集合与元素课件
- 格式:ppt
- 大小:1.61 MB
- 文档页数:16
第4讲集合与元素(数学竞赛)第4讲集合与元素[知识点⾦]元素与集合只有属于和不属于两种关系,但如何判定⼀个元素是否属于该集合,有时要进⾏适当甚⾄灵活的变形,达到集合所要求的形式.[例题精析]例1 设A= },{22Z y x y x a a ∈-=、求证:(1)⼀切奇数属于A(2)偶数 4k – 2(k ∈z )不属于A(3)属于A 的两个整数,其积仍属于A分析关键构造出集合元素所需形式.证明(1)设a 为任意奇数,则 a = 2k –1(k ∈Z )因为 2k –1 = k 2 -(k-1)2 ,k ,k-1∈Z, 故a ∈A由a 的任意性知,⼀切奇数属于A.(2)假设4k – 2∈A ,则存在x 、y ∈Z 使 4k – 2 = x 2 – y 2即(x + y )(x - y )= 2(2k-1)… ①①式说明x + y 与 x – y 必有⼀个是偶数,但x + y 与 x – y 具有相同的奇偶性,这是⼀对⽭盾,故①不成⽴.所以 4k – 2 ?A(3)设a 、b ∈A ,则a = 2221y x -,b = 2222y x - (Z y y x x ∈2121,,,)因为 a b =(2121y x -)(2222y x -)= +2221x x 2221y y -2221y x -2122y x = (2121y y x x -)2 -(1221y x y x -)2⽽ Z y y x x ∈-2121,1221y x y x -Z ∈, 所以 a b ∈A.例2 (全国⼥⼦数学奥林匹克)如果存在 1,2,...,n 的⼀个排列1a ,2a ,…,n a 使得 k+k a (k=1, 2, ..., n )都是完全平⽅数,就称n 为“好数”.试问:在集合 {11, 13, 15, 17, 19} 中,哪些是“好数”,哪些不是“好数”?说明理由.解除了11之外都是“好数”.(1)易知11只能与5相加得到24,⽽4也只能与5相加得到23,因此,不存在满⾜条件的数列,所以11不是“好数”.(2)13是“好数”,因为如下的排列中,)13,...,2,1(=+k a k k 都是完全平⽅数:13121110987654321:k 34567191011121328:k a(3)15是“好数”,因为如下的排列中,)15,...,2,1(=+k a k k 都是完全平⽅数:151413121110987654321:k123456789101112131415:k a (4)17是“好数”,因为如下的排列中,)17,...,2,1(=+k a k k 都是完全平⽅数:1716151413121110987654321:k 8911112131415161721045673:k a 其中⽤到了轮换).15,10,6,3,1((5)19是“好数”,因为如下的排列中,)19,...,2,1(=+k a k k 都是完全平⽅数: 19181716151413121110987654321:k 17181991011121314151612345678:k a 评注这⾥的关键问题在于构造满⾜条件的排列.例3 (亚太地区数学竞赛)求所有由正整数组成的有限⾮空集合S ,满⾜:若S n m ∈、,则n m S n m n m 、、(,)(∈+不必须不同). 分析我们由特殊的情形,先得知S ∈2,进⽽循序渐进探索集合S 中可能含有的其他元素,发现集合中可能只有2这⼀个元素,之后如何进⾏简捷的表达呢?.解令m=n,则S ∈2,由于S 是⾮空有限集合,.若S 中存在奇数,则S k k k ∈+=+2)2,(2,以此类推,,...6,4++k k 都属于S,与其是有限集⽭盾,所以S 中的元素都是偶数,如果除了2以外还有其他偶数,不妨设除2以外的最⼩数为k (k>2),则S k k k ∈+=+12)2,(2,并且k k <+<122,⽽由前⾯讨论知12+k 应该为偶数,这与k 为除2以外的最⼩数⽭盾,所以 S={2}.评注这⾥应⽤极端原理使得表达简捷.例4 321,,S S S 为⾮空集合,对于1,2,3的任意⼀个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈-.证明:三个集合中⾄少有两个相等.证明若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,所以每个集合中均有⾮负元素.当三个集合中的元素都为零时,命题显然成⽴.否则,设321,,S S S 中的最⼩正元素为a ,不妨设1S a ∈,设b 为32,S S 中最⼩的⾮负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则b a b <-≤0,与b 的取法⽭盾。
