数字信号复习题2
- 格式:doc
- 大小:1.28 MB
- 文档页数:28
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT的是( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理考试题一.(20分)简答题:1.FIR 滤波器具有线性相位的条件是什么?其相位表达式是什么?答:FIR 滤波器具有线性相位的条件是:h(n)=±h(N-1-n), 其相位表达式是0(),θωθτω=-2.矩形窗有什么优缺点?如何减轻吉布斯现象?答:矩形窗过度带窄,阻带率减小,吉布斯现象严重。
减轻吉布斯现象的方法:1)调整窗口长度N 控制过渡带的宽度,减小带内波动,加大阻长的率减。
2)选择其他符合要求的窗。
3.解释混叠、泄漏产生的原因,如何克服或减弱?答:如果采样频率过低,在DFT 运算时,频域会出现混频现象,形成频谱失真;克服方法:提高采样频率。
泄漏是因为加有限窗引起的,克服方法:尽量用旁瓣小主瓣窄的窗函数。
4.基-2FFT 快速计算的原理是什么?其计算次数是多少?答:基-2FFT 快速计算的原理是:利用W N k π的特性,将N 点序列分解为较短的序列。
计算短序列的DFT ,最后再组合起来。
基-2FFT 快速计算共运行(N/2)log 2N 个蝶形运算。
5.试简述数字滤波器的几个主要分类及特点。
答:数字滤波器的几个主要分类:IIR 、FIR 。
IIR 数字滤波器的特点:用较低阶数可获得经济、效率高,幅频特性理想,相位特性非线性;FIR 数字滤波器的的特点:用较高阶数可获得,成本高,信号延时大,相位特性线性,对参数量化效应不明显。
6.如何对频带无限的模拟信号进行采样?在工程中,时间的采样频率如何确定? 答:对频带无限的模拟信号进行采样时应该先通过一个低通滤波器再进行采样即可。
工程中,时间的采样频率确定应至少为原信号频率的2倍以上。
7.为什么IIR 数字滤波器不可以设计成线性相位?答:IIR 数字滤波器设计过程中只考虑了幅频特性,没有考虑相位特性,所设计的滤波器相位特性一般是非线性的。
二.(10分)已知一信号的最高频率成分不大于1.25Khz ,现希望用经典的基2FFT 算法对该信号作频谱分析,因此点数N 应是2的整数次幂,且频率分辨率Δf ≤5Hz,试确定(1)信号的抽样频率f s ;(2)信号的纪录长度T ;(3)信号的长度N 。
一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。
7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。
8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。
9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型 的运算速度最高。
10、数字信号处理的三种基本运算是: 延时、乘法、加法11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。
12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。
13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
一、选择题1.序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是7, 5点圆周卷积的长度是5。
DA. 5,5B. 6,5C. 6,6D. 7,52.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域 混叠现象,则频域抽样点数N 需满足的条件是( A ) A. B.C. D.3.关于窗函数设计法中错误的是: D A. 窗函数的截取长度增加,则主瓣宽度减小;B. 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C. 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D.窗函数法不能用于设计高通滤波器;4.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( A )即可完全不失真恢复原信号。
A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器D.理想带阻滤波器5. 一个序列)(n x 的离散傅里叶变换的变换定义为A 。
A.∑∞-∞=-=njn j e n x e X ωω)()( B.∑-=-=10/2)()(N nNnk j e n x k X πC.∑∞-∞=-=nnz n x z X )()( D.∑-=-=10)()(N nknnk W A n x z X 。
6.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )A .实、偶序列 B. 虚、偶序列C .实、奇序列 D. 虚、奇序列7. 在基2 DIT-FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )A. 8B. 16C. 1D. 48. 如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为(C)A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器9.在IIR数字滤波器结构中,能通过单独调整系数来调整一对零点或极点的结构是(C)A.直接I型B.直接II型C.级联型D.并联型10.δ(n)的z变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π11.从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f s与信号最高频率f max关系为:AA. f s≥2f maxB. f s≤2 f maxC. f s≥f maxD. f s≤f max12.无限长单位冲激响应(IIR)滤波器的结构是C型的。
