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).求(1)X 的分布函数,(2)Y =X 的分布律.14.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =?2ln X 的分布函数及密度函数.第三章1.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x (1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独立,并说明理由.因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独立2.设二维随机变量221212(,)~(,, ,,)X Y N μμσσρ,且X 与Y 相互独立,则ρ=____0______. 3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则2X-Y~___ N (-3,25)____. 4.,5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度101()2y x f x y others⎧≤<≤⎪=⎨⎪⎩,.62)随机变量Z=XY 的分布律.7求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列. a=0.3因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独立。
2009-2010 学年第1学期 概率论(A 卷)考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每空3分,共24分) 1.设两事件,A B 满足条件()()P A B P A B =,且()(01P A p p =<<,则()P B =________________.2.设1(),F x 2(),F x 3()F x 分别是随机变量1,X 2,X 3X 的分布函数,为使123()()()()F x a Fx b F xc F x=++是某一随机变量的分布函数,则a+b+c= . 3.设随机变量X服从泊松分布()P λ,且{1}{2P X P X ===,则λ=___________;{3}P X == .4. 设(0,1),21,X N Y X =+ 则{|1|2}P Y -<=______________.5. 若随机变量ξ在[1,6]上服从均匀分布,则方程210X X ξ++=有实根的概率为_______. 6. 设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)E X Y -=_______________; (2)D X Y -=_______________.二、选择题(每小题3分,本题共15分)1. 对两事件A 和B ,下列命题成立的是( ). A 、如果A 、B 相容,则A B 、也相容; B 、如果P(AB)=0,则A 、B 不相容;C 、如果A 、B 相互独立,则()()P B A P B =成立;D 、如果A 、B 对立,则事件A 、B 相互独立.2. 设连续型随机变量X 的密度函数为()f x ,且()(),,f x f x x R -=∈又设X 的分布函数为()F x ,则对任意正实数,()a F a -等于( ).(A) 01();af x dx -⎰(B) 01();2a f x dx -⎰ (C) ();F a (D) 2() 1.F a -3. 当随机变量X 的可能值充满区间 时,则函数()cos()F x x =才可以成为随机变量X 的分布函数.( ) (A)0,2π⎡⎤⎢⎥⎣⎦; (B),2ππ⎡⎤⎢⎥⎣⎦; (C)[]0,π; (D)3,22ππ⎡⎤⎢⎥⎣⎦. 4. 设随机变量X 与Y 相互独立,其概率分布分别为10.30.7X P10.30.7YP则有( ).(A )()0;P X Y == (B )()0.5;P X Y == (C )()0.58;P X Y == (D )() 1.P X Y == 5. 随机变量X 的概率密度函数为21(),(1)X f x x R x π=∈+,则Y=3X 的密度函数为( )A 、21,(1)y R y π∈+; B 、23,(9)y R y π∈+; C 、21,(1)9y R yπ∈+; D 、21,.(19)y R y π∈+ 三、解答题(15分)设随机变量X 与Y 相互独立,它们的密度函数分别为:1,02()20,X x f x ⎧≤≤⎪=⎨⎪⎩其他; 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩.试求:(1) (X,Y)的联合密度函数;(4分) (2) (2)P Y X <;(5分) (3) ()2D X Y -.(6分)四、简答题(10分)某人考公务员接连参加同一课程的笔试和口试,笔试及格的概率为p ,若笔试及格则口试及格的概率也为p ,若笔试不及格则口试及格的概率为2p . (1)如果笔试和口试中至少有一个及格,则他能取得某种资格,求他能取得该资格的概率.