2021年中考数学仿真模拟预测试卷(二)(含答案)
- 格式:doc
- 大小:352.64 KB
- 文档页数:23
2021-2022学年度初中数学北京地区中考模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,ABC⊥,垂足为∆是边长为2的等边三角形,点P在AB上,过点P作PE AC=,连接PQ交AC于点D,则DE的长为()E,延长BC到点Q,使CQ PAA.0.9 B C D.12.如图,射线BD,AE分别是△ABC的外角∠ABF,∠CAG的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若∠BAC=∠ABC+102°,∠D=∠E +27°,则∠ACB的度数为()A.39°B.40°C.41°D.42°3.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上4.在某学校庆祝建党“100周年”的活动上,宇阳同学用围棋棋子按照某种规律摆成如图所示的“100”字样.按照这种规律,第n 个“100”字样的棋子个数是( )A .11nB .10n +C .56n +D .65n +5.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则下列结论:①∠BAE =30°;②CE 2=AB ·CF ;③CF =13CD ;④△ABE ∽△AEF .正确的有( ).A .1个B .2个C .3个D .4个6.数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于C 点,交弧AB 于D 点,测出AB ,CD 的长度,即可计算得出轮子的半径,现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A .50cmB .30cmC .25cmD .20cm7.如图,在菱形ABCD 中,点E ,F 分别在AB ,CD 上,且22BE AE DF CF ==,,点G ,H 分别是AC 的三等分点,则EHFGABCDS S 四边形菱形的值为( )A .12B .16C .13D .198.已知方程组23x y x y +=⎧⎨+=⎩的解为2x y =⎧⎨=⎩,则、对应的值分别为( )A .1,2B .1,5C .5,1D .2,49.函数y 211=+2x的图象如图所示,若点P 1(x 1,y 1),P (x 2,y 2)是该函数图象上的任意两点,下列结论中错误的是( )A .x 1≠0,x 2≠0B .y 112>,y 212>C .若y 1=y 2,则|x 1|=|x 2|D .若y 1<y 2,则x 1<x 210.已知二次函数y =a (x ﹣1)2﹣4,当﹣1≤x ≤4时,y 的最大值是5,则a 的值是( )A .﹣1B .﹣2C .1D .2第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,BD 平分∠ABC ,如果点M ,N 分别为BD ,BC 上的动点,那么CM +MN 的最小值是 ___.12.如图三角形ABC 的顶点坐标如下:点A (2,2),B (1,1),C (5,1),若三角形DBC 与三角形ABC 全等,写出符合条件的点D 的坐标:___.13.如果n x y =,那么我们规定(),x y n =.例如:因为239=,所以()3,92=.根据上述规定,()2,8=_______,若(),16m p =,(),5m q =,(),m t r =,且满足p q r +=,则t =______.14.如图,在△ABC 中,∠ACB =90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC =3,DE =1,则线段BD 的长为 ___.15.方程x 2=x 的解为 ___.三、解答题16.在菱形ABCD 中,∠ADC =120°,点E 是对角线AC 上一点,连接DE ,∠DEC =50°,将线段BC 绕点B 逆时针旋转50°并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形; (2)求证:EG=BC ;17.若m 是方程210x x -+=的一个根,求代数式3222021m m ++的值.18.如图是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?请你以点D 为原点、AB 所在直线为x 轴建立平面直角坐标系,解决这个实际问题.19.如图,在△ABC 中,,AB AC BAC α∠==,点D 在BC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE . (1)按要求作出图形;(2)若α=90°,用等式表示线段DC DB DE ,,大小关系,并证明;(3)若α=120°,AB =M 为BC 的中点,求ME 的最小值.20.某水果店出售一种进价为每千克10元的热带水果,原售价为每千克20元. (1)连续两次降价后,每千克售价16.2元,若每次下降的百分率相同,求每次下降的百分率.(2)这种水果每月的销售量y (千克)与销售单价x (元)之间存在着一次函数关系:y =-10x +200,当销售单价为多少元时,每月可获得最大利润? 21.(1)有一列数1017263750,,,,,...,512213245---则这列数的第九个数为 ,第n 个数为 .(2)规定:用{}m 表示大于m 的最小整数, 例{52}= 3,{5}=6,{−1.3}=−1等;用[]m 表示不大于m 的最大整数,例如72⎡⎤⎢⎥⎣⎦=3,[4]=4,[−1.5]=−2,如果整数x 满足关系式{}[]2312x x +=,求x 的值并说明理由.22.如图,已知在等腰三角形ABC 中,AB AC =,P 、Q 分别是边AC ,AB 上的点,且AP PQ QC BC ===.求PCQ ∠的度数.23.如图,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足. (1)当直线l 不与底边AB 相交时, ①求证:∠EAC =∠BCF .②猜想EF 、AE 、BF 的数量关系并证明.(2)将直线l 绕点C 顺时针旋转,使l 与底边AB 交于点D (D 不与AB 点重合),请你探究直线l ,EF 、AE 、BF 之间的关系.(直接写出)参考答案1.D 【分析】过点P 作PF ∥BC 交AC 于F ,则可证△APF 是等边三角形,得到PF =AP =CQ ,然后证明△PFD ≌△QCD 得到FD =CD ,由PE ⊥AC ,可得AE =EF ,再根据()11112222DE EF DF AF CF AF CF AC =+=+=+=求解即可. 【详解】解:如图所示,过点P 作PF ∥BC 交AC 于F , ∵△ABC 是等边三角形, ∴∠A =∠B =60°, ∵PF ∥BC ,∴∠APF =∠B =60°,∠FPD =∠Q , ∴△APF 是等边三角形, ∴PF =AP =CQ , 在△PFD 和△QCD 中,==FPD QFDP CDQ PF QC ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△PFD ≌△QCD (AAS ), ∴FD =CD , ∵PE ⊥AC , ∴AE =EF , ∴()111112222DE EF DF AF CF AF CF AC =+=+=+==, 故选D .【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够正确作出辅助线构造全等三角形. 2.D 【分析】设ABC α∠=,根据180ACB ABC BAC ∠=︒-∠-∠为解题的思路,根据三角形的外角性质及角平分线性质,通过等量代换的思想分别求出,ABC BAC ∠∠即可. 【详解】解:设ABC α∠=,则102102BAC ABC α∠=∠+︒=+︒,18078CAG BAD BAC α∴∠=∠=︒-∠=︒-, 180180ABF ABC α∠=︒-∠=︒-,2102ACE ABC BAC α∠=∠+∠=+︒,BD ,AE 分别是△ABC 的外角∠ABF ,∠CAG 的角平分线, 119022ABD ABF α∴∠=∠=︒-,113922CAE CAG α∠=∠=︒-,180D BAD ABD ∴∠=︒-∠-∠,13180(78)(90)1222ααα=︒-︒--︒-=︒+,180E CAE ACE ∠=︒-∠-∠,1180(39)(2102)2αα=︒-︒--+︒,3392α=︒-,27D E ∠=∠+︒,3312392722αα∴︒+=︒-+︒,354α=︒,18α=︒, 18ABC ∴∠=︒,18102120BAC ∠=︒+︒=︒, 1801201842ACB ∠=︒-︒-︒=︒,故选:D .【点睛】本题考查了三角形外角的性质及角平分线的定义,解题的关键是熟练掌握三角形外角的性质.3.C【分析】根据图形的变化,每四条射线为一组,从OC开始,用2020除以4等于505,即可得出结论.【详解】解:解:观察图形的变化可知:奇数项:2、6、10、14…4n−2(n为正整数);偶数项:−4、−8、−12、−16…−4n.∵−2020是偶数项,∴−4n=−2020,∴n=505.∵每四条射线为一组,OC为始边,∴505÷4=126…1.∴标记为“−2020”的点在射线OC上.故选:C.【点睛】本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化寻找规律.4.C【分析】根据图形可知:+⨯=++⨯⨯=,第①个“100”字中的棋子个数是34221(22)211+⨯=++⨯⨯=,第②个“100”字中的棋子个数是46222(23)216+⨯=++⨯⨯=,第③个“100”字中的棋子个数是58223(24)221+⨯=++⨯⨯=,第④个“100”字中的棋子个数是610224(25)226由此规律可得出答案.【详解】+⨯=++⨯⨯=,第①个“100”字中的棋子个数是34221(22)211+⨯=++⨯⨯=,第②个“100”字中的棋子个数是46222(23)216第③个“100”字中的棋子个数是58223(24)221+⨯=++⨯⨯= , 第④个“100”字中的棋子个数是610224(25)226+⨯=++⨯⨯= , ⋯⋯第n 个“100”字中的棋子个数是22(n 1)256n n +++⨯=+. 故选C . 【点睛】本题考查了规律型:图形的变化类,是一道关于数字猜想的问题,解题的关键是通过总结与归纳,得到其中的规律. 5.B 【分析】首先利用根据正方形的性质与同角的余角相等证得:ABE ECF ∽△△,则可证得②正确,①③错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABE AEF ∽△△,则可证得④正确. 【详解】∵四边形ABCD 是正方形, ∴∠B =∠C =90°,AB =BC =CD , ∵AE ⊥EF ,∴∠AEF =∠B =90°,∴∠BAE +∠AEB =90°,∠AEB +∠FEC =90°, ∴∠BAE =∠CEF , ∴ABE ECF ∽△△, ∴AB BE CE CF =,即AB CECE CF=, ∴2CE AB CF =,故②正确; ∵E 是BC 的中点, ∴12BE CE AB ==, ∴1tan 2BE BAE AB ∠==, ∴30BAE ∠≠︒,故①错误;∴22111244AB CE CF AB CD AB AB ⎛⎫ ⎪⎝⎭====,故③错误; 设CF =a ,则BE =CE =2a ,AB =CD =AD =4a ,DF =3a ,∴AE =,EF =,AF =5a ,∴AE AF =BE EF = ∴AE BE AF EF=, ∴ABE AEF ∽△△,故④正确.∴②与④正确.∴正确结论的个数有2个.故选:B .【点睛】此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.6.C【分析】由垂径定理可得出BC 的长,连接OB ,在Rt OBC △中,可用半径OB 表示出OC 的长,进而可根据勾股定理求出轮子的半径即可.【详解】解:如图,设圆心为点O ,连接OB ,∵⊥OD AB ,AB =40cm , ∴120cm 2BC AB ==,90OCB ∠=︒, ∵CD =10cm ,∴10OC OD CD OB =-=-,∵在Rt OBC △中,222OC BC OB +=,∴222(10)20OB OB -+=,解得:25OB =cm ,∴轮子的半径为25cm .故选:C .【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.D【分析】由题意可证EG ∥BC ,EG =2,HF ∥AD ,HF =2,可得四边形EHFG 为平行四边形,即可求解.