第一讲 元素与集合一.集合的概念集合是一个原始的概念,是数学中一个不定义的概念.尽管如此,对一个具体的集合而言,很多情况下我们还是可以采用列举法或描述法给出它的一个准确而清晰的表示. 用描述法表示一个集合基于下面的概括原则:概括原则 对任给的一个性质P ,存在一个集合S ,它的元素恰好是具有性质P 的所有对象,即 S ={)(x P x },其中)(x P 表示“x 具有性质P ”.由此,我们知道集合的元素是完全确定的,同时它的元素之间具有互异性和无序性. 集合的元素个数为有限数的集合称为有限集,元素个数为无限数的集合称为无限集.如果有限集A 的元素个数为n ,则称A 为n 元集,记作n A =.空集不含任何元素.例1 设集合M ={052<--ax ax x } (1)当4=a 时,化简集合M ;(2)若M ∈3,且M ∉5,求实数a 的取值范围.例2 设A 是两个整数平方差的集合,即{}Z n m n m x x A ∈-==,,22.证明:(1)若A t s ∈,,则A st ∈.(2)若A t s ∈,,0≠t ,则22q p ts -=,其中q p ,是有理数.二、集合与集合的关系在两个集合的关系中,子集是一个重要的概念,它的两个特例是真子集和集合相等.从下面“充分必要条件”的角度来理解子集、真子集和集合相等的概念无疑是十分有益的:子 集:B A ⊆⇔对任意A x ∈,恒有B x ∈;真子集:A B ⇔⎩⎨⎧∉∈⊆Bx B x B A '',但且存在;集合相等:A =B ⇔B A ⊆,且A B ⊆.容易证明两个集合关系的如下性质:1.∅⊆A ,∅A (A ≠∅);2.A ⊆B ,B ⊆C ⇔A ⊆C ;3.“元集A 总共有n 2个不同的子集,有12-n 个不同的真子集.例1 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列关系中成立的是( )(A )P Q (B )Q P (C )P =Q (D )P ⋃Q =∅ 解题切入: 正确理解集合Q ,并解出Q .导析: 对于Q ,可设44)(2-+=mx mx x f ,由442-+mx mx <0恒成立,知函数)(x f 图象全位于x 轴下方,①当0=m 时,4)(-=x f 显然成立;②当0≠m 时,有0100<<-⇒⎩⎨⎧<∆<m m . 由①、②知{}01≤<-=m m Q ,故PQ .即A 正确. 评注: 利用函数思想解决方程与不等式等问题是最常用的数学思想之一,在平常的学习中要有意识强化这种重要数学思想的应用.本题易错点:容易忽略m =0的情况,习惯地将)(x f相关链接:(1)设A 、B 为两个集合,下列四个命题:①A 不包含于B ⇔ 对任意A x ∈有B x ∉;②A 不包含于B ⇔ A ∩B =∅;③A 不包含于B ⇔ A 不包含B ;④A 不包含于B ⇔ 存在A x ∈且B x ∉其中正确命题的序号是 .导析: (举特例)取A ={1,2},B ={1,3},排除①②;取A ={1},B =∅,排除③评注: 本题综合考查集合的包含关系.例2 设集合{}R y R x y x y x M ∈∈=+=,,1),(22,{}R y R x y x y x N ∈∈=-=,,0),(2,则集合M ∩N 中元素的个数为( )(A )1 (B )2 (C )3 (D )4解题切入: 关键是分清数集与点集.(数形结合):M 是由单位圆122=+y x 上的点组成,而N 是由抛物线2x y =上的点组成.画图可知M ∩N 中的公共元素(即交点)有两个,故选B .评注: 利用数形结合思想,可避开复杂的运算过程,从而提高同学们的解题速度与准确性.相关链接:设A ,B ,I 为3个非空集合,且满足I B A ⊆⊆,则以下各式中错误的是( )(A )(I A )∪B =I (B )(I A )∪(I B )=I(C )(I B )∩A =∅ (D )(I A )∩(I B )=I B导析:由B A ⊆知(I A )⊇I B , ∴(I A )∪(I B )=I A∵A ≠∅,例3 设函数b ax x x f ++=2)((R b a ∈,),集合A ={R x x f x x ∈=),(}, B ={()R x x f f x x ∈=,)(}.(1)证明:B A ⊆;(2)当A ={-l ,3}时,求集合B .分析 欲证B A ⊆,只需证明方程)(x f x =的根必是方程())(x f f x =的根.例 4 设关于x 的不等式2)1(2)1(22-≤+-a a x 和0)13(2)1(32≤+++-a x a x )(R a ∈的解集依次为A 、B ,求使B A ⊆的实数a 的取值范围.