(5分)(2)如果已知他口试已经及格,求他笔试及格的概率.(5分)五、解答题(15分)设平面区域为{}2(,)01,D x y x x y x =≤≤≤≤,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求(X,Y)的联合密度函数;(4分)(2) 求关于X 和关于Y 的边缘密度函数(),()X Y f x f y ,并问X 、Y 是否独立?(7分) (3) 求1().3P X ≤(4分)六、简答题(10分)某仪器装有三支独立工作的同型号电子元件,其寿命X (单位为小时)都服从同一指数分布,概率密度为6001,0()6000,0xe xf x x -⎧>⎪=⎨⎪≤⎩, 求:(1){200}P X <;(4分)(2)在仪器使用的最初200小时内,至少有一支电子元件损坏的概率.(6分)七、简答题(11分)一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.1,0.2,0.3。
12012-2013学年第 2学期《概率论与数理统计》试卷评分标准一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. D 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4 5.(每空0.5分)6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,),N n σμ或2(,)10N σμ 三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x x (3分)P{1≤X ≤3} =F(3)-F(1)=e -1-e -3, (3分)2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343(2分)⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( (3分) 23a=(1分) 3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A = (2分) 由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,(3分)由上两式知,任取一件为次品,该产品是乙厂生产的可能性最大。
(1分)4.解:解: (,)X Y 的概率密度为2(2分)(2分)同理可得\ (2分)5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠ (1分)由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , (3分) 所以在05.0=α不能拒绝0H 。
故认为该动物的体重平均值为53公斤。
(2分)四、1. 解:已知X 的概率密度函数为1,01,()0,.X x f x <<⎧=⎨⎩其它Y 的分布函数F Y (y )为11(){}{21}{}22Y X y y F y P Y y P X y P X F --⎛⎫=≤=+≤=≤= ⎪⎝⎭(4分) 因此Y 的概率密度函数为1,13,11()()2220,.Y Y X y y f y F y f ⎧<<⎪-⎛⎫'===⎨ ⎪⎝⎭⎪⎩其它 (4分) 或用代公式法也可以解出答案。
概率论(华南农业大学)华南农业大学智慧树知到答案2024年第一章测试1.设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=( )。
A:{1,2,5,6,7,9,10} B:{1,2,3,5,6,7,8,9,10} C:{1,2,5,6,7,8,9,10}D:{1,2,4,5,6,7,8,9,10}答案:C2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )。
A:0.375 B:0.25 C:0.325 D:0.125答案:A3.假设任意的随机事件A与B,则下列一定有()。
A: B: C: D:答案:B4.设A,B为任意两个事件,则下式成立的为( ) 。
A: B: C: D:答案:A5.设则=()。
A:0.24 B:0.48 C:0.30 D:0.32答案:C6.设A与B互不相容,则结论肯定正确的是 ( )。
A: B:与互不相容 C: D:答案:C7.已知随机事件A, B满足条件,且,则()。
A:0.3 B:0.4 C:0.7 D:0.6答案:C8.若事件相互独立,且,则( )。
A:0.775 B:0.875 C:0.95 D:0.665答案:A9.A:B: C: D:答案:D10.不可能事件的概率一定为0。
()A:错 B:对答案:B11.A:错 B:对答案:A12.贝叶斯公式计算的是非条件概率。
()A:错 B:对答案:A第二章测试1.下列各函数中可以作为某个随机变量X的分布函数的是( )。
A: B: C:D:答案:C2.设随机变量,随机变量, 则 ( )。
A: B: C: D:答案:C3.设随机变量X服从参数为的泊松分布,则的值为()。
A: B: C: D:答案:C4.设随机变量X的概率密度函数为,则常数()。