一、填空题1、(2分) 序列的Z变换是:2、(2分) 的Z变换为__________3、(2分) 根据系统函数表达式,满足条件__________不等于零时,系统被称为IIR系统。
4、(4分) 根据系统函数表达式,当满足条件____________=0和_______=1时,系统称为FIR系统5、(2分) 系统频率响应和系统函数H(Z)的关系是________6、(2分) 系统函数H(z)的定义式为__________7、(2分)8、(4分) 线性相位FIR数字滤波器的第二类线性相位表达式为__________________ ,满足第二类线性相位的充分必要条件是:h(n)是______且_________9、(4分) 线性相位FIR数字滤波器的第一类线性相位表达式为__________________,满足第一类线性相位的充分必要条件是:h(n)是_______ 且_________。
10、(4分) 设序列长度N=16,按DIT-FFT做基2FFT运算,则其运算流图有______级碟形,每一级由_______个碟形运算构成11、(4分) 如果序列的长度为M,则只有当____________________ 时,才可由频域采样恢复原序列,否则产生______现象.12、(2分) 因果稳定离散系统的系统函数的全部极点都落在Z平面的__________________13、(2分)14、(4分) 如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算2.^10点的基2FFT需要______级蝶形运算,总的运算时间是______μs 15、(2分) 无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,______和______四种16、(2分)17、(4分) 对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为Xm(n)=__________,它是__________序列18、(2分) DFT与DFS有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。
2.1填空题(1) 双边序列z 变换的收敛域形状为 。
解:圆环或空集(2)对4()()x n R n =的Z 变换为 ,其收敛域为 。
解:411,01z z z --->- (3)抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
解:k Nj eZ π2=(4)序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
解:{0,3,1,-2; n=0,1,2,3}(5)设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
解: )()()(n h n x n y *=(6)因果序列x(n),在Z →∞时,X(Z)= 。
解:x(0)(7)FT[x(n)]存在的充分必要条件是 。
解:序列x(n)绝对可和(或()n x n ∞=-∞<∞∑)(8)共轭对称序列的实部是 函数,虚部是 函数。
解:偶;奇(9)设)]([)(n x FT e X j =ω,那么)]([0n n x FT -= 。
解:0()j n j e X e ωω-(10)设)]([)(11n x FT e X j =ω,)]([)(22n x FT e X j =ω,那么)]()([21n bx n ax FT += 。
解:12()()j j aX e bX e ωω+(11)Z 变换存在的条件是 。
解:()n n x n z ∞-=-∞<∞∑(12)单位圆上的Z 变换就是序列的 。
解:傅里叶变换(13)若系统函数H( z)的所有极点均在单位圆内,则该系统为 系统。
解:因果稳定(14)若πωω20,1)(≤≤=j e H ,则该滤波器为 。
解:全通滤波器(15)已知x(n)=IDFT[X(K)],x(n)的隐含周期为 。
解:N(16)设x(n)是长度为M(N M ≤)的有限长序列,y(n)为x(n)的循环移位,即)())(()(n R m n x n y N N +=,X(k)=DFT[x(n)]N ,N k ≤≤0,则Y(k)=DFT[y(n)]= 。
解:)(k X W kmM- (17)如果N n x DFT k X )]([)(=,10-≤≤N k ;)())(()(K R l k X k Y N N +=,则y(n)= 。
解:()nl N W x n2.2 选择题1.δ(n)的Z 变换是 ( )A.1B.δ(ω)C.2πδ(ω)D.2π 解:A2. 序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3B. 4C. 6D. 7 解:C3.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列 解:D4.一离散序列x(n),若其Z 变换X(z)存在,而且X(z)的收敛域为:R z x -<≤∞ ,则x(n)为 。
A .因果序列 B. 右边序列 C .左边序列 D. 双边序列 解:A5.一个稳定的线性时不变因果系统的系统函数H (z )的收敛域为 。
A.1 , <∞≤<r z r B. 1 r,0>≤<r z C. 1 , >∞≤<r z r D. 1 r,0<≤≤r z解:A6.下列关于因果稳定系统说法错误的是 ( ) A. 极点可以在单位圆外B. 系统函数的z 变换收敛区间包括单位圆C. 因果稳定系统的单位抽样响应为因果序列D. 系统函数的z 变换收敛区间包括z =∞解:A7.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含()。
A.单位圆B.原点C.实轴D.虚轴解A8.以下是一些系统函数的收敛域,则其中稳定的是()A.|z| > 2 B.|z| < 0.5C.0.5 < |z| < 2 D.|z| < 0.9解:C9.已知某序列Z变换的收敛域为∞>|z|>0,则该序列为( )A.有限长序列B.右边序列C.左边序列D.双边序列解:A11.线性移不变系统的系统函数的收敛域为|z|<2,则可以判断系统为( )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统解:C12.离散傅里叶变换是()的Z变换。