分析 要由B A ⊆求出a 的范围,必须先求出A 和B .习 题1.已知三元实数集A ={}y x xy x +,,,B ={}y xy ,,0,且A =B ,则20052005y x +等于( ).(A )0 (B )2 (C )1 (D )-l2.集合{}Z l n m l n m u u M ∈++==,,,4812与{}Z r q p r q p u u N ∈++==,,,121620的关系为( ).(A )M =N (B )M ⊄N ,N ⊄M (C )M N (D )N M3.设(){}20,20,≤≤≤≤=y x y x A ,(){}4,2,10,-≤≥≤=x y y x y x B 是直角坐标平面xOy 上的点集.则⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫ ⎝⎛++=B y x A y x y y x x C ),(,),(2,222112121所成图形的面积是( ). (A )6 (B )6.5 (C )2π (D )74.已知非空数集M ⊆{1,2,3,4,5},则满足条件“若M x ∈,则M x ∈-6”的集合M 的个数是( ).(A )3个 (B )7个 (C )15个 (D )31个5.集合⎭⎬⎫⎩⎨⎧∈>-<≤-N x x x x 且1,2110log 11的真子集的个数是 . 6.已知{}R x x x x A ∈<+-=,0342,{}R x x a x a x B x ∈≤++-≤+=-,05)7(2,0221.若B A ⊆,则实数a 的取值范围是 .7.已知{}+∈+==Na a x x M ,12,{}+∈+-==N b b b x x N ,542,则M 与N 的关系是 .8.非空集合S 满足:(1)S ⊆{1,2,…,2n +1},+∈N n ;(2)若S a ∈,则有S a n ∈-+22. 那么,同时满足(1)、(2)的非空集合S 的个数是 .9.集合{}54321,,,,x x x x x A =,计算A 中的二元子集两元素之和组成集合B ={3,4,5,6,7,8,9,10,11,13}.则A =.10.设集合M ={1,2,3,…,1000},现对M 的任一非空子集X ,令X a 表示X 中最大数与最小数之和.求所有这样的X a 的算术平均值.11.用)(x σ表示非空的整数集合S 的所有元素的和.设A ={1121,,,a a a }是正整数的集合,且1121a a a <<< ;又设对每个正整数n ≤1500,都存在A 的子集S ,使得)(x σ=n .求10a 的最小可能值.分析 要求10a 的最小值,显然应使)(x σ=1500.又由题设,应使11a 尽可能大,且前10个数之和不小于750,故取11a =750.考虑整数的二进制表示,由1+2+…+27=255知,前8个数应依次为1,2,4,8,16,32,64,128.这时109a a +=495,从而有10a =248.1.设E ={1,2,3,…,200},G ={10021,,,a a a }⊆E ,且G 具有下列两条性质:(1)对任何1≤i<j ≤100,恒有201≠+j i a a ;(2)100801001=∑=i i a.试证明:G 中的奇数的个数是4的倍数,且G 中所有数字的平方和为一个定数.跟着的是死算, 我xa1^2+a2^2+……+a100^2+(201-a1)^2+(201-a2)^2+……+(201-a100)^2=200x(200+1)x(2x200+1)/6=2686700平方和公式------↑2(a1^2+a2^2+……+a100^2)-402(a1+a2+……+a100) + 100x(201^2) = 2686700 ==> a1^2+a2^2+……+a100^2=1349380因为奇数的平方除以4余1 , 偶数的平方被4整除, 而1349380除以4余0,也就是说1349380被4整除那么G 中奇数必定是4的倍数,才满足平方和被4整除构造函数F(x)=(x-1/2)*(x-1/3)*...*(x-1/100),由定义可知X,X^3,X^5...X^97的系数和即为数集M 的所有含偶数个元素的子集的“积数”之和;设F(X)=a0+a1*x+a2*x^2+....a98*x^98+x^99;则F(1)=a0+a1+....+a98+1=1/2*2/3*...*99/100=1/100;F(-1)=a0-a1+.....+a98-1=-3/2*4/3*...100/99*101/100=-101/2;所以a1+a3+...+a97=[F(1)-F(-1)-2]/2=4851/200选A 。