A: B: C:5 D:2答案:C5.如果随机变量X的密度函数为,则()。
A:0.875 B: C: D:答案:D6.A:对任意实数,有 B:只对部分实数,有。
2《概率论与数理统计》期末考试_[B]答案华中农业大学本科课程期末考试试卷B 卷答案考试课程:概率论与数理统计学年学期:考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设A 和B 是任意两个概率不为0的互不相容事件,则下列结论中肯定正确的是【(d)】.(a) A 与B 不相容; (b) A 与B 相容; (c) P(AB)=P(A)P(B); (d) P(A -B)=P(A). 2. 设随机变量序列X 服从N(μ,16), Y 服从N(μ,25),记p 1=P{X<μ-4},p 2=P{X>μ+5},则下列结论正确的是【(a) 】 .(a)对任何实数μ,都有p 1= p 2; (b) 对任何实数μ,都有p 1< p 2; (c) 对个别实数μ,才有p 1= p 2; (d) 对任何实数μ,都有p 1> p 2. 3. 设总体X 服从正态分布),(N 2σμ,其中μ未知,2σ已知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是【(d )】.(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )μ+2X .4.在线性回归分析中,以下命题中,错误的是【(d )】 .(a )SSR 越大,SSE 越小;(b )SSE 越小,回归效果越好;(c )r 越大,回归效果越好;(d )r 越小,SSR 越大.5.设随机变量X~F(n,m),欲使P{λ1<x<=""></xλ1的值可为【(a )】 .(a )),(2m n F α; (b )),(2n m F α; (c )12),(-αm n F ;(d )12),(-αn m F ;………………………………… 装……………………………… 订……………………………… 线…………………………………二、填空题(将答案写在该题横线上。
华南农业大学期末考试试卷(A卷)2016-2017学年第1学期考试科目:概率论与数理统计考试类型:(闭卷)考试考试时间:120分钟学号姓名年级专业题号一二三总分得分评阅人得分一选择题(每小题3分,共计15分)1、设A,B是两个互斥的随机事件,则必有_________ ()(A)P(A∪B)=P(A)+P(B) (B)P(A-B)=P(A)-P(B)(C)P(AB)=P(A)P(B) (D)P(A)=1-P(B)2、在1到100的自然数里任取一个数,则它能被2和5整除的概率为()(A)错误!未找到引用源。
(B)错误!未找到引用源。
错误!未找到引用源。
(C)错误!未找到引用源。
错误!未找到引用源。
(D)错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
3、设F(x)与G(x)分别为随机变量Χ与Y的分布函数,为使H(x)=aF(x)+bG(x)是某一随机变量的分布函数,在下列给定的各组数据中应取()(A) a=0.3,b=0.2 (B)a=0.3,b=0.7 (C)a=0.4,b=0.5 (D)a=0.5,b=0.64、设X1,X2,...,Xn为取自总体N(0 ,σ^2)的一个样本,则可以作为σ^2的无偏估计量的是()(A)(B) (C)(D)5.设x1,x2,···,x n为正态总体N(μ,4)的一个样本,错误!未找到引用源。
表示样本均值,则μ的置信度为1-α的置信区间为()(A)(错误!未找到引用源。
,错误!未找到引用源。
). (B)(错误!未找到引用源。
,错误!未找到引用源。
).(C)(错误!未找到引用源。
,错误!未找到引用源。
). (D)(错误!未找到引用源。
,错误!未找到引用源。
)参考答案:答案:1、A 2、B 3、B 4、5. D解答:因为正态分布总体方差已知,得错误!未找到引用源。
错误!未找到引用源。
N(μ,错误!未找到引用源。
),错误!未找到引用源。
华南农业大学期末考试试卷( A 卷 )2009-2010 学年第1学期 考试科目:概率论考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每空3分,共24分)1.设两事件,A B 满足条件()()P AB P AB =,且()(01)P A p p =<<,则()P B =________________.2.设1(),F x 2(),F x 3()F x 分别是随机变量1,X 2,X 3X 的分布函数,为使123()()()()F x aF x bF x cF x =++是某一随机变量的分布函数,则a+b+c= .3.设随机变量X 服从泊松分布()P λ,且{1}{2}P X P X ===,则λ=___________;{3}P X == .4. 设(0,1),21,X N Y X =+则{|1|2}P Y -<=______________.5. 若随机变量ξ在[1,6]上服从均匀分布,则方程210X X ξ++=有实根的概率为_______.6. 