【详解】解:∵BE =2AE ,DF =2FC , ∴12AE BE =,12CF DF =, ∵G 、H 分别是AC 的三等分点, ∴12AG GC =,12CH AH =, ∴AE AG BE GC=, ∴EG ∥BC , ∴13EG AE BC AB ==, 同理可得HF ∥AD ,13HF AD =, ∴四边形EHGF 为平行四边形,由题意,AEG HEG SS =, ∵13EG AE BC AB ==, ∴19AEG HEG ABC S S S ==,根据平行四边形和菱形的性质可得:2129EHFGHEG ABC ABCD S S S S ==四边形菱形, 故选:D .【点睛】本题考查了菱形的性质,以及平行线分线段成比例定理等,由题意可证EG ∥BC ,HF ∥AD 是本题的关键.8.C【分析】把x =2代入方程组的第二个方程即可求得y 即的值,再将x 和y 的值代入第一个方程即可求得. 【详解】解:将x =2代入3x y +=得y =1,所以=1再将21x y =⎧⎨=⎩代入2x y +=, 得=5,故选:C .【点睛】本题考查二元一次方程组的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.9.D【分析】根据图象得到函数的性质,根据函数的性质即可判断.【详解】解:由图象可知,x ≠0,∴10x ≠,20x ≠,故选项A 正确;∵x ≠0,∴x 2>0,∴21x >0,∴211122y x =+>, 112y ∴>,212y >,故选项B 正确; 函数的图象关于y 轴对称,∴若12y y =,则12||||x x =,故选项C 正确;根据函数的增减性可得:当0x <时,若12y y <,则12x x <;当0x >时,若12y y <,则12x x >,故选项D 错误,故选:D .【点睛】本题考查了函数的图象和性质,熟练运用数形结合思想是解题的关键.10.C【分析】根据题意,可知二次函数的顶点坐标为(1,4)-,分类讨论即可,0a <时,开口朝下,最大值为4-,不符合题意,则0a >,进而根据当﹣1≤x ≤4时,y 的最大值是5,将4x =代入解析式即可求得a 的值.【详解】依题意,可知二次函数的顶点坐标为(1,4)-,当0a <时,开口朝下,最大值为4-,不符合题意,当0a >时,对称轴为1x =,当﹣1≤x ≤4时,y 的最大值是5,当11x -≤≤时,y 随x 的增大而减小,由二次函数的对称性可知当1x =-时,y 的值和3x =时的值相等,当14x ≤≤时,y 随x 的增大而增大,4x ∴=时,()24145a --=,解得1a =, 故选C .【点睛】本题考查了二次函数的性质,掌握顶点式2()y a x h k =-+的图象与性质是解题的关键. 11.4.8【分析】先作CE ⊥AB 交AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC 交BC 于点N ,再根据角平分线的性质得出ME MN =,从而得出CM MN CE +=,再求出CE 的长即可.【详解】解:如图所示,过点C 作CE ⊥AB 交AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC 交BC 于点N∵BD 平分ABC ∠,CE ⊥AB ,MN ⊥BC∴ME MN =∴CM MN CM ME CE +=+=∵90ACB ∠︒=,6AC =,8BC =,10AB = ∴1122ABC S AC BC AB CE =⋅=⋅ ∴11681022CE ⨯⨯=⨯⨯ ∴ 4.8CE =∴ 4.8CM MN +=【点睛】本题主要考查了最短路径问题,以及角平分线的性质,解决此题的关键是找到CM MN +最小时动点M ,N 的位置.12.(2,0)或( 4,0)或(4,1)或(2,2).【分析】依据以B 、C 、D 为顶点的三角形与△ABC 全等,可知两个三角形有公共边BC ,运用对称性即可得出所有符合条件的点D 坐标.【详解】解:如图所示,当△BCD 与△BCA 关于BC 对称时,点D 坐标为(2,0),当△BCA 与△CBD 关于BC 的中点对称时,点D 坐标为( 4,0),△BCA 与△CBD 关于BC 的中垂线对称时,点D 坐标为(4,1),当D 与A 重合时,点D 坐标为(2,2),故答案为:(2,0)或( 4,0)或(4,1)或(2,2).【点睛】本题主要考查了利用轴对称变换构建全等三角形,解题时注意,成轴对称的两个三角形或成中心对称的两个三角形全等..13.3 80【分析】由328=,根据规定易得(2,8)=3;由规定可得p q r m ,m ,m t ===165,根据同底数幂的运算及已知p +q =r ,即可求得t 的值.【详解】∵328=∴(2,8)=3故答案为:3;由规定得:p q r m ,m ,m t ===165∴p+q m =⨯=16580∵p +q =r∴r m =80∴t =80故答案为:80【点睛】本题考查了同底数幂的运算,关键理解题意,能熟练进行同底数幂的运算.14.【分析】由旋转的性质可得90DAB ︒∠=、E ABC A ∆≅∆D ,再根据全等三角形的性质、勾股定理可求得AD AB ==Rt ABD ∆即可得解.【详解】解:∵将ABC ∆绕点A 顺时针旋转90︒,得到ADE ∆∴90DAB ︒∠=,E ABC A ∆≅∆ D∴BC DE =,AC AE =,AB AD =, 90C E ︒∠=∠=∵3AC =,1DE =∴1BC DE ==∴在R ABC ∆中,AB∴AD AB ==∴在Rt ABD ∆中,BD =故答案是:【点睛】本题考查了旋转的性质、全等三角形的性质、勾股定理等,熟练掌握相关知识点是解题的关键.15.0x =或【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.【点睛】本题主要考查了利用因式分解法解一元二次方程,准确计算是解题的关键.16.(1)补全图形见解析;(2)见解析.【分析】(1)根据题意可以补全图形;(2)连接BE ,根据已知条件和图形可以证明△GEB ≌△CBE ,得到答案;【详解】解:(1)补全图形,如图1所示:(2)证明:连接BE ,如图2:∵四边形ABCD 是菱形,∴AD ∥BC ,∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°,又∠DEC =50°,∠EDC =100°,由菱形的对称性可知,∠EBC =100°,∠BEC =50°,则∠GEB =100°,∴∠GEB =∠CBE .∵∠FBC =50°,∴∠GBE =50°,∴∠EBG =∠BEC .在△GEB 与△CBE 中, GEB CBE BE EBEBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .∴EG=BC .【点睛】本题考查的是菱形的性质,根据题意证明三角形全等是解题的关键,解答时,要正确运用菱形对角线平分一组对角,灵活运用三角形全等的知识和等腰三角形的知识进行解答. 17.2022【分析】根据m 是方程210x x -+=的一个根,可得21m m +=,然后将3222021m m ++变形代入计算即可.【详解】解:根据题意,得210m m +-=,则21m m +=,即()11m m +=,则()322220212021m m m m m m ++=+++()12021120212022m m =++=+=.【点睛】本题考查一元二次方程的根,根据题意适当变形是解本题的关键. 18.水面下降1米,此时水面宽度为.【分析】如图,以D 为坐标原点,AB 所在的直线为x 轴建立直角坐标系,再根据坐标系得到2,0,2,0,0,2,A B C 且C 为抛物线的顶点,再利用待定系数法求解抛物线的解析式,求解当1y =-时,自变量的值,从而可得答案.【详解】解:如图,以D 为坐标原点,AB 所在的直线为x 轴建立直角坐标系,结合题意可得:4,2,AB CD2,0,2,0,0,2,A B C 且C 为抛物线的顶点,设抛物线为:2+2,y ax42,a1,2a ∴=- 所以抛物线的解析式为:21+2,2y x 当水面高度下降1米时,即1,y =-2121,2x26,x解得:12x x =626,答:水面下降1米,此时水面宽度为.【点睛】本题考查的是二次函数的实际应用,熟练的按照要求建立平面直角坐标系,并求解二次函数的解析式是解本题的关键.19.(1)见解析;(2)222DC DB DE +=,见解析;(3【分析】(1)按要求画出图形即可;(2)通过旋转的性质证明出AEB ADC ∆≅∆从而推出45EBA C ∠=∠=︒,EB DC =,由勾股定理可知222EB DB DE +=,所以可知222DC DB DE +=;(3)通过旋转的性质证明出AEB ADC ∆≅∆推出30EBA C ∠=∠=︒,60EBC EBA ABC ∠=∠+∠=︒可知点E 在射线BE 上运动,60EBC ∠=︒当M 为BC 中点,BM =3,由垂线段最短可知MH BE ⊥,MH =即ME 【详解】.(1)如图,(2)222DC DB DE +=证明:∵90CAB DAE ∠=∠=︒,∴BAE CAD ∠=∠∵DA =EA ,CA =BA∴45C ABC ∠=∠=︒,AEB ADC ∆≅∆∴45EBA C ∠=∠=︒,EB DC =∴90EBC EBA ABC ∠=∠+∠=︒∴222EB DB DE +=∴222DC DB DE +=(3) ∵120CAB DAE ∠=∠=︒,AB =∴BAE CAD ∠=∠,6BC =∵DA =EA ,CA =AB∴30C ABC ∠=∠=︒,AEB ADC ∆≅∆∴30EBA C ∠=∠=︒,60EBC EBA ABC ∠=∠+∠=︒∴点E 在射线BE 上运动,60EBC ∠=︒∵M 为BC 中点,BM =3,做MH BE ⊥,MH =即当ME BE ⊥时,ME【点睛】本题考查了旋转的性质,三角形全等的判定及性质,垂线段最短等知识,熟练掌握旋转的性质是解题的关键.20.(1)10%;(2)15元【分析】(1)设每次下降的百分率为x ,根据题意列出一元二次方程即可求解;(2)设利润为W ,根据题意列出W 关于x 的函数关系式,再求出该函数的对称轴即可求解.【详解】解:(1)设每次下降的百分率为x .根据题意得:()220116.2x -=解得:1 1.9x =(舍去),20.110%x ==答:每次下降的百分率为10%.(2)设利润为W ,则()()1010200W x x =--+2103002000x x =-+-()21015250x =--+∴当15x =元时,利润最大为250元.答:当销售单价为15元时,每月可获得最大利润.【点睛】本题主要考查了一元二次方程的增长率问题,以及二次函数的实际运用,熟练运用方程的思维解决实际问题和二次函数的实际运用是解答本题的关键.21.(1)122117-;22(2)1(1)(2)4n n n ++-+-;(2)x =2,见解析 【分析】(1)观察数据发现分子是()221n ++,分母比分子小5,奇数的位置为负,偶数的位置为正,即可得出答案;(2)根据题意知{}[]1x x =+,化简{}[]2312x x +=,求得[x]=2,即可得出答案.【详解】解:(1)有一列数1017263750, , , , ,...512213245---, ∵分子是()221n ++,分母比分子小5,即()224n +-,奇数的位置为负,偶数的位置为正,∴这列数的第九个数为:()()22921122117924++-=-+-, 第n 个数为:22(2)1(1)(2)4nn n ++-+-, 故答案为:122117-;22(2)1(1)(2)4n n n ++-+- (2) 解:由题意知:{}[]1x x =+∵{}[]2312x x +=∴2([x]+1)+3[x]=125[x]=10[x]=2又x 为整数,所以x =2.【点睛】本题考查数字的变化规律,找出数字的运算规律与符号排列的规律,利用规律解决问题. 22.3607PCQ ︒∠=【分析】设∠A =x ,则∠QPC =∠QCP =2x ,∠BQC =3x ,由QC =BC 得出∠QBC =3x ,∠QCB =x ,根据三角形内角和定理得出x 的角度,即可得出答案.【详解】解:设∠A =x ,则∠QPC =2x ,∵PQ =QC∴∠QCP =∠QPC =2x ,∴∠BQC =∠A +∠QCP =3x∵QC =BC∴∠QBC =∠BQC =3x ,∵AC =AB∴∠ACB =∠ABC =3x∴∠BCQ =x∵∠BQC +∠QBC +∠BCQ =180︒∴33180x x x ++=︒ ∴1807x ︒= ∴180360277PCQ ︒︒∠=⨯= 【点睛】此题主要考查学生对等腰三角形的判定与性质和三角形外角的性质的理解和掌握,此题的关键是得出∠BQC =3x .23.(1)①证明见解析,②EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【分析】(1)①根据∠AEC =∠BFC =90°,利用同角的余角相等证明∠EAC =∠FCB 即可;②根据AAS 证△EAC ≌△FCB ,推出CE =BF ,AE =CF 即可;(2)类比(1)证得对应的两个三角形全等,求出线段之间的关系即可.【详解】(1)证明:①∵AE ⊥EF ,BF ⊥EF ,∠ACB =90°,∴∠AEC =∠BFC =∠ACB =90°,∴∠EAC +∠ECA =90°,∠ECA +∠FCB =90°,∴∠EAC =∠FCB ,②EF =AE +BF ;证明:在△EAC 和△FCB 中,AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△FCB (AAS ),∴CE =BF ,AE =CF ,∴EF =CE +CF =AE +BF ,即EF =AE +BF ;(2)①当AD >BD 时,如图①,∵∠ACB =90°,AE ⊥l 直线,同理可证∠BCF =∠CAE (同为∠ACD 的余角),又∵AC =BC ,BF ⊥l 直线即∠BFC =∠AEC =90°,∴△ACE ≌△CBF (AAS ),∴CF =AE ,CE =BF ,∵CF =CE +EF =BF +EF ,∴AE =BF +EF ;②当AD <BD 时,如图②,∵∠ACB =90°,BF ⊥l 直线,同理可证∠CBF =∠ACE (同为∠BCD 的余角),又∵AC =BC ,BE ⊥l 直线,即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS ),∴CF =AE ,BF =CE ,∵CE =CF +EF =AE +EF ,∴BF =AE +EF .【点睛】本题考查了三角形综合题,主要涉及到了全等三角形的判定与性质,解题关键是证明△ACE≌△CBF(AAS),利用全等三角形的性质得出线段之间的关系.。
