大学物理光学 第4章 光学仪器的基本原理
- 格式:ppt
- 大小:2.82 MB
- 文档页数:75
第四章 光学仪器基本原理1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1。
试计算眼球的两个焦距。
用右眼观察月球时月球对眼的张角为1°,问视网膜上月球的像有多大?解;眼球物方焦距;当s ’=∞时,f=﹣5.55/﹙4/3﹣1﹚=﹣16.65㎜=﹣1.665㎝眼球的象方焦距:f '=s '=mm 2.2213455.534=-⨯当u=1°时,由折射定律n 1sinu 1=n 2sinu 2U 1=1°n 1=1,n 2=4∕3像高l '=f 'tanu 2=f 'sinu 2=f '×3∕4 sin1º=22.2×3∕4×0.01746=0.29mm2.把人眼的晶状体看成距视网膜2㎝的一个简单透镜。
有人能看清距离在100㎝到300㎝间的物体。
试问:⑴此人看清远点和近点时,眼睛透镜的焦距是多少?⑵为看清25㎝远的物体,需配戴怎样的眼镜?解:人眼s '=2cm. S 1=100cm.s 2=300cm近点时透镜焦距'f =21002100+⨯=1.961cm远点时透镜焦距f '=23002300+⨯ =1.987cm当s =﹣25cm 时s '=﹣100cm ﹦﹣1m34125.0100.1111=+-=---=-'=Φs s D 300=度3.一照相机对准远物时,底片距物镜18㎝,当镜头拉至最大长度时,底片与物镜相距20㎝,求目的物在镜前的最近距离?解:.18.0m f =' ms 20.0='照相机成像公式:f s s'=-'111 556.020.0118.01111-=+-='+'-=s f s ms 8.1-=目的物在镜前的最近距离为m8.14.两星所成的视角为8′,用望远镜物镜照相,所得两点相距1㎜,问望远镜物镜的焦距时多少?解:已知︒=︒⎪⎭⎫⎝⎛='=0667.06044u mmm l 001.01=='m u l f 8594.0667.0tan 001.0tan =--='='5.一显微镜具有三个物镜和两个目镜。
第四章 光学仪器的基本原理4.1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于43的液体,外部是空气,其折射率近似地等于1,试计算眼球的两个焦距。
用肉眼观察月球时月球对眼的张角为01,问视网膜上月球的像多大?解:眼睛的构造简单地可用一折射球面时,其物方焦点为'1 5.551.67413nr f cm n n⨯=-=-=---其像方焦点为'''43 5.55 2.22413n r f cm n n ==⨯=-- 根据折射定律有关系式''''''sin sin sin sin n n n nθθθθθθθθθ=≈≈≈因为很小,所以,''''''11tan 2.220.02941803n y d f f cm n θθθ=≈≈=⨯⨯=4.2.把人眼的晶状体看成距视网膜2cm 的一个简单透镜。
有人能看清楚距离在100cm 到300cm 间的物体,试问:(1)此人看清远点和近点时,眼睛透镜的焦距是多少?(2)为看清25cm 远的物体,需配戴怎样的眼镜?解:根据透镜的物像公式''111s s f -= (1)远点对应的焦距 将'2s cm = 300s cm =-代入上式''1112300300 1.987151f f cm-=-==近点对应的焦距将'2s cm = 100s cm =-代入上式''1112100100 1.96151f f cm-=-==(2)此人的近点为100cm ,要看清楚25cm 的物体,需要配戴眼镜使的25cm 的物体成虚象在100cm 处,所以应该配戴凸透镜(远视镜),根据透镜的物像公式''111s s f-= 其中'100s cm =- 25s cm =-'1110.10.25f =--- '1143300D f Φ==-+==(度)4.3.一照相机对准远物时,底片距物镜18cm ,当透镜拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离?解:根据透镜的物像公式''111s s f-= 当照相机对准远物时, 1s =-∞''11111s s f -= 所以 ''118s f cm ==当照相机对准最近物时,要成像必须把底片与物镜的距离拉到最大''22111s s f-= '220s cm =''21111112018s f s -=== 2180s cm =-目的物在镜前的最近距离为180厘米4.4.两星所成的视角为'4,用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少?解:根据视角与透镜焦距的关系''1y U f -=, ''1185.987460180y f cm U π-===⨯ 4.5.一显微镜具有三个物镜和两个目镜。
2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。