设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)E X Y -=_______________; (2)D X Y -=_______________.二、选择题(每小题3分,本题共15分)1. 对两事件A 和B ,下列命题成立的是( ).A 、如果A 、B 相容,则A B 、也相容;B 、如果P(AB)=0,则A 、B 不相容;C 、如果A 、B 相互独立,则()()P B A P B =成立;D 、如果A 、B 对立,则事件A 、B 相互独立. 2. 设连续型随机变量X 的密度函数为()f x ,且()(),,f x f x x R -=∈又设X 的分布函数为()F x ,则对任意正实数,()a F a -等于( ).(A) 01();af x dx -⎰ (B) 01();2a f x dx -⎰ (C) ();F a (D) 2() 1.F a - 3. 当随机变量X 的可能值充满区间 时,则函数()cos()F x x =才可以成为随机变量X 的分布函数.( ) (A)0,2π⎡⎤⎢⎥⎣⎦; (B),2ππ⎡⎤⎢⎥⎣⎦; (C)[]0,π; (D)3,22ππ⎡⎤⎢⎥⎣⎦. 4. 设随机变量X 与Y 相互独立,其概率分布分别为010.30.7XP 010.30.7Y P 则有( ).(A )()0;P X Y == (B )()0.5;P X Y ==(C )()0.58;P X Y == (D )() 1.P X Y ==5. 随机变量X 的概率密度函数为21(),(1)X f x x R x π=∈+,则Y=3X 的密度函数为( ) A 、21,(1)y R y π∈+; B 、23,(9)y R y π∈+; C 、21,(1)9y R y π∈+; D 、21,.(19)y R y π∈+ 三、解答题(15分)设随机变量X 与Y 相互独立,它们的密度函数分别为:1,02()20,X x f x ⎧≤≤⎪=⎨⎪⎩其他; 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩. 试求:(1) (X,Y)的联合密度函数;(4分)(2) (2)P Y X <;(5分)(3) ()2D X Y -.(6分)四、简答题(10分)某人考公务员接连参加同一课程的笔试和口试,笔试及格的概率为p ,若笔试及格则口试及格的概率也为p ,若笔试不及格则口试及格的概率为2p . (1)如果笔试和口试中至少有一个及格,则他能取得某种资格,求他能取得该资格的概率.(5分)(2)如果已知他口试已经及格,求他笔试及格的概率.(5分)设平面区域为{}2(,)01,D x y x x y x =≤≤≤≤,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求(X,Y)的联合密度函数;(4分)(2) 求关于X 和关于Y 的边缘密度函数(),()X Y f x f y ,并问X 、Y 是否独立?(7分)(3) 求1().3P X ≤(4分)某仪器装有三支独立工作的同型号电子元件,其寿命X (单位为小时)都服从同一指数分布,概率密度为6001,0()6000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 求:(1){200}P X <;(4分)(2)在仪器使用的最初200小时内,至少有一支电子元件损坏的概率.(6分)一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.1,0.2,0.3。
2012学年第一学期概率论与数理统计试题解答参考一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. C 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4; 5. 0.6; 6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,)10N σμ三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x xP{1≤X ≤3} =F(3)-F(1)=e -1-e -3,2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( 23a=3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A =由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,由上两式知,任取一件为次品,该产品是乙厂生产的可能性较大。
4.解:解: 由题设可知(,)X Y 的概率密度为 ()2,01,01,0,y x x f x y ≤≤-≤≤⎧=⎨⎩其他于是关于X 的边缘分布密度为()()()10221,01,0,x X dy x x f x f x y dy -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘分布密度为()()()10221,01,0,y Y dx y y f y f x y dx -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , 所以在05.0=α不能拒绝0H 。