A.单位圆内等间隔采样 B. 单位圆外等间隔采样C.单位圆上等间隔采样 D. 右半平面等间隔采样解:C13.设有限长序列为x(n),N1≤n≤N2,当N1<0,N2>0,Z变换的收敛域为( )。
A. 0<|z|<∞B. |z|>0C. |z|<∞D. |z|≤∞解:A14.下列序列中z变换收敛域包括|z|=∞的是( )A.u(n+1)-u(n)B.u(n)-u(n-1)C.u(n)-u(n+1)D.u(n)+u(n+1)解:B15.已知某序列Z变换的收敛域为3<|z|<5,则该序列为()A.有限长序列B.右边序列C.左边序列D.双边序列解:D16.设有限长序列为x(n),N1≤n≤N2,当N1<0,N2=0时,Z变换的收敛域为()A.0<|z|<∞B.|z|>0C.|z|<∞D.|z|≤∞解:C17.已知x(n)的Z 变换为X(z),则x(n+n 0)的Z 变换为: 。
A .)(0z X n B. )(0z X z n C. )(0n z X D. )(0z X z n -解:B18. 已知某序列x (n )的z 变换为z +z 2,则x (n -2)的z 变换为 ( ) A. 45z z + B. 222---z zC. z z +2D. 11+-z解:D19.实序列的傅里叶变换必是( ) A .共轭对称函数 B .共轭反对称函数 C .线性函数 D .双线性函数 解:A20.序列共轭对称分量的傅里叶变换等于序列傅里叶变换的( ) A.共轭对称分量 B.共轭反对称分量 C.实部 D.虚部解:C21.下面说法中正确的是( )A.连续非周期信号的频谱为非周期连续函数B.连续周期信号的频谱为非周期连续函数C.离散非周期信号的频谱为非周期连续函数D.离散周期信号的频谱为非周期连续函数 解:A22.下面说法中正确的是( ) A.连续非周期信号的频谱为非周期离散函数 B.连续周期信号的频谱为非周期离散函数 C.离散非周期信号的频谱为非周期离散函数 D.离散周期信号的频谱为非周期离散函数 解:B23.下面描述中最适合离散傅立叶变换DFT 的是( ) A .时域为离散序列,频域也为离散序列B .时域为离散有限长序列,频域也为离散有限长序列C .时域为离散无限长序列,频域为连续周期信号D .时域为离散周期序列,频域也为离散周期序列 解:D24.对于序列的傅立叶变换而言,其信号的特点是( ) A .时域连续非周期,频域连续非周期B .时域离散周期,频域连续非周期C .时域离散非周期,频域连续非周期D .时域离散非周期,频域连续周期解:D25.以下说法中( )是不正确的。
A. 时域采样,频谱周期延拓B. 频域采样,时域周期延拓C. 序列有限长,则频谱有限宽D. 序列的频谱有限宽,则序列无限长 解:C26.全通网络是指 。
A. 对任意时间信号都能通过的系统 B. 对任意相位的信号都能通过的系统C. 对信号的任意频率分量具有相同的幅度衰减的系统D. 任意信号通过后都不失真的系统 解:C27.系统的单位抽样响应为()(1)(1)h n n n δδ=-++,其频率响应为( )A .()2cos j H e ωω=B .()2sin j H e ωω=C .()cos j H e ωω=D .()sin j H e ωω=解:A28.已知因果序列x (n )的z 变换X (z )=1121--+-z z ,则x (0)=( )A.0.5B.0.75C.-0.5D.-0.75解:A29. 对于x(n)=n21⎪⎭⎫⎝⎛u(n)的Z 变换,( )。
A. 零点为z=21,极点为z=0B. 零点为z=0,极点为z=21C. 零点为z=21,极点为z=1D. 零点为z=21,极点为z=2解:B30. 设序列x(n)=2δ(n+1)+δ(n)-δ(n -1),则0)(=ωωj e X 的值为( )。
A. 1B. 2C. 4D. 1/2 解:B31.若x(n)为实序列,)(ωj e X 是其傅立叶变换,则( ) A .)(ωj e X 的幅度和幅角都是ω的偶函数B .)(ωj e X 的幅度是ω的奇函数,幅角是ω的偶函数C .)(ωj e X 的幅度是ω的偶函数,幅角是ω的奇函数D .)(ωj e X 的幅度和幅角都是ω的奇函数 解:C2.3 问答题1.何谓最小相位系统?最小相位系统的系统函数)(min Z H 有何特点?解:一个有理系统函数,如果它的零点和极点都位于单位圆内,则称之为最小相位系统。
其特点如下:(1) 任何一个非最小相位系统的系统函数H(z)均可由一个最小相位系统和一个全 通系统级联而成。
(2) 在幅频响应特性相同的所有因果稳定系统集中,最小相位系统的相位延迟(负 的相位值)最小。
(3)最小相位系统保证其逆系统存在。
2.何谓全通系统?全通系统的系统函数)(Z H ap 有何特点?解: 一个稳定的因果全通系统,其系统函数)(Z H ap 对应的傅里叶变换幅值1)(=jw e H ,该单位幅值的约束条件要求一个有理系统函数方程式的零极点必须呈共轭倒数对出现,即∏∑∑=-*-=-=---=-==Nk kkNk kk M r r r ap Z Z Z a Z b Z Q Z P Z H 1111011)()()(αα。
因而,如果在k Z α=处有一个极点,则在其共轭倒数点*=kZ α1处必须有一个零点。
2.4 计算题1. 线性时不变系统的频率响应(传输函数)()()(),jw jw j w H e H e e θ=如果单位脉冲响应()h n 为实序列,试证明输入0()cos()x n A w n ϕ=+的稳态响应为00()()cos[()]jw y n A H e w n w ϕθ=++。
解:假设输入信号0()jw n x n e =,系统单位脉冲相应为h(n),系统输出为00000()()()*()()()()jw njw n m jw njw mjw m m y n h n x n h m eeh m eH ee ∞∞--=-∞=-∞====∑∑上式说明,当输入信号为复指数序列时,输出序列仍是复指数序列,且频率相同,但幅度和相位决定于网络传输函数,利用该性质解此题。