2021年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的]1.(4分)如果m 是任意实数,那么下列代数式中一定有意义的是( )A B C .11m + D 2.(4分)将抛物线2y x =-向右平移3个单位,再向下平移2个单位后所得新抛物线的顶点是( )A .(3,2)-B .(3,2)--C .(3,2)D .(3,2)-3.(4分)人体红细胞的直径约为0.0000077米,那么将0.0000077用科学记数法表示是( )A .60.7710-⨯B .77.710-⨯C .67.710-⨯D .57.710-⨯4.(4分)如果剪掉四边形的一个角,那么所得多边形的内角和的度数不可能是( )A .180︒B .270︒C .360︒D .540︒5.(4分)王老师给出一个函数的解析式.小明、小杰、小丽三位同学分别正确指出了这个函数的一个性质.小明:该函数图象经过第一象限;小杰:该函数图象经过第三象限;小丽:在每个象限内,y 值随x 值的增大而减小.根据他们的描述,王老师给出的这个函数解析式可能是( )A .3y x =B .2y x =C .3y x =D .1y x=- 6.(4分)已知:在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点,延长DE 至点F ,使得EF DE =,那么四边形AFCD 一定是( )A .菱形B .矩形C .直角梯形D .等腰梯形二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2232m n nm -= .8.(4分)方程1111x x -=+的解是 . 9.(4分)方程组2231x y x y ⎧-=⎨-=-⎩的解是 . 10.(4分)如果关于x 的方程230x x k +-=有两个不相等的实数根,那么k 的取值范围是 .11.(4分)甲公司1月份的营业额为60万元,3月份的营业额为100万元,假设该公司2、3两个月的增长率都为x ,那么可列方程是 . 12.(4分)菱形ABCD 中,已知4AB =,60B ∠=︒,那么BD 的长是 .13.(4分)如图,在梯形ABCD 中,//AD BC ,90A ∠=︒,2AD =,4AB =,5CD =,如果,AB a BC b ==,那么向量BD 是 (用向量a 、b 表示).14.(4分)小杰和小丽参加社会实践活动,随机选择“做社区志愿者”和“参加社会调查”两项中的一项,那么两人同时选择“做社区志愿者”的概率是 .15.(4分)如图,小杰同学跳起来把一个排球打在离他2米(即2CO =米)远的地上,排球反弹碰到墙上,如果他跳起击球时的高度是1.8米(即 1.8AC =米),排球落地点离墙的距离是6米(即6OD =米),假设排球一直沿直线运动,那么排球能碰到墙面离地的高度BD 的长是 米.16.(4分)古希腊数学家把下列一组数:1、3、6、10、15、21、⋯叫做三角形数,这组数有一定的规律性,如果把第一个三角形数记为1x ,第二个三角形数记为2x ,⋯,第n 个三角形数记为n x ,那么1n n x x -+的值是 (用含n 的式子表示).17.(4分)如图,矩形ABCD 中,6AB =,10BC =,将矩形ABCD 绕着点A 逆时针旋转后,点D 落在边BC 上,点B 落在点B '处,联结BB ',那么ABB ∆'的面积是 .18.(4分)如图,在平面直角坐标系xOy 中,点A 和点(6,2)E -都在反比例函数k y x=的图象上,如果45AOE ∠=︒,那么直线OA 的表达式是 .三、(本大题共7题,第19-22题每题10分第23、24题每题12分;第25题14分;满分78分)19.(10分)解不等式组:3(5)3(2) 223134xxx x+>--⎧⎪+⎨-⎪⎩.20.(10分)先化简再求值:22222()21a b ab b aba ab b a b b-+-⋅-+--,其中23a=+,23b=-.21.(10分)如图,在梯形ABCD中,//CD AB,10AB=,以AB为直径的O经过点C、D,且点C、D三等分弧AB.(1)求CD的长;(2)已知点E是劣弧DC的中点,联结OE交边CD于点F,求EF的长.22.(10分)问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到10000千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:①从仓库中最方便处打开若干箱子逐个检查;②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.解决:(1)公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;(2)该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.被抽到的箱子里橘子的损耗情况表:根据如表信息,请你估计这批橘子的损耗率;(3)根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).23.(12分)如图,在ACB∠=︒,点D是斜边AC的中点,四边形CBDE是平∆中,90ABC行四边形.(1)如图1,延长ED交AB于点F,求证:EF垂直平分AB;(2)如图2,联结BE、AE,如果BE平分ABC=.AB BC∠,求证:324.(12分)如图,已知抛物线212y x m =+与y 轴交于点C ,直线443y x =-+与y 轴和x 轴分别交于点A 和点B ,过点C 作CD AB ⊥,垂足为点D ,设点E 在x 轴上,以CD 为对角线作CEDF .(1)当点C 在ABO ∠的平分线上时,求上述抛物线的表达式;(2)在(1)的条件下,如果CEDF 的顶点F 正好落在y 轴上,求点F 的坐标;(3)如果点E 是BO 的中点,且CEDF 是菱形,求m 的值.25.(14分)如图,已知BAC ∠,且3cos 5BAC ∠=,10AB =,点P 是线段AB 上的动点,点Q 是射线AC 上的动点,且AQ BP x ==,以线段PQ 为边在AB 的上方作正方形PQED ,以线段BP 为边在AB 上方作正三角形PBM .(1)如图1,当点E 在射线AC 上时,求x 的值;(2)如果P 经过D 、M 两点,求正三角形PBM 的边长;(3)如果点E 在MPB ∠的边上,求AQ 的长.2021年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的]1.(4分)如果m 是任意实数,那么下列代数式中一定有意义的是( )A B C .11m + D【解答】解:A 、当0m <B 、当1m <-无意义,故此选项不符合题意;C 、当1m =-时,11m +无意义,故此选项不符合题意;D 、m故选:D .2.(4分)将抛物线2y x =-向右平移3个单位,再向下平移2个单位后所得新抛物线的顶点是( )A .(3,2)-B .(3,2)--C .(3,2)D .(3,2)-【解答】解:将抛物线2y x =-向右平移3个单位,再向下平移2个单位后,得2(3)2y x =---, ∴顶点坐标为(3,2)-,故选:A .3.(4分)人体红细胞的直径约为0.0000077米,那么将0.0000077用科学记数法表示是( )A .60.7710-⨯B .77.710-⨯C .67.710-⨯D .57.710-⨯【解答】解:将0.0000077用科学记数法表示是67.710-⨯.故选:C .4.(4分)如果剪掉四边形的一个角,那么所得多边形的内角和的度数不可能是( )A .180︒B .270︒C .360︒D .540︒【解答】解:剪去一个角,若边数减少1,则内角和(32)180180=-⋅︒=︒,若边数不变,则内角和(42)180360=-⋅︒=︒,若边数增加1,则内角和(52)180540=-⋅︒=︒,所以,所得多边形内角和的度数可能是180︒,360︒,540︒,不可能是270︒.故选:B .5.(4分)王老师给出一个函数的解析式.小明、小杰、小丽三位同学分别正确指出了这个函数的一个性质.小明:该函数图象经过第一象限;小杰:该函数图象经过第三象限;小丽:在每个象限内,y 值随x 值的增大而减小.根据他们的描述,王老师给出的这个函数解析式可能是( )A .3y x =B .2y x =C .3y x =D .1y x=- 【解答】解:A 、3y x =图象过一、三象限,但y 值随x 值的增大而增大,故A 不符合题意; B 、2y x =图象不经过三象限,对称轴为y 轴,在第一象限内,y 随x 增大而增大,故B 不符合题意;C 、3y x=图象过一、三象限,在每个象限内,y 值随x 值的增大而减小,故C 符合题意; D 、1y x=-图象经过二、四象限,在每个象限内,y 值随x 值的增大而增大,故D 不符合题意;故选:C .6.(4分)已知:在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点,延长DE 至点F ,使得EF DE =,那么四边形AFCD 一定是( )A .菱形B .矩形C .直角梯形D .等腰梯形 【解答】解:E 是AC 中点,AE EC ∴=, DE EF =,∴四边形ADCF 是平行四边形,AD DB =,AE EC =,12DE BC ∴=, DF BC ∴=,CA CB =,AC DF ∴=,∴四边形ADCF 是矩形;故选:B .二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2232m n nm -= 2m n .【解答】解:22232m n nm m n -=.故答案为:2m n .8.(4分)方程1111x x -=+的解是 115x -+=,215x --= . 【解答】解:去分母得:21x x x x +-=+, 解得:15x -±= 检验:把15x -±=代入得:左边=右边, 则分式方程的解为115x -+=,215x --. 故答案为:115x -+,215x --=. 9.(4分)方程组2231x y x y ⎧-=⎨-=-⎩的解是 21x y =-⎧⎨=-⎩ . 【解答】解:2231x y x y ⎧-=⎨-=-⎩①②, 由②,得1x y =-③,把③代入①,得22(1)3y y --=,整理,得22y -=,解,得1y =-.把1y =-代入③,得2x =-.所以原方程组的解为21x y =-⎧⎨=-⎩. 故答案为:21x y =-⎧⎨=-⎩. 10.(4分)如果关于x 的方程230x x k +-=有两个不相等的实数根,那么k 的取值范围是94k >- . 【解答】解:根据题意得△234()0k =-->,解得94k >-. 故答案为94k >-. 11.(4分)甲公司1月份的营业额为60万元,3月份的营业额为100万元,假设该公司2、3两个月的增长率都为x ,那么可列方程是 260(1)100x += .【解答】解:依题意得:260(1)100x +=.故答案为:260(1)100x +=.12.(4分)菱形ABCD 中,已知4AB =,60B ∠=︒,那么BD 的长是 43 .【解答】解:四边形ABCD 为菱形,1302ABD ABC ∴∠=∠=︒,12BO BD =,BD AC ⊥. 在Rt ABO ∆中,cos BO ABO AB ∠=, 3cos 4232BO AB ABO ∴=⋅∠=⨯=. 243BD BO ∴==. 故答案为:43.13.(4分)如图,在梯形ABCD 中,//AD BC ,90A ∠=︒,2AD =,4AB =,5CD =,如果,AB a BC b ==,那么向量BD 是 25b a - (用向量a 、b 表示).【解答】解:过点D 作DE BC ⊥于E .