华南农业大学期末考试试卷(A 卷)2012-2013学年第 1 学期 考试科目: 概率论考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业5 小题,每小题 3 分,共 15 分) 1、设A 与B 互斥(互不相容),则下列结论肯定正确的是( D )。
(A) A 与B 不相容 (B) A 与B 必相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=2、设随机变量X 与Y 相互独立,其概率分布如下,则有( C )成立。
010.20.8X P 010.20.8Y P(A) ()0P X Y == (B) ()0.4P X Y ==(C) ()0.68P X Y == (D) ()1P X Y ==3、设随机变量ξ的概率密度为()x ϕ,η=12ξ,则η的概率密度为( A )。
(A)1122y ϕ-⎛⎫ ⎪⎝⎭; (B) 112y ϕ-⎛⎫- ⎪⎝⎭; (C) 12y ϕ-⎛⎫- ⎪⎝⎭; (D)2(12)y ϕ-4、设随机变量ξ服从2λ=的泊松分布,则随机变量2ηξ=的方差为( A )。
(A) 8; (B) 4; (C) 2; (D) 16.5、设2~(0,1),~(,)N N a ξησ,则η与ξ之间的关系是( B )。
(A) a ξησ-=; (B) a ησξ=+; (C)2a ξησ-= ; (D)2a ησξ=+.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)1、设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件()A B C =__{1,2,5,6,7,8,9,10} ________。
2、抛一枚硬币三次,ξ和η分别表示出现正面的次数和出现反面的次数,则{}P ξη>=__12_______。
3、3、设随机变量X 的分布函数0,0.2,()0.9,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111122x x x x <--≤<≤<≥,则{03}P X ≤≤=_0.8_。
4、函数2(),xx Ae x ϕ-=-∞<<∞是某随机变量的概率密度,则A 的值是。
5、设~(0,1),~(10,4)N N ξη,ξ的分布函数为(){}x P x ξΦ=≤,则用()x Φ表示概率{812}P η<≤=___2(1)1Φ-_________。
6、设(ξ、η)的联合分布律为1 则P{ξη=0}=_____0.5________。
7、设ξ服从参数为λ的泊松分布,且已知{2}{3}P P ξξ===,则{4}P ξ==_____________3278e -或33.375e -________。
8、设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)D X Y -=______21_________。
三、解答题(本大题共 6 小题,共 61 分) 1、设离散型随机变量ξ和η的分布律分别为2424{}(1),0,1,2.{}(1),0,1,2,3,4.k k k m m m P k C p p k P m C p p m ξη--==-===-=已知5{1}9P ξ≥=,求{1}P η≥。
(10分) 解:由25{1}1{1}1{0}1(1)9P P P p ξξξ≥=-<=-==--=得24(1)9p -=解出13p = (5)分故4165{1}1{1}1{0}11381P P P ηηη⎛⎫≥=-<=-==--= ⎪⎝⎭ 。
………………5分2、设有A ,B ,C ,D 四种元件,组成如图的系统,它们能正常工作的概率分别为1234(),(),(),()P A p P B p P C p P D p ====,又各元件损坏与否是相互独立的,问此系统能正常工作的概率是多少?(6分)解:设A 、B 、C 分别表示电子元件A 、B 、C 正常工作,D 1表示第1个D 元件(左边的)正常工作,D 2表示第2个D 元件(右边的)正常工作。
则所求概率为: 解法1: 12{()}p P D A B C D = ………………2分12112241232()()()[1()][1()()()][1(1)(1()()(1)])()()P D P D P D P P D P A B C P D P ABC P A P D B P C p p p p ==-=-=---- ………………6分解法2: 12{()}p P D A B C D = 121212{}P D AD D BD D CD = 121212{}{}{}P D AD P D BD P D CD =++12121122{}{}{{}}P D ABD P D ACD P D B P D C CD D AB ---+222414243p p p p p p =++22241241342413232}p p p p p p p p p p p p p --+-()12412312132323p p p p p p p p p p p p p --+-=++3、在电源电压不超过200伏,200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2,假设电源电压ξ服从2(220,25)N ,试求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200~240伏的概率β。