光学仪器的基本原理教学光学仪器是一类广泛应用于光学实验和研究中的仪器设备,包括光学显微镜、光谱仪、干涉仪、激光仪等。
这些仪器的工作原理涉及光的传播、反射、折射、干涉等基本原理。
下面将分别介绍几种常见光学仪器的基本原理。
1.光学显微镜光学显微镜是一种基于光的成像原理实现对样品的观察和分析的仪器。
它包括物镜和目镜两个光学部件。
物镜负责放大样品的像,目镜负责将放大后的像再放大一次供观察者观察。
光学显微镜的基本原理是利用物镜收集的透过样品的光线,通过放大形成透射或反射样品的像。
物镜由一个或多个透镜组成,其中至少有一个透镜靠近样品。
物镜的工作距离决定了样品与物镜之间的距离。
在使用光学显微镜时,样品放置在物镜的焦点处,使得物镜成像距焦点最近。
光线通过样品后被物镜聚焦,形成实物像。
然后通过目镜观察这个实物像,再经过进一步放大,形成最终观察者所看到的虚拟像。
2.光谱仪光谱仪是一种用来分析和测量光的频率、波长和强度分布的仪器。
它是基于光的色散原理工作的,将光按波长分解成不同的光谱线。
光谱仪的基本原理是将出射光经过准直系统后,通过光栅、光晶体或玻璃棱镜将光分散成不同波长的光谱线,然后使用光电探测器测量不同波长的光的强度。
其中光栅是最常用的色散元件。
当入射平行光线通过光栅时,不同波长的光线会在光栅上发生衍射,形成交叉的光束。
测量仪器通过调整光栅的角度,可以使不同波长的光落在特定位置上,然后通过光电二极管等探测器测量光的强度,进而获取光的光谱信息。
3.干涉仪干涉仪是一种用来测量光路差和波长差的仪器。
它是基于干涉现象实现的,利用光的叠加作用实现干涉现象。
常见的干涉仪有马赫-曾德尔干涉仪和弗朗索瓦干涉仪。
它们的基本原理类似,在光路中引入一个光学路径差,使得途径不同路径的光线发生干涉,产生干涉条纹。
马赫-曾德尔干涉仪是通过将光源分成两束,经过不同路径后再重新叠加,观察干涉条纹来测量光程差的变化。
弗朗索瓦干涉仪则是利用分束器和反射镜使一束光经过不同路径后再次叠加,通过干涉条纹测量光波的相位差。
大学光学知识点总结大全光学是物理学的一个重要分支,研究光的产生、传播、与物质相互作用以及光现象的一系列规律。
关于光学的知识点非常广泛,涉及光的基本特性、光学仪器、光的应用等方面。
本文将从光的基本特性、光的传播、光的干涉与衍射、光的偏振、光的成像、光学仪器、光的应用等方面进行详细的总结。
一、光的基本特性1. 光的波动特性:光同时具有波动特性和粒子特性。
根据光波动特性的性质,可以解释如折射、衍射和干涉等现象。
2. 光的粒子特性:光的粒子特性主要体现在光子的能量、动量、频率、波长等方面。
从光的粒子特性可以解释光的能量转换和光与物质相互作用的规律。
3. 光的速度:光在真空中的速度为光速(c),约为3×10^8 m/s。
在介质中,由于光的波长缩短,其传播速度降低,为c/n,其中n为介质的折射率。
4. 光的色散:光的色散是指不同波长的光在线性介质中传播时速度不同的现象。
色散性引起了折射角的变化,并且使白光在经过三棱镜时分解成不同波长的光谱。
5. 光的吸收和衰减:光在穿透物质时会发生吸收和衰减,吸收是指光被介质所吸收,而衰减是指光的强度随着传播距离的增加而减弱。
6. 光的干涉与衍射:干涉是指来自同一波源的两个或多个波相互叠加时产生的明暗条纹,衍射是指光在通过物体边缘或小孔时发生的方向变化和光斑的扩散现象。
7. 光的偏振:光的偏振是指光振动方向的特性,振动方向不固定的光称为非偏振光,振动方向固定的光称为偏振光。
8. 光的成像和光学成像:成像是指通过光学系统使物体的像的位置、大小和形状与物体本身的相应特性相近似的过程。
9. 光的量子理论:光的量子理论是指根据光的波粒二象性,通过量子力学理论解释光现象的理论。
二、光的传播1. 几何光学:几何光学是光学中的一种理论,主要用于解释光的传播途径和成像原理。
它认为光的传播和成像过程可以被简化为直线传播,并且利用几何方法进行描述。
2. 波动光学:波动光学是一种用波动理论描述光的传播和作用的光学理论。
大学物理光学现象与光学仪器光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射和偏振等现象,以及与这些现象相关的光学仪器。
本文将介绍一些常见的光学现象和光学仪器,并探讨它们在科学研究和实际应用中的重要性。
一、光的传播与反射光的传播是光学研究中最基本的现象之一。
光在真空中传播的速度为光速,约为每秒30万公里。
当光遇到介质边界时,会发生反射现象。
反射现象是光线遇到平滑表面时的一种现象。
根据光学原理,入射光线与表面的法线成相同角度的反射角。
反射现象广泛应用于镜子、光学测量仪器以及实际生活中的反光标识、反光材料等。
二、光的折射与透射光在不同介质中传播时,会发生折射现象。
折射是由于光在不同介质中传播时速度的改变而引起的,根据折射定律可算出折射角。
透明介质对光的透射是指光线经过介质的过程,透射后的光线方向可能改变。
根据光学原理,介质的折射率越大,光的速度越慢,光线的传播方向发生改变。
折射和透射现象在很多光学仪器中都有广泛应用,例如光纤通信设备和显微镜等。