//AD BC ,180A ABC ∴∠+∠=︒,90A ∠=︒,90ABE ∴∠=︒,DE BC ⊥,90DEB =︒∴四边形ABED 是矩形,2AD BE ∴==,4AB DE ==,5CD =,90CED ∠=︒, 2222543CE CD DE ∴=-=-=,∴2255BE BC b ==, //AB DE ,AB DE =,∴DE a =,25BD BE ED b a =+=-, 故答案为:25b a -.14.(4分)小杰和小丽参加社会实践活动,随机选择“做社区志愿者”和“参加社会调查”两项中的一项,那么两人同时选择“做社区志愿者”的概率是 14. 【解答】解:把“做社区志愿者”和“参加社会调查”分别记为A 、B ,画树状图如图:共有4个等可能的结果,符合条件的结果有1个,∴小杰和小丽两人同时选择“做社区志愿者”的概率是14, 故答案为:14. 15.(4分)如图,小杰同学跳起来把一个排球打在离他2米(即2CO =米)远的地上,排球反弹碰到墙上,如果他跳起击球时的高度是1.8米(即 1.8AC =米),排球落地点离墙的距离是6米(即6OD =米),假设排球一直沿直线运动,那么排球能碰到墙面离地的高度BD 的长是 5.4 米.【解答】解:由题意得:AOC BOD ∠=∠.AC CD ⊥,BD CD ⊥,90ACO BDO ∴∠=∠=︒.~ACO BDO ∴∆∆.∴AC OC BD OD=. 即1.826BD =. 5.4BD ∴=(米).故答案为:5.4.16.(4分)古希腊数学家把下列一组数:1、3、6、10、15、21、⋯叫做三角形数,这组数有一定的规律性,如果把第一个三角形数记为1x ,第二个三角形数记为2x ,⋯,第n 个三角形数记为n x ,那么1n n x x -+的值是 2n (用含n 的式子表示).【解答】将条件数据1、3、6、10、15、21、⋯,依次扩大2倍得到:2,6,12,20,30,42,⋯,这组新数据中的每一个数据可以改写成两个相邻正整数的乘积,即212=⨯,623=⨯,1234=⨯,2045=⨯,⋯,∴(1)2n n n x ⨯+=,(1)n . 所以21(1)(1)2n n n n n n x x n --⨯+⨯++==. 故答案是:2n .17.(4分)如图,矩形ABCD 中,6AB =,10BC =,将矩形ABCD 绕着点A 逆时针旋转后,点D 落在边BC 上,点B 落在点B '处,联结BB ',那么ABB ∆'的面积是 545 .【解答】解:如图,过D '作D E AD '⊥于点E ,过点B 作BF AB ⊥'于点F ,由题意得:10AD AD '==,6D E CD '==,6AB AB ='=,DAD BAB ∠'=∠'.63sin 105D E DAD AD '∠'===', 3sin 5BAB ∴∠'=. ∴11354662255BAB S AB BF ∆'=⨯'⨯=⨯⨯⨯=. 故答案为:545. 18.(4分)如图,在平面直角坐标系xOy 中,点A 和点(6,2)E -都在反比例函数k y x =的图象上,如果45AOE ∠=︒,那么直线OA 的表达式是 2y x =- .【解答】解:点(6,2)E -在反比例函数k y x =的图象上, 6(2)12k ∴=⨯-=-,∴反比例函数为12y x=-, 如图,OE 顺时针旋转90︒,得到OD ,连接DE ,交OA 于F ,点(6,2)E -,(2,6)D ∴--,45AOE ∠=︒,45AOD ∴∠=︒,OD OE =,OA DE ∴⊥,DF EF =,(2,4)F ∴-,设直线DE 的解析式为y kx b =+,∴2662k b k b -+=-⎧⎨+=-⎩,解得125k b ⎧=⎪⎨⎪=-⎩, ∴直线DE 的解析式为152y x =-, ∴设直线OA 的解析式为y mx =,把F 的坐标代入得,42m -=,解得2m =-,∴直线OA 的解析式为2y x =-,故答案为2y x =-.三、(本大题共7题,第19-22题每题10分第23、24题每题12分;第25题14分;满分78分)19.(10分)解不等式组:3(5)3(2)223134x x x x +>--⎧⎪+⎨-⎪⎩. 【解答】解:解不等式3(5)3(2)x x +>--,得: 2.5x >-,解不等式223134x x +-,得:20x , ∴不等式组的解集为20x .20.(10分)先化简再求值:22222()21a b ab b ab a ab b a b b-+-⋅-+--,其中23a =23b = 【解答】解:22222()21a b ab b ab a ab b a b b-+-⋅-+--2()[]()()()1a b b a b ab a b a b a b b -+=-⋅-+-- 1()1b ab a b a b b =-⋅--- 11b ab a b b -=⋅-- ab a b=-, 当23a =+,23b =-时,原式(23)(23)3(23)(23)232323+-====+--+-+. 21.(10分)如图,在梯形ABCD 中,//CD AB ,10AB =,以AB 为直径的O 经过点C 、D ,且点C 、D 三等分弧AB .(1)求CD 的长;(2)已知点E 是劣弧DC 的中点,联结OE 交边CD 于点F ,求EF 的长.【解答】解:(1)AB 为直径,点C 、D 三等分弧AB ,∴60AD CD BC ===︒60AOD COD BOC ∴∠=∠=∠=︒.OC OD =,OCD ∴∆为等边三角形.152CD OD AB ∴===. (2)点E 是劣弧DC 的中点,∴DE EC =.AD BC =,∴AE BE =.OF CD ∴⊥.OC OD =,1302DOFDOC∴∠=∠=︒.在Rt ODF∆中,cosOF FODOD∠=.353cos5OF OD FOD∴=⋅∠=⨯=.5OE OD==,535EF OE OF∴=-=-.22.(10分)问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到10000千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:①从仓库中最方便处打开若干箱子逐个检查;②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.解决:(1)公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;(2)该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.被抽到的箱子里橘子的损耗情况表:箱号每箱橘子的损耗重量(千克)箱号每箱橘子的损耗重量(千克)10.88110.77根据如表信息,请你估计这批橘子的损耗率;(3)根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).【解答】解:(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)(8.578.15)(1020)100%8.36%+÷⨯⨯=.即估计这批橘子的损耗率为8.36%;(3)10000(18.36%)2100005000⨯--⨯=,x解得, 2.73x≈.答:该公司可确定这批橘子的销售价格约为2.73元/千克,能够尽可能达到该公司的盈利目标.23.(12分)如图,在ACBABC∠=︒,点D是斜边AC的中点,四边形CBDE是平∆中,90行四边形.(1)如图1,延长ED交AB于点F,求证:EF垂直平分AB;(2)如图2,联结BE、AE,如果BE平分ABC=.AB BC∠,求证:3【解答】(1)证明:四边形CBDE 是平行四边形, //DE BC ∴,90ABC ∠=︒,90AFD ∴∠=︒,DF AB ∴⊥,又D 为AC 的中点,AD BD ∴=,AF BF ∴=,即EF 垂直平分AB ;(2)证明:延长ED 交AB 于点F ,由(1)知,EF 垂直平分AB ,12DF BC ∴=, 四边形CBDE 是平行四边形,BC DE ∴=,32EF DF DE BC ∴=+=, BE 平分ABC ∠,45FBE ∴∠=︒,45FBE FEB ∴∠=∠=︒,BF EF ∴=, 32BF BC ∴=, 23AB BF BC ∴==.24.(12分)如图,已知抛物线212y x m =+与y 轴交于点C ,直线443y x =-+与y 轴和x 轴分别交于点A 和点B ,过点C 作CD AB ⊥,垂足为点D ,设点E 在x 轴上,以CD 为对角线作CEDF .(1)当点C 在ABO ∠的平分线上时,求上述抛物线的表达式;(2)在(1)的条件下,如果CEDF 的顶点F 正好落在y 轴上,求点F 的坐标;(3)如果点E 是BO 的中点,且CEDF 是菱形,求m 的值.【解答】解:(1)对于443y x =-+①,令4403y x =-+=,解得3x =,令0x =,则4y =, 故点A 、B 的坐标分别为(0,4)、(3,0),由点A 、B 的坐标知,4OA =,3OB =,则5AB =, 连接BC ,如下图,点C 在ABO ∠的平分线上,则OC CD =,BC BC =,Rt BCD Rt BCO(HL)∴∆≅∆,故3BD OB ==,则532AD =-=,设OC CD x ==,则4AC x =-,在Rt ADC ∆中,由勾股定理得:22(4)4x x -=+,解得32x =, 故点C 的坐标为3(0,)2, 则抛物线的表达式为21322y x =+; (2)如上图,过点C 作//CH x 轴交AB 于点H ,则ABO AHC ∠=∠, 由AB 得表达式知,4tan tan 3ABO AHC ∠==∠,则3tan 4ACH ∠=, 故直线CD 的表达式为3342y x =+②, 联立①②并解得65125x y ⎧=⎪⎪⎨⎪=⎪⎩,故点D 的坐标为6(5,12)5, 如果CEDF 的顶点F 正好落在y 轴上,则//DE y 轴,且DE CF =, 故125D DE y ==, 则123395210F C y y DE =+=+=, 故点F 的坐标为39(0,)10; (3)点E 是BO 的中点,故点3(2E ,0), 由(2)知,直线CD 的表达式为34y x m =+③, 联立①③并解得,点D 的坐标为4812(25m -,3616)25m +, 而点E 、C 的坐标分别为3(2,0)、(0,)m , CEDF 是菱形,则DE CE =, 即22224812336163()()()252252m m m -+-+=+, 即29360m m -=,解得4m =(舍去)或0,故0m=.25.(14分)如图,已知BAC∠,且3cos5BAC∠=,10AB=,点P是线段AB上的动点,点Q是射线AC上的动点,且AQ BP x==,以线段PQ为边在AB的上方作正方形PQED,以线段BP为边在AB上方作正三角形PBM.(1)如图1,当点E在射线AC上时,求x的值;(2)如果P经过D、M两点,求正三角形PBM的边长;(3)如果点E在MPB∠的边上,求AQ的长.【解答】解:3cos5A=,则4sin5A=.(1)当点E在AC上时,则90AQP∠=︒,AQ PB x==,则10AP AB PB x=-=-,则3 cos105AQ xAAP x===-,解得154x=;(2)如图1,过点Q作QH AP⊥于点H,P经过D、M两点,则PQ PD PB AQ x====,∴点H是AP的中点,则622cos 5AP AH x A x ===, 则6105AB AP PB x x =+=+=, 解得5011x =, 即正三角形PBM 的边长为5011;(3)①当点E 在PC 边上时,如图2,过点Q 作QH AB ⊥于点H ,作PQ 的中垂线交QH 于点G ,交PQ 于点N , 则180180456075QPA MPB QPE ∠=︒-∠-∠=︒-︒-︒=︒, 则907515HQP ∠=︒-︒=︒,则15230HGP ∠=︒⨯=︒, 在Rt PHQ ∆中,设PH t =,则2GQ GP t ==,3GH t =,423sin 5QH t t x A x ∴===,解得5(23)t =+ 则31055(23)AP AH PH PB x x =++==+, 解得100253x +=; ②当点E 在AB 边上时,如图3,过点Q 作QH AB ⊥于点H ,则3sin5PH QH AQ A x===,3cos5AH x A x==,PH AH∴>,即点P在BA的延长线上,与题意不符;综上,100253 AQ+=.。