已知标准正态分布函数()x Φ的值:(0.8)0.788,(0.2)0.579,(0.032)0.512,(0.4)0.655.Φ=Φ=Φ=Φ=(10分)解:设1A ={电压不超过200伏},2A ={电压在200---240伏}3A ={电压超过240伏},B={电子元件损坏},则由条件知ξ服从2(220,25)N ,因此1220200220(){200}{}(0.8)1(0.8)10.7880.212.2525P A P P ξξ--=<=<=Φ-=-Φ=-= …………………………………2分2200220220240220(){200240}{}252525(0.8)(0.8)2(0.8)10.576.P A P P ξξ---=≤<=≤<=Φ-Φ-=Φ-=…………………4分……………………………6分(1)由题设知,,由全概公式有)……………8分(这里,“0.0642”应为“约等于”,精确一点的应该是“0.064176”)(2)由条件概率(或贝叶斯公式)知…………10分4、设随机变量X 与Y 相互独立,它们的密度函数分别为:1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (X,Y)的联合密度函数;(5分) (2) 概率(3)P X Y +≤;(5分) (3) 方差()2D X Y -。
(5分)解:(1)因为随机变量X ,Y 相互独立,所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 ………………………………5分 (2){}33(,)x y P X Y f x y dxdy +≤+≤=⎰⎰3330[]xy e dy dx --=⎰⎰………………………………………3分39301(1)3xe dx -+=-⎰ ()9183e -=+ …………………………………………5分 (3)301332EX xdx ==⎰;()322330011339E X x dx x ===⎰; 所以()()222333()24DX E X EX =-=-=;………………………2分3333000011333y y yy EY y e dy ye e dy e ∞∞--∞--∞=⋅=-+=-=⎰⎰ 2230239y EY y e dy ∞-=⋅=⎰()()222211939DY E Y EY ⎛⎫=-=-= ⎪⎝⎭ ………………………………4分 所以3128(2)4()()4499D X Y D X D Y -=+=⨯+= …………………………………5分[解法二]由密度函数可知~(0,3),(3)X U Y E ,所以,22(30)311(),(),12439D X D Y -====……………………………………3分所以3128(2)4()()4499D X Y D X D Y -=+=⨯+= …………………………………5分5、设平面区域为{}222(,),(0)D x y x y a a =+≤>,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求出(X,Y)的联合密度函数;(3分)(2) 分别求出关于X 和关于Y 的边缘密度函数(),()X Y f x f y ;(4分) (3) 问X 、Y 是否独立?(3分)解:(1)区域D 的面积为:2D S a π=,又已知(,)X Y 在区域D 服从均匀分布,所以(,)X Y 的联合密度函数为:22221,(,)0,x y af x y aπ⎧+≤⎪=⎨⎪⎩否则 …………………………………………………3分 (2)当x a >时,(,)0f x y =,所以()00X f x dy ∞-∞==⎰;当x a ≤时,()X f x == 即,关于X 的边缘密度函数为:()0,..X x af x OW ≤=⎪⎩ ………………………………5分 同理,可以得到关于Y 的边缘密度函数为()0,..Y y af y OW ≤=⎪⎩ ……………………………7分(1) 当,x a y a ≤≤时,()()(,)X Y f x f y f x y =≠ ……………………………9分 所以,X 、Y 不相互独立。
…………………………………………………10分 6、设随机变量X 服从参数为2的指数分布,证明: 21X Y e -=-在区间(0,1)上服从均匀分布。
(10分)证明 由题意知,X 的概率密度为22,0()0,0x X e x f x x -⎧>=⎨≤⎩………………2分 又因为21x y e -=-单调递增,且反函数为1ln(1)(01)2x y y =--<<…………5分故1111()(ln(1))(ln(1))22(1)2(1)2Y X X f y f y f y y y =--=----……8分12[ln(1)]211,ln(1)01210,ln(1)02y e y y y -⋅--⎧-->⎪⎪-=⎨⎪--≤⎪⎩1,010,y <<⎧=⎨⎩其它 ……………………10分。