三、光的干涉与衍射干涉是光波在空间中相遇并叠加产生明暗条纹的现象。
干涉现象常用于干涉仪、双缝实验等实验中,可以帮助我们研究光的波动性质。
衍射是光波经过障碍物或孔径时,光波向周围扩散和弯曲的现象。
衍射和干涉都是光的波动性质的表现,衍射光通过光栅或狭缝可以形成衍射图样,用于测量和分析光的特性。
四、光的偏振现象光是由电磁波组成的,电磁波的振动方向决定了光的偏振状态。
当光只在一个方向上振动时,我们称之为线偏振光;当振动方向在空间中旋转时,我们称之为圆偏振光或椭圆偏振光。
光的偏振现象在光学仪器和光通信中扮演着重要的角色。
例如,偏振片可以用于滤除或选择特定偏振方向的光,也可以用于检测和分析光源的偏振状态。
五、常见光学仪器光学仪器是研究和应用光学现象的工具,常见的光学仪器包括望远镜、显微镜、激光器、光谱仪以及光纤通信设备等。
望远镜是一种用于远距离观测天体的仪器,主要由物镜、目镜和透镜系统组成。
光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。
人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。
眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。
视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。
视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。
放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。
物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。
视角愈大,像也愈大,愈能分辨物的细节。
移近物体可增大视角,但受到眼睛调焦能力的限制。
使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。
放大镜的作用是放大视角。
显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。
主要用于放大微小物体成为人的肉眼所能看到的仪器。
显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森父子所首创。
现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。
光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。
显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。
10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。
无疑光学部分是最为关键的,它由目镜和物镜组成。
光学仪器的成像原理与应用光学仪器是一种利用光的传播特性进行观测、测量和分析的工具。
它通过光的反射、折射、散射等现象,实现对物体的成像。
光学仪器的成像原理涉及到光的传播、光的反射和折射、透镜和光学系统的构成等方面的知识。
本文将从成像原理和应用两个方面展开讨论。
一、成像原理光学仪器的成像原理可以简单地归纳为两种:几何光学和物理光学。
几何光学是一种简化的成像模型,它假设光线传播是直线传播,并且不考虑光的波动性。
几何光学的基本原理是光的传播是沿直线传播的,光线在传播过程中会发生反射和折射。
根据光的传播特性,可以推导出光线在透镜、反射镜等光学元件上的成像规律。
例如,凸透镜会使平行光线汇聚于焦点,形成实像;凹透镜会使平行光线发散,形成虚像。
几何光学的成像原理在光学仪器的设计和应用中起到了重要的作用。
物理光学是一种更加精确的成像模型,它考虑了光的波动性和干涉、衍射等现象。
物理光学的基本原理是光的传播是波动传播的,光波在传播过程中会发生干涉、衍射等现象。
物理光学的成像原理可以通过光的波动性和干涉、衍射的数学模型进行描述和解释。
例如,干涉仪是一种利用光的干涉现象进行测量和分析的光学仪器。
它利用光的波动性和干涉现象,实现对光的相位差的测量,从而得到所需的信息。
二、应用光学仪器的应用非常广泛,涉及到生物医学、物理学、化学、材料科学等多个领域。
在生物医学领域,光学仪器被广泛应用于显微镜、光谱仪、光学成像等方面。
例如,显微镜是一种利用光的成像原理观察微观物体的仪器。
它通过光的折射和散射现象,实现对微观物体的放大和清晰成像。
光学成像是一种利用光的成像原理对生物组织进行观测和分析的技术。
它通过光的反射、散射等现象,实现对生物组织的高分辨率成像,为医学诊断和治疗提供了重要的工具。
在物理学领域,光学仪器被广泛应用于光学测量、光谱分析等方面。
例如,激光干涉仪是一种利用光的干涉现象进行测量的仪器。
它通过光的干涉现象,实现对物体表面形貌、薄膜厚度等参数的测量。