2021年四川省成都市中考数学二诊试卷1.−2021的相反数是()A. 12021B. − 12021C. 2021D. −20212.用一个平面截一个正方体,截面形状不可能是()A. 三角形B. 四边形C. 五边形D. 七边形3.据新闻报道:2020年11月10日8时12分,中国“奋斗者”号载人潜水器在马里亚纳海沟成功坐底,坐底深度10909米,此时“奋斗者”号承受的水压接近110兆帕(1兆帕=1000000帕),请你用科学记数法表示110兆帕()A. 1.1×107B. 1.1×108C. 1.1×106D. 1.1×1094.在平面直角坐标系中,将抛物线y=2(x−1)2+3先向左平移2个单位,再向下平移1个单位,得到的抛物线解析式为()A. y=2(x+1)2+2B. y=2(x−3)2+2C. y=2(x+1)2+4D. y=2(x−3)2+45.下面计算正确的是()A. a2⋅a3=a6B. (−2a2)3=−8a6C. a9÷a3=a3D. 2a2+a2=3a46.若关于x的方程axx−1=2x−1+1无解,则a的值是()A. 1B. 3C. −1或2D. 1或27.在Rt△ABC中,∠C=90°,BC=5,AB=13,则sin B的值是()A. 1213B. 513C. 125D. 5128.水产养殖中常采用“捉--放--捉”的方式估计一个鱼塘中鱼的数量,如从某个鱼塘中随机地捞出100条鱼,将这些鱼作上记号后再放回鱼塘,隔数日后再从该鱼塘随机捞出144条鱼,其中带有记号的有6条,从而估计该鱼塘有()条鱼.A. 1600B. 2400C. 1800D. 20009.如图,在四边形ABCD中,AD//BC;AB=AD=DC=1,BD⊥CD,则四边形ABCD的面积为()A. √33B. 3√32C. 3√34D. √310. 如图是二次函数y =ax 2+bx +c 的部分图象,图象过点A(3,0),对称轴为x =1,给出下面五个结论:①b 2>4ac ;②2a +b =1;③a −b +c =0;④b +c <0;⑤若y <0,则−1<x <3.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个11. 如果若|x −2|=1,则x = ______ .12. 已知一次函数y =−2x +1,若−2≤x ≤1,则y 的最小值为______ .13. 小华根据朗诵比赛中9位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.8 8.7 8.7 0.11如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是______ .14. 如图,AB ⊥BD ,CD ⊥BD ,当点P 满足PA =PC ,∠APC =90°时,若AB =2,tan∠APB =12,则BD =______ .15. (1)计算:2sin45°+√(1−√2)2+(−√22)−1+(π−3)0; (2)解不等式组{2x −1≥x +2①x+12>2x−13②.16. 先化简,再求值:(3−2x+1)÷3x 2+x x+1,其中x =√3+1.17. 2021年2月25日上午,全国脱贫攻坚总结表彰大会在北京人民大会堂隆重举行,大会对全国脱贫攻坚先进个人、先进集体进行了表彰,“精准扶贫”是新时期党和国家扶贫工作的精髓和亮点,某校团委随机抽取九年级部分学生,对他们是否了解“精准扶贫”政策的情况进行调查,调查结果分为四类,分别为:A 类:非常了解,B 类:了解,C 类:基本了解,D 类:不了解.并将调查的数据绘制成如图两幅不完整的统计图,请根据统计图中的信息解决下列问题:(1)本次被抽样调查学生的总人数是______ 人;(2)该校九年级共有800人,请估计基本了解的人数约为______ 人;(3)若调查人员想从5名学生(分别记为a ,b ,c ,d ,e)中随机选取两人,调查他们对“精准扶贫”政策的了解情况,请用列表或树状图的方法,求同时选中a ,e 两人的概率.18.为保护师生健康,新都某中学在学校门口安装了红外测温通道,对进校师生进行体温监测,测温装置安装在E处.某同学进校时,当他在地面D处,开始显示测量体温,此时在其额头A处测得E的仰角为30°,当他走到地面C处,结束显示体温,此时在其额头B处测得E的仰角为45°,已知该同学脚到额头的高度为AD,且AD=1.6米,CD=1米,求测温装置E距地面的高度约为多少米?(保留小数点后两位有效数字,√3≈1.73)19.已知在平面直角坐标系中,点A(1,2)在反比例函数y=k的图象上,过点A的直线与该双曲线的另一支x交于点B(−2,m).(1)求直线AB的函数表达式;(2)若点C为x轴上一动点,求当S△ABC=6时,点C的坐标.20.如图,在正方形ABCD中,BC=4,G为射线CB上的动点,连接DG,交AC于H.(1)证明:△AHB≌△AHD;(2)若DG交AB于F,当FB=FH时,求BG之长;(3)是否存在点G,使得△GHC为等腰三角形,若存在,请求出CG之长;若不存在,请说明理由.21.若x−y=2,xy=3,则代数式x3y−2x2y2+xy3的值为______ .22.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、已、午、未、申、酉、戍、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸已;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法”中的______ .23.如图,在直角△ABC中,∠A=90°,AB=3,AC=4,四边形ADEF为△ABC的内接正方形,若在△ABC内取一点,这点取自正方形ADEF的概率为______ .24.将一副三角板如图放置在一起,使得等腰直角△ABD与直角△ACD的斜边重合,其中AD=4,∠B=∠C=90°,∠CAD=30°,则点B到边AC的距离为______ .的图象与一次函数y=2x+b的图象相交于A,B两点,若A,B 25.反比例函数y=1x两点的横坐标分别为x1,x2,则|x1−x2|的最小值为______ .26.为应对全球变暖,落实国家节能减排政策,某公司积极进行技术创新,将原本直接排放进大气中的二氧化碳转化为固态形式的化工产品,从而实现“变废为宝、低碳排放”.经过生产实践和数据分析,在这种技术下,该公司二氧化碳月处理成本y(万元)与二氧化碳月处理量x(2≤x≤6,单位:百吨)之间满足的一元二次函数关系,如图所示,已知点A(2,2),顶点B(3,1.5),假设每处理一百吨二氧化碳得到的化工产品的收入为2万元.(1)求该公司二氧化碳月处理成本y(万元)与二氧化碳月处理量x(2≤x≤6,单位:百吨)之间满足的一元二次函数一般式;(2)该公司利用这种技术处理二氧化碳的最大月收益W是多少万元?(月收益=月收入−月处理成本)27.将矩形ABCD折叠,使得点C落在边AB上,折痕为EF,(1)如图1,当点C与点A重合时,若AB=4,BF=3,求AE的长;(2)如图2,点C落在AB边的点M处(不与A,B重合),若AB=4,AD=8,①取EF的中点O,连接并延长MO与D′E的延长线交于点P,连接PF,ME.求证:四边形MFPE是平行四边形;②设BM=t,用含有t的式子表示四边形ABFE的面积,并求四边形ABFE的面积的最大值及此时t的值.28.如图所示:二次函数y=x2−x−6的图象与x轴交于A,B两点,与y轴交于点C,连接AC,BC.(1)求直线BC的函数表达式;(2)如图1,若点M为抛物线上线段BC右侧的一动点,连接CM,BM.求△BMC面积的最大值及相应点M的坐标;(3)如图2,该抛物线上是否存在点P,使得∠ACO=∠BCP?若存在,请求出所有点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2021的相反数是2021,故选:C.根据相反数的概念解答即可.本题考查的是相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解题的关键.2.【答案】D【解析】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.本题考查正方体的截面.正方体的截面的四种情况应熟记.3.【答案】B【解析】解:110兆帕=110000000帕=1.1×108帕,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:∵抛物线y=2(x−1)2+3的顶点坐标为(1,3),∴平移后抛物线的顶点坐标为(−1,2),∴平移后抛物线的解析式为y=2(x+1)2+2.故选:A.找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.5.【答案】B【解析】解:A、a2⋅a3=a5,故本选项不合题意;B、(−2a2)3=−8a6,故本选项符合题意;C、a9÷a3=a6,故本选项不合题意;D、2a2+a2=3a2,故本选项不合题意;故选:B.分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘除法以及积的乘方,熟记相关运算法则是解答本题的关键.6.【答案】D【解析】解:axx−1=2x−1+1,去分母得,ax=2+x−1,整理得,(a−1)x=1,当x=1时,分式方程无解,则a−1=1,解得,a=2;当整式方程无解时,a=1,故选:D.先转化为整式方程,再由分式方程无解,进而可以求得a的值.本题主要考查分式方程的解,掌握解分式方程的方法是解题的关键.7.【答案】A【解析】解:在Rt△ABC中,∠C=90°,BC=5,AB=13,∴AC=√AB2−BC2=√132−52=12,∴sinB=ACAB =1213,故选:A.先根据勾股定理求出AC,再根据锐角三角函数求解即可.本题考查勾股定理,锐角三角函数,理解锐角三角函数的意义,掌握勾股定理是得出正确答案的前提.8.【答案】B【解析】解:设鱼塘中有x条鱼,根据题意,得:100x =6144,解得x=2400,经检验x=2400是分式方程的解,所以估计该鱼塘有2400条鱼,故选:B.设鱼塘中有x条鱼,根据题意得出100x =6144,解之即可得出答案.本题主要考查了利用样本估计总体的思想,首先设整个鱼塘约有鱼x条,然后利用样本估计总体的思想即可列出方程解决问题.9.【答案】C【解析】解:如图,过点D作DE//AB交BC于点E,∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴DE=AB,BE=AD,∵AB=AD=DC=1,∴DE=AB=DC=1,BE=AD=1,∴DE=BE=CD=1,∴∠CBD=∠BDE,∠C=∠CED,∵BD⊥CD,∴∠BDC=90°,∴∠CBD+∠C=∠BDE+∠CDE=90°,∴∠C=∠CDE,∴CE=BE=1,∴BC=2,∴BD=√BC2−CD2=√22−12=√3,∴S△BCD=12BD⋅CD=12×√3×1=√32,∵CE=BE=1,∴S△BDE=12S△BCD=12×√32=√34,∵S△ABD=S△BDE=√34,∴S四边形ABCD =S△ABD+S△BCD=√34+√32=3√34.故选:C.过点D作DE//AB交BC于点E,先证明四边形ABED是平行四边形,得出DE=BE= CD=1,进而得出∠CBD=∠BDE,∠C=∠CED,再由BD⊥CD,利用直角三角形性质得出∠C=∠CDE,即可求出BC=2,运用勾股定理求得BD,即可求得S△BCD,再利用平行四边形对角线和三角形中线性质即可求得答案.本题考查了等腰三角形的判定和性质,直角三角形性质,三角形面积,平行四边形的判定与性质等,添加辅助线构造平行四边形是解题关键.10.【答案】D【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,即b2>4ac,①正确;∵对称轴为x=1,∴−b2a=1,即b=−2a,∴2a+b=2a+(−2a)=0,∴②不正确;∵图象过点A(3,0),对称轴为x=1,∴图象与x轴左侧的交点为(−1,0),将(−1,0)代入y=ax2+bx+c得:a−b+c=0,③正确;由图象知顶点(1,a+b+c)在x轴下方,∴a+b+c<0,即b+c<−a,而开口向上,a>0,∴−a<0,∴b+c<−a<0,④正确;∵抛物线与x轴两个交点分别为(−1,0),(3,0),且开口向上,∴y<0时−1<x<3,⑤正确;∴正确的有①③④⑤,故选:D.根据二次函数图象及性质逐个判断.本题考查二次函数图象与系数的关系,解题的关键是要掌握抛物线顶点、对称轴、与x(y)轴交点等知识.11.【答案】3或1【解析】解:∵|x−2|=1,∴x−2=±1,则x−2=1,x−2=−1,解得:x=3或1,故答案为:3或1.根据绝对值的性质可得x−2=±1,再解方程即可.此题主要考查了绝对值,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.12.【答案】−1【解析】解:∵k=−2<0,∴y随x的增大而减小,∴当x=1时,y取得最小值,此时y=−2×1+1=−1.故答案为:−1.由k=−2<0,可得出y随x的增大而减小,结合−2≤x≤1,即可求出y的最小值.本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13.【答案】中位数【解析】解:去掉一个最高分和一个最低分对中位数没有影响,故答案为:中位数.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数、众数、平均数及方差的定义,难度不大.14.【答案】6【解析】解:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90,∴∠CPD+∠C=90°,∵∠APC=90°,∴∠APB+∠CPD=90°,∴∠APB=∠C=90°−∠CPD,在△ABP和△PDC中,{∠APB=∠C ∠B=∠DPA=PC,∴△ABP≌△PDC(AAS),∴AB=PD,∵AB=2,∴PD=2,∵tan∠APB=12,∴ABBP =12,∴BP=4,∴BD=BP+PD=6,故答案为:6.根据全等三角形的判定证得△ABP≌△PDC,由全等三角形的性质得到PD=AB=2,由三角函数求出BP=4,即可求得BD.本题主要考查了全等三角形的性质和判定,三角函数的定义,由全等三角形的判定定理证得△ABP≌△PDC是解决问题的关键.15.【答案】解:(1)原式=2×√22+√2−1−√2+1=√2+√2−1−√2+1=√2;(2)解不等式①,得:x≥3,解不等式②,得:x<5,则不等式组的解集为3≤x<5.【解析】(1)先代入三角函数值、计算算术平方根、负整数指数幂和零指数幂,再计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【答案】解:原式=(3x+3x+1−2x+1)÷x(3x+1)x+1=3x+1x+1×x+1x(3x+1)=1x,当x=√3+1时,原式=√3+1=√3−12.【解析】根据分式的混合运算法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则、分母有理化是解题的关键.17.【答案】150 320【解析】解:(1)本次被抽样调查学生的总人数是:30÷20%=150(人),故答案为:150;(2)C类的人数为:150−15−45−30=60(人),∴该校九年级共有800人,估计基本了解的人数约为:800×60150=320(人),故答案为:320;(3)画树状图如图:共有20个等可能的结果,同时选中a,e两人的结果有2个,∴同时选中a,e两人的概率为220=110.(1)由D类人数除以所占百分比即可;(2)由九年级总人数乘以基本了解的人数所占的比例即可;(3)画树状图,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图. 18.【答案】解:设EF =x 米.在Rt △BEF 中,tan45°=EF BF =1, ∴BF =EF =x 米.在Rt △AEF 中,tan30°=EFAF =√33, ∴AF =√3EF =√3x 米.∵AB =CD =AF −BF ,∴√3x −x =1,解得:x ≈1.37,∴EG =1.6+1.37=2.97(米).答:测温装置E 距地面的高度约为2.97米.【解析】设EF =x 米.通过解直角三角形分别表示出、AF 的长度,根据AB =CD =AF −BF 得到方程,解即可求得EF ,进而即可求解.本题主要考查了解直角三角形的应用−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.【答案】解:(1)把点A(1,2)代入y =kx 中,解得k =2,∴反比例函数表达式为y =2x ,把点B(−2,m)代入y =2x 中,解得m =−1,∴点B 的坐标为(−2,−1),设直线AB 的表达式为y =kx +b ,把A(1,2)和B(−2,−1)代入上式,得{k +b =2−2k +b =−1, 解得{k =1b =1, ∴一次函数表达式为y =x +1;(2)设点C 的坐标为(a,0),如图,当y=0时,x+1=0,解得x=−1,∴点D的坐标为(−1,0),则CD=|a+1|,∵S△ABC=S△ADC+S△BDC=6,即12CD×2+12CD×1=6,∴CD=4,∴|a+1|=4,a+1=±4,解得a1=3,a2=−5,∴点C的坐标为(3,0)或(−5,0).【解析】(1)把点A(1,2)代入y=kx中,即可算出反比例函数表达式,即可算出点B的坐标,把A、B两点的坐标代入一次函数表达式y=kx+b中,解方程组即可得出答案;(2)先设点C的坐标为(a,0),根据直接AB的解析即可算出点D的坐标,则CD=|a+1|,根据S△ABC=S△ADC+S△BDC=6,再根据三角形面积计算即可得出答案.本题主要考查了一次函数与反比例函数交点问题,熟练掌握相关知识进行计算是解决本题的关键.20.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAC=∠DAC=45°=∠ACB,在△AHB和△AHD中,{AB=AD∠BAH=∠DAH AH=AH,∴△AHB≌△AHD(SAS);(2)如图1,∵△AHB≌△AHD,∴∠ABH=∠ADH,∵AD//BC,∴∠G=∠ADH,∵BF=FH,∴∠FBH=∠FHB,∴∠G=∠FHB=∠FBH,∵∠G+∠FHB+∠FBH+∠GBF=180°,∴∠G=∠FHB=∠FBH=30°=∠ADF,∴AD=√3AF=4,BG=√3BF,∴AF=4√3,3∴BF=4−4√3,3∴BG=√3BF=4√3−4;(3)当GH=CH时,∴∠ACB=∠DGC=45°,∴∠GHC=90°,即DG⊥AC,∴点G与点B重合,∴CG=CB=4;当GH=GC时,∴∠GHC=∠GCH=45°,∴∠HGC=90°,∵∠DGC是Rt△DGC的一个锐角,∴∠DGC<90°,∴不存在GH=GC;当CH=CG时,∴∠GHC=∠HGC=67.5°,∴∠GDC=22.5°,如图2,在CD上截取CG=CN,连接GN,∴∠CNG=∠CGN=45°,GN=√2CG,∴∠DGN=22.5°=∠GDC,∴DN=GN,∵DN+NC=CD=4,∴√2GC+GC=4,∴GC=4√2−4,综上所述:GC=4或4√2−4.【解析】(1)由“SAS”可证△AHB≌△AHD;(2)先求∠G=∠FHB=∠FBH=30°=∠ADF,由直角三角形的性质可求解;(3)分三种情况讨论,由等腰三角形的性质和等腰直角三角形的性质可求解.本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,利用分类讨论思想解决问题是解题的关键.21.【答案】12【解析】解:x3y−2x2y2+xy3=xy(x2−2xy+y2)=xy(x−y)2,把x−y=2,xy=3代入得:原式=3×22=12.故答案为:12.原式提取公因式xy,再利用完全平方公式分解,将已知等式代入计算即可求出值.考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.【答案】庚午【解析】解:需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.例如公元2021年的个位数是1,对应“天干”的“辛”;2021÷4得到余数是5,对应“地支”中“丑”,故是“辛丑”年;同样公元2050年的个位数是0,对应“天干”的“庚”;2050÷4得到余数是10,对应“地支”中“午”.故答案为:庚午.需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.本题考查“天干、地支”的循环纪年,转化为用数字的循环来计算的数学方法.此题关健是弄清“干支”纪年是从公元4年开始.23.【答案】2449【解析】解:在直角△ABC中,∠A=90°,AB=3,AC=4.∴S△ABC=12AC⋅AB=6.AB=5.∵四边形ADEF为△ABC的内接正方形.∴EF//AB.EF=FA.∴△CEF∽△CBA.∴EFAB =CFFA即:EF3=4−EF4.∴EF=127.∴正方形ADEF的面积为:14449.∴在△ABC内取一点,这点取自正方形ADEF的概率为=S正方形ADEFS△ABC =2449.故答案为:2449.根据已知,求出△ABC面积,利用相似性质,求出正方形的变成和面积,利用面积的比,即可求出概率.本题考查三角形相似的判定和性质、勾股定理、概率的公式,比较综合,关键在于求出相应图形的面积,属于拔高题.24.【答案】√3−1【解析】解:过B作BE⊥AC于E,∵AD=4,∠ABF=∠C=90°,∠CAD=30°,∴CD=12AD=2,AB2+BD2=AD2=16,∵AB=BD,∴2AB2=16,∴AB=BD=2√2,∵∠ABF=∠C,∠AFB=∠DFC,∴△ABF∽△DCF,∴BFCF =ABDC=2√22=√2,设CF=x,则BF=√2x,∴DF=BD−BF=2√2−√2x,∵DF2=CD2+CF2,∴(2√2−√2x)2=22+x2,解得x1=4−2√3,x2=4+2√3>AD(不合题意,舍去),即CF=4−2√3,∴BF=4√2−2√6,∵AC=AD⋅cos∠CAD=4×√32=2√3,∴AF=AC−CF=2√3−(4−2√3)=4√3−4,∵S△ABF=12AB⋅BF=12AF⋅BE,∴BE=AB⋅BFAF =2√2×(4√2−2√6)4√3−4=2(2−√3)√3−1=√3−1,故答案为:√3−1.过B作BE⊥AC于E,根据特殊三角形的性质求出AB,BD,CD,AC,由相似三角形的判定证得△ABF∽△DCF,由相似三角形的性质证得BF=√2CF,由勾股定理求出CF,进而求出BF,AF,根据三角形的面积公式即可求得BE.本题主要考查了含30°的直角三角形的性质和等腰直角三角形的性质,勾股定理,相似三角形的性质和判定,三角形的面积公式,根据相似三角形的性质和勾股定理求出CF 是解决问题的关键.25.【答案】√2【解析】解:令1x=2x+b,即2x2+bx−1=0,由题意可知,x1+x2=−b2,x1x2=−12,∵|x1−x2|=√(x1+x2)−4x1x2=√b24+2,∴当b=0时,|x1−x2|有最小值为√2,故答案为√2.令1x =2x+b,即2x2+bx−1=0,由题意可知,x1+x2=−b2,x1x2=−12,即可得到|x1−x2|=√b24+2,即可求得|x1−x2|的最小值为√2.本题是反比例函数与一次函数的交点问题,根与系数的关系,得到|x1−x2|=√b24+2是解题的关键.26.【答案】解:(1)∵顶点B(3,1.5).设抛物线为:y=a(x−3)2+1.5.将点A(2,2)代入,解得:a=12.∴解析式为:y=12(x−3)2+1.5(2≤x≤6).(2)收益W=2−y=2−12(x−3)2−32=−12(x−3)2+12.∵2≤x≤6.∴当x=3时,W取最大值,最大值为:12.即公司利用这种技术处理二氧化碳的最大月收益W是12万元.【解析】(1)根据图形设函数的解析式为顶点式,即可求解解析式.(2)表示出收益,利用函数的性质即可求解最大收益.本题考查利用待定系数法求二次函数解析式,以及考查求二次函数的最值问题,属于基础题.27.【答案】解:(1)如图1,∵矩形ABCD沿EF折叠,∴∠AFE=∠EFC,∵AD//BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF,在Rt△ABF中,AB=4,BF=3,则AF=5=AE,即AE=5;(2)①∵D′E//MF,即D′P//MF,∴∠EPM=∠PMF,∵∠MOF=∠POE,OE=OF,∴△EOP≌△FOM(AAS),∴∠EMO=∠FPO,∴MF//EP,∴四边形MFPE是平行四边形;②∵ABEF为梯形,点C在M处,则MF=CF,则BF2=MF2−t2=(8−BF)2−t2,解得BF=4−116t2,则ME2=AE2+(4−t)2=MD′2+D′E2=42+(AD−AE)2=42+(8−AE)2,即AE2+(4−t)2=42+(8−AE)2,解得AE=−116t2+12t+4,∴S梯形ABFE =12(AE+BF)×AB=12(4−116t2−116t2+12t+4)=−14t2+t+16,∵−14<0,故四边形ABFE的面积存在最大值,当t=2时,四边形ABFE的面积的最大值为17.【解析】(1)证明∠AEF=∠EFC=∠AFE,则AE=AF,即可求解;(2)①证明△EOP≌△FOM(AAS),进而求解;②ABEF为梯形,点C在M处,则MF=CF,求出BF=4−116t2,AE=−116t2+12t+4,进而求解.本题考查的是四边形综合题,涉及平行四边形的性质、三角形全等、面积的计算等,综合性强,难度较大.28.【答案】解:(1)对于y =x 2−x −6①,令y =x 2−x −6=0,解得x =3或−2,令x =0,则y =−6,故点A 、B 、C 的坐标分别为(−2,0)、(3,0)、(0,−6),设直线BC 的表达式为y =kx +b ,则{0=3k +b b =−6,解得{k =2b =−6, 故直线BC 的表达式为y =2x −6;(2)过点M 作y 轴的平行线交BC 于点H ,设点M 的坐标为(x,x 2−x −6),则点H(x,2x −6),则△BMC 面积=S △HMB +S △HMC =12×HM ×OB =32(2x −6−x 2+x +6)=32(−x 2+3x),∵−32<0,故△BMC 面积存在最大值, 当x =32时,△BMC 面积的最大值为278,此时点M 的坐标为(32,−214);(3)存在,理由:在Rt △OBC 中,tan∠OBC = OB OC =2,由B 、C 的坐标得,BC =√45,①当点P 在BC 的右侧时,延长CP 交x 轴于点H ,过点H 作NH ⊥BC 交CB 的延长线于点N ,在Rt △BNH 中,tan∠NBH =tan∠OBC =2,设BN =x ,则NH =2x ,在Rt △CNH 中,tan∠BCP =tan∠ACO =13=NH CN =2x √45+x ,解得x =√455, 则BH =√NH 2+BN 2=√5x =3,故点H 的坐标为(6,0),由点C 、H 的坐标得,直线CH 的表达式为y =x −6②,联立①②并解得{x =2y =−4(不合题意的值已舍去), 故点P 的坐标为(2,−4);②当点P 在BC 的左侧时,设直线CH′交抛物线于点P′,同理可得,点H′的坐标为(67,0),则直线CH′的表达式为y =7x −6③,联立①③并解得{x =8y =50(不合题意的值已舍去), 故点P 的坐标为(8,50);综上,点P 的坐标为(2,−4)或(8,50).【解析】(1)用待定系数法即可求解;(2)由△BMC 面积=S △HMB +S △HMC =12×HM ×OB ,即可求解;(3)分点P 在BC 的右侧、点P 在BC 的左侧两种情况,用解直角三角形的方法,分别求解即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2021年四川省成都市武侯区中考数学二诊试卷一、选择题(共10小题).1.下列各数中,比﹣5小的数是()A.﹣7B.﹣4C.0D.62.某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球3.2021年成都市政府工作报告指出,五年来,成都市新建改扩建中小学、幼儿园809所,新增学位52.5万个,保障58万名随迁子女接受义务教育.将数据52.5万用科学记数法表示为()A.0.525×106B.5.25×105C.52.5×104D.52500004.在Rt△ABC中,∠C=90°,BC=6,sin A=,则AC的长为()A.4B.6C.8D.105.下列计算正确的是()A.a2•a5=a10B.2a2+a2=3a4C.(a+b)2=a2+b2D.(a+7)(a﹣7)=a2﹣496.在主题为“我为武侯代言”梦想大舞台之青春讲解员的选拔赛中,其中6名选手的成绩(单位:分)分别为:8.5,8.2,8.9,8.5,9.2,9.5,则这组数据的众数和中位数分别是()A.8.2,9.5B.9.5,8.7C.8.5,8.7D.8.5,9.57.分式方程=1的解为()A.x=1B.x=2C.x=3D.x=48.如图,在△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接OD,CD,若CD=OD,则∠B的度数为()A.30°B.45°C.60°D.70°9.我国古代数学名著《孙子算经》中有一问题:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”其大意为:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,则所列方程组正确的是()A.B.C.D.10.在平面直角坐标系中,将二次函数y=x2+3的图象向下平移3个单位长度,得到的函数图象与一次函数y=2x+k的图象有公共点,则实数k的取值范围是()A.k>﹣1B.k≥﹣1C.k<﹣1D.k≤﹣1二、填空题(本大题共4个小题,每小题4分,16分,答案写在答题卡上)11.若|a﹣2|+(b+3)2=0,则a+b=.12.已知点A(3,a),B(5,b)在反比例函数y=﹣的图象上,则a与b的大小关系为.13.如图,在△ABC中,AB=5,D,E分别是边AC和AB上的点,且∠AED=∠C,若AD •BC=,则DE的长为.14.如图,在菱形ABCD中,连接BD,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AD,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线AO,交BD于点E.若∠ADC=120°,AE=,则菱形ABCD的面积为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:﹣5|.(2)求不等式组的非负整数解.16.化简:.17.2021年3月1日,《成都市生活垃圾管理条例》(以下简称《条例》)正式实施,垃圾分类成为成都人的“必修课”.《条例》将生活垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.某校九年级为了解学生对生活垃圾分类的知晓情况,对九年级部分学生进行随机抽样调查,结果分为“A.非常了解”,“B.比较了解”,“C.一般了解”,“D.不了解”四种类型,并将调查结果绘制成两幅不完整的统计图.根据统计图信息,解答下列问题:(1)请分别补全条形统计图和扇形统计图;(2)若该校九年级有500名学生,请在(1)的基础上估计其中对生活垃圾分类“比较了解”的学生有多少名?(3)若“非常了解”的4人中有A1,A2两名男生B1,B2两名女生,现从中随机选取两人向全校学生作“生活垃圾分类,从我做起”的宣讲,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.成都今年推出了多个夜景灯光秀,深受市民喜爱,位于天府大道的金融城双子塔灯光秀便是其中之一.小莉想利用所学的数学知识,测金融城双子塔AB的高度.如图她先在C 处用高度为1.3米的测角仪CD测得AB上一点E的仰角∠EDF=22°,接着她沿着CB 方向前进50米到达G处测得点A的仰角∠AHF=45°.若AE=110米,求双子塔AB 的高度.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与x轴,y轴分别交于A,B 两点,与反比例函数y=(x>0)的图象交于点C(2,n).(1)求反比例函数的表达式;(2)设P是直线AB上一点,过P作PD∥y轴,交反比例函数y=(x>0)的图象于点D,交x轴于点E,连接AD.若△APE的面积是△APD的面积的2倍,求点P的坐标.20.如图,以Rt△ABC的斜边AC为直径作⊙O,点D在半径OC上,过点D作AC的垂线,分别交弦BC于点E,交⊙O于F.在射线DE上取点G,连接GB并延长交CA的延长线于点H,且满足GB=GE.(1)求证:HG是⊙O的切线;(2)若GE=BE,HB=.(i)求⊙O的半径;(ii)如图2,连接AF,交弦BC于点M,若AF∥HG,求线段OD的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡)21.若实数a,b满足a﹣b=1,则代数式a2﹣b2﹣2b+5的值为.22.如图,AD为△ABC的中线,点E,F分别为AD,AB的中点,连接EC,EF.现随机向△ABC内掷一枚小针,则针尖落在阴影区域的概率为.23.将满足2≤x≤3的两个整数解分别记为x1,x2,且x1≠x2,则代数式(x﹣x1)2+(x﹣x2)2的最小值为.24.如图,在平面直角坐标系xOy中,点A(2,1)在反比例函数y=(k>0)的图象上,连接OA,将线段OA绕点O逆时针旋转120°得到对应线段OB,此时点B刚好落在反比例函数y=(m<0)的图象上,则m的值为.25.如图,在一个12×13的网格中,点O,A,B都在格点上,OA=AB=8,点P是线段AB上的一个动点,连接OP,将线段OA沿直线OP进行翻折,点A落在点C处,连接BC,以BC为斜边在直线BC的左侧(或下方)构造等腰直角三角形BDC,则点P从A 运动到B的过程中,线段BC的长的最小值为,线段BD所扫过的区域内的格点的个数为(不包含所扫过的区域边界上的点).二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.某校积极筹备“爱成都•迎大运”体育节活动决定购买一批篮球和足球共60个.已知在线下商店购买50个篮球和10个足球共需4600元,购买30个篮球和30个足球共需4200元.(1)分别求在线下商店购买篮球和足球的单价;(2)经过市场调查分析,发现在线上商店购买更划算,已知线上商店篮球的单价和线下商店一样,但线上商店足球有优惠活动,足球的单价是线下的八折.若学校要求购买篮球的个数不得少于足球的个数的2倍,那么学校在线上商店应分别购买多少数量的篮球和足球才能使得所花费用最少?并求出该费用的最小值?27.如图,在矩形ABCD中,AB=12,AD=9,点E,F,P,Q分别是边AD,AB,BC,CD上的点,且满足AE=CP=5,AF=CQ,连接EF,PQ.将△AEF和△CPQ分别沿直线EF,PQ进行翻折,得到对应的△GEF和△HPQ,连接EH,PG.(1)(i)求证:∠AEG=∠CPH;(ii)判断四边形EGPH的形状并说明理由;(2)如图2,若点A,G,P在一条直线上,求四边形EGPH的周长;(3)如图3,若点H,G分别落在EF,PQ上,HP交FG于点M,HQ交EG于点N,求AF的长,并直接写出四边形NHMG的面积.28.如图,在平面直角坐标系xOy中,直线y=﹣x+10分别交x轴,y轴于点A,B.抛物线y=ax2+bx(a<0)经过点A,且C点是该抛物线的顶点.(1)求点C的横坐标;(2)该抛物线经过线段AB上的另点D(点D不与C重合),直线CD交y轴于点E,分别求点D的坐标(用含a的代数式表示)和点E的坐标;(3)在(2)的条件下,连接OD,OC,AC,是否存在恰当的a值,使得△ODC和△ACD的面积之间满足其中一个是另一个的4倍?若存在,求出a的值;若不存在,请说明理由.参考答案一、选择题(本大题共10个小题,每小题3分,30分,每小题均有四个选项,其中只有一项符合题目要求答案涂在答题卡上)1.下列各数中,比﹣5小的数是()A.﹣7B.﹣4C.0D.6解:∵﹣7<﹣5<﹣4<0<6,∴其中比﹣5小的数是﹣7.故选:A.2.某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.3.2021年成都市政府工作报告指出,五年来,成都市新建改扩建中小学、幼儿园809所,新增学位52.5万个,保障58万名随迁子女接受义务教育.将数据52.5万用科学记数法表示为()A.0.525×106B.5.25×105C.52.5×104D.5250000解:52.5万=525000=5.25×105.故选:B.4.在Rt△ABC中,∠C=90°,BC=6,sin A=,则AC的长为()A.4B.6C.8D.10解:sin A=,∴=,解得,AB=10,由勾股定理得,AC===8,故选:C.5.下列计算正确的是()A.a2•a5=a10B.2a2+a2=3a4C.(a+b)2=a2+b2D.(a+7)(a﹣7)=a2﹣49解:A、a2•a5=a7,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+7)(a﹣7)=a2﹣49,故此选项正确;故选:D.6.在主题为“我为武侯代言”梦想大舞台之青春讲解员的选拔赛中,其中6名选手的成绩(单位:分)分别为:8.5,8.2,8.9,8.5,9.2,9.5,则这组数据的众数和中位数分别是()A.8.2,9.5B.9.5,8.7C.8.5,8.7D.8.5,9.5解:6名选手的成绩(单位:分)分别为:8.5,8.2,8.9,8.5,9.2,9.5,则这组数据按照从小到大排列是:8.2,8.5,8.5,8.9,9.2,9.5,故这组数据的众数是8.5,中位数是(8.5+8.9)÷2=8.7,故选:C.7.分式方程=1的解为()A.x=1B.x=2C.x=3D.x=4解:去分母得:x(x﹣2)+2(x﹣1)=x(x﹣1),去括号得:x2﹣2x+2x﹣2=x2﹣x,解得:x=2,检验:把x=2代入得:x(x﹣1)=2×1=2≠0,则分式方程的解为x=2.故选:B.8.如图,在△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接OD,CD,若CD=OD,则∠B的度数为()A.30°B.45°C.60°D.70°解:∵CD=OD,OD=OC=OA=AC,∴CD=AC,∵AC为⊙O的直径,∴∠ADC=90°,∴∠A=30°,∵∠ACB=90°,∴∠B=90°﹣∠A=60°,故选:C.9.我国古代数学名著《孙子算经》中有一问题:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”其大意为:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,则所列方程组正确的是()A.B.C.D.解:依题意得:.故选:C.10.在平面直角坐标系中,将二次函数y=x2+3的图象向下平移3个单位长度,得到的函数图象与一次函数y=2x+k的图象有公共点,则实数k的取值范围是()A.k>﹣1B.k≥﹣1C.k<﹣1D.k≤﹣1解:将二次函数y=x2+3的图象向下平移3个单位长度,得到:y=x2+3﹣3,即y=x2,则,所以x2=2x+k,整理,得x2﹣2x﹣k=0,因为得到的图象与一次函数y=2x+k的图象有公共点,所以△=(﹣2)2﹣4×1×(﹣k)≥0,解得k≥﹣1,故选:B.二、填空题(本大题共4个小题,每小题4分,16分,答案写在答题卡上)11.若|a﹣2|+(b+3)2=0,则a+b=﹣1.解:根据题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,∴a+b=2﹣3=﹣1.故答案为:﹣1.12.已知点A(3,a),B(5,b)在反比例函数y=﹣的图象上,则a与b的大小关系为a<b.解:∵反比例函数y=﹣中,k=﹣2<0,∴图象在二、四象限,每个象限内y随x的增大而增大,∵点A(3,a)与点B(5,b)都在反比例函数y=﹣的图象上,且3<5,∴a<b.故答案为a<b.13.如图,在△ABC中,AB=5,D,E分别是边AC和AB上的点,且∠AED=∠C,若AD •BC=,则DE的长为.解:∵∠AED=∠C,∠EAD=∠CAB,∴△ADE∽△ABC,∴,∴AD•BC=DE•AB,且AD•BC=,AB=5,∴DE=,故答案为:.14.如图,在菱形ABCD中,连接BD,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AD,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线AO,交BD于点E.若∠ADC=120°,AE=,则菱形ABCD的面积为2.解:根据作图过程可知:AE是菱形ABCD的∠DAB的平分线,∴AE是菱形ABCD对角线的一半,AE垂直平分BD,∵∠ADC=120°,∴∠BAD=60°,∴△ABD是等边三角形,∴∠DAE=30°,∵AE=,∴DE=1,∴BD=2,∴菱形ABCD的面积为:2AE•BD=2.故答案为:2.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:﹣5|.(2)求不等式组的非负整数解.解:(1)原式=﹣3+2×﹣4+5﹣2=﹣2;(2),解不等式①得:x≥﹣2,解不等式②得:x<4,∴不等式组的解集是﹣2≤x<4,∴非负整数解为0,1,2,3.16.化简:.解:原式=•=•=.17.2021年3月1日,《成都市生活垃圾管理条例》(以下简称《条例》)正式实施,垃圾分类成为成都人的“必修课”.《条例》将生活垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.某校九年级为了解学生对生活垃圾分类的知晓情况,对九年级部分学生进行随机抽样调查,结果分为“A.非常了解”,“B.比较了解”,“C.一般了解”,“D.不了解”四种类型,并将调查结果绘制成两幅不完整的统计图.根据统计图信息,解答下列问题:(1)请分别补全条形统计图和扇形统计图;(2)若该校九年级有500名学生,请在(1)的基础上估计其中对生活垃圾分类“比较了解”的学生有多少名?(3)若“非常了解”的4人中有A1,A2两名男生B1,B2两名女生,现从中随机选取两人向全校学生作“生活垃圾分类,从我做起”的宣讲,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.解:(1)抽查的学生人数为:4÷10%=40(人),C类的人数为:40﹣4﹣18﹣8=10(人),扇形统计图中,B类所占的百分比为:18÷40×100%=45%,D类所占的百分比为:8÷40×100%=20%,补全条形统计图和扇形统计图如下:(2)估计其中对生活垃圾分类“比较了解”的学生的人数为:500×45%=225(名);(3)列表如下:A1A2B1B2 A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表可知共有12种可能的结果,恰好抽到一男一女的结果有8个,∴恰好抽到一男一女的概率为=.18.成都今年推出了多个夜景灯光秀,深受市民喜爱,位于天府大道的金融城双子塔灯光秀便是其中之一.小莉想利用所学的数学知识,测金融城双子塔AB的高度.如图她先在C 处用高度为1.3米的测角仪CD测得AB上一点E的仰角∠EDF=22°,接着她沿着CB 方向前进50米到达G处测得点A的仰角∠AHF=45°.若AE=110米,求双子塔AB 的高度.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)解:由题意得,四边形DCGH和四边形BCDF是矩形,∴BF=CD=1.3米,DH=CG=50米,设EF=x米,则AF=AE+EF=(x+110)米,在Rt△AFH中,∠AHF=45°,∴∠FAH=45°,∴∠FAH=∠AHF,∴FH=AF=(x+110)米,∴DF=DH+FH=(x+160)米,在Rt△DFE中,∠EDF=22°,∵tan∠EDF=tan22°=,∴≈0.4,解得:x=≈106.7,∴EF≈106.7(米),∴AB=AE+EF+BF≈218(米),答:双子塔AB的高度约为218米.19.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与x轴,y轴分别交于A,B 两点,与反比例函数y=(x>0)的图象交于点C(2,n).(1)求反比例函数的表达式;(2)设P是直线AB上一点,过P作PD∥y轴,交反比例函数y=(x>0)的图象于点D,交x轴于点E,连接AD.若△APE的面积是△APD的面积的2倍,求点P的坐标.解:(1)∵一次函数y=x+1的图象经过点C(2,n),∴n=2+1=3,∴C(2,3),∵反比例函数y=(x>0)的图象过点C,∴3=,得k=6,即反比例函数解析式为:y=(x>0);(2)当点P在点C的右侧时,设P(x,x+1),则E(x,0),D(x,),∴PE=x+1,PD=x+1﹣∵△APE的面积是△APD的面积的2倍,∴PE=2PD,即2×(x+1﹣)=x+1,整理得,x2+x﹣12=0,解得x1=3,x2=﹣4(舍去),∴P(3,4).当点P在点C的左侧时,同法可得,x+1=2(﹣x﹣1),解得x=或(舍弃),∴P(,),综上所述,满足条件的点P的坐标为(3,4)或(,).20.如图,以Rt△ABC的斜边AC为直径作⊙O,点D在半径OC上,过点D作AC的垂线,分别交弦BC于点E,交⊙O于F.在射线DE上取点G,连接GB并延长交CA的延长线于点H,且满足GB=GE.(1)求证:HG是⊙O的切线;(2)若GE=BE,HB=.(i)求⊙O的半径;(ii)如图2,连接AF,交弦BC于点M,若AF∥HG,求线段OD的长.解:(1)连接OB,如图:∵GB=GE,∴∠GBE=∠GEB=∠CED,∵GD⊥AC,∴∠CED+∠ECD=90°,∴∠GBE+∠ECD=90°,∵OB=OC,∴∠ECD=∠OBC,∴∠GBE+∠OBC=90°,∴OB⊥HG,∴HG是⊙O的切线;(2)(i)过G作GM⊥BC于M,如图:∵GB=GE,GM⊥BC,∴ME=BE,∵GE=BE∴=,∴cos∠GEM=,∴cos∠CED=,∵AC为⊙O直径,∴∠ABC=90°,∴∠BAC=90°﹣∠C=∠CED,∴cos∠BAC=,设AB=k,则AC=k,BC=2k,∵HG为⊙O切线,∴∠C=∠HBA,而∠H=∠H,∴△HBA∽△HCB,∴====,∵HB=,∴HC=,HA=,∴AC=HC﹣HA=2,∴⊙O的半径为;(ii)连接CF,过F作FN⊥BC于N,如图:由(i)知:AC=2,cos∠BAC=,∴AB=2,BC=4,∵AF∥HG,∴∠AMB=∠GBC,∵GB=GE,∴∠GBC=∠GEM,∴∠AMB=∠GEM,∴cos∠AMB=cos∠GEM=,Rt△ABM中,设BM=t,则AM=t,AB=2t,∴2t=2,解得t=1,∴BM=1,AM=,∴CM=BC﹣BM=3,∵BC与AF是⊙O的相交弦,∴AM•MF=BM•CM,即•MF=1×3,∴MF=,Rt△FNM中,cos∠FMN=cos∠AMB=,∴=,∴MN=,ME=,∴CE=CM﹣ME=,Rt△CED中,cos∠CED=cos∠GEB=,∴ED=,CD=,∴OD=OC﹣CD=.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡)21.若实数a,b满足a﹣b=1,则代数式a2﹣b2﹣2b+5的值为6.解:a2﹣b2﹣2b+5=(a+b)(a﹣b)﹣2b+5,∵a﹣b=1,∴原式=a+b﹣2b+5=a﹣b+5=1+5=6.故答案为:6.22.如图,AD为△ABC的中线,点E,F分别为AD,AB的中点,连接EC,EF.现随机向△ABC内掷一枚小针,则针尖落在阴影区域的概率为.解:设△AEF的面积为S,∵点E,F分别为AD,AB的中点,∴EF∥BD,∴△AEF∽△ABD,∴S△AEF:S△ABD=1:4,即S△ABD=4S,∵AD为中线,∴S△ADC=S△ABD=4S,∵CE为AD边的中线,∴S△CDE=S△ADC=2S,∴针尖落在阴影区域的概率==.故答案为.23.将满足2≤x≤3的两个整数解分别记为x1,x2,且x1≠x2,则代数式(x﹣x1)2+(x﹣x2)2的最小值为.解:∵满足2≤x≤3的两个整数解分别记为x1,x2,且x1≠x2,∴x1=3,x2=4,设y=(x﹣x1)2+(x﹣x2)2=x2﹣2xx1+x12+x2﹣2xx2+x22=2x2﹣2(x1+x2)x+(x12+x22)=2x2﹣14x+25=2(x﹣)2+,所以当x=时,,故答案为:.24.如图,在平面直角坐标系xOy中,点A(2,1)在反比例函数y=(k>0)的图象上,连接OA,将线段OA绕点O逆时针旋转120°得到对应线段OB,此时点B刚好落在反比例函数y=(m<0)的图象上,则m的值为﹣.解:延长AO交双曲线y=在第三象限的分支于点C,连接BC,过A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,BF⊥OC于F,交x轴于点H,如图,∵双曲线y=是中心对称图形,∴OA=OC.∵OA=OB,∴OB=OB.∵∠AOB=120°,∴∠BOC=60°.∴△OBC为等边三角形.∵AD⊥x轴,点A(2,1),∴OD=,AD=1.∴.∴OB=OC=.∵△OBC是等边三角形,BF⊥OC,∴OF=.∵∠HOF=∠AOD,∠HFO=∠ADO=90°,∴△HOF∽△AOD.∴.∴.∴HO=,HF=.在Rt△BFO中,BF=BO×sin60°=.∴HB=BF﹣HF=.∵∠BHE=∠OHF,∠HEB=∠HFO=90°,∴△BEH∽△OFH.∴.∴.∴BE=,HE=.∴OE=OH+HE=.∴B(﹣,).∵点B在反比例函数y=(m<0)的图象上,∴=.∴m=﹣.故答案为:﹣.25.如图,在一个12×13的网格中,点O,A,B都在格点上,OA=AB=8,点P是线段AB上的一个动点,连接OP,将线段OA沿直线OP进行翻折,点A落在点C处,连接BC,以BC为斜边在直线BC的左侧(或下方)构造等腰直角三角形BDC,则点P从A 运动到B的过程中,线段BC的长的最小值为8﹣8,线段BD所扫过的区域内的格点的个数为(不包含所扫过的区域边界上的点)4.解:如图,连接OB.在Rt△AOB中,∠OAB=90°,AO=AB=8,∴OB=8,由翻折的性质可知,OC=OA=8,∵BC≥BC﹣OC,∴BC≥8﹣8,∴BC的最小值为8﹣8,观察图象可知,线段BD所扫过的区域内的格点的个数为4个,故答案为:8﹣8,4.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.某校积极筹备“爱成都•迎大运”体育节活动决定购买一批篮球和足球共60个.已知在线下商店购买50个篮球和10个足球共需4600元,购买30个篮球和30个足球共需4200元.(1)分别求在线下商店购买篮球和足球的单价;(2)经过市场调查分析,发现在线上商店购买更划算,已知线上商店篮球的单价和线下商店一样,但线上商店足球有优惠活动,足球的单价是线下的八折.若学校要求购买篮球的个数不得少于足球的个数的2倍,那么学校在线上商店应分别购买多少数量的篮球和足球才能使得所花费用最少?并求出该费用的最小值?解:(1)设在线下商店购买篮球的单价为x元,足球的单价为y元,依题意得:,解得:.答:在线下商店购买篮球的单价为80元,足球的单价为60元.(2)设学校在线上商店购买m个篮球,则购买(60﹣m)个足球,依题意得:m≥2(60﹣m),解得:m≥40.设学校在线上商店购买这些篮球和足球共花费w元,则w=80m+60×0.8(60﹣m)=32m+2880.∵32>0,∴w随m的增大而增大,∴当m=40时,w取得最小值,最小值=32×40+2880=4160(元).答:学校在线上商店购买40个篮球,20个足球时,所花费用最少,最少费用为4160元.27.如图,在矩形ABCD中,AB=12,AD=9,点E,F,P,Q分别是边AD,AB,BC,CD上的点,且满足AE=CP=5,AF=CQ,连接EF,PQ.将△AEF和△CPQ分别沿直线EF,PQ进行翻折,得到对应的△GEF和△HPQ,连接EH,PG.(1)(i)求证:∠AEG=∠CPH;(ii)判断四边形EGPH的形状并说明理由;(2)如图2,若点A,G,P在一条直线上,求四边形EGPH的周长;(3)如图3,若点H,G分别落在EF,PQ上,HP交FG于点M,HQ交EG于点N,求AF的长,并直接写出四边形NHMG的面积.【解答】(1)(i)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AE=CP,AF=CQ,∴△AEF≌△CPQ(SAS),∴∠AEF=∠CPQ,由翻折的性质可知,∠AEG=2∠AEF∠CPH=2∠CPQ,∴∠AEG=∠CPH.(ii)解:结论:四边形EGPH是平行四边形.理由:如图1中,延长EG交CB的延长线于T.∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=∠T,∵∠AEG=∠CPH,∴∠T=∠CPH,∴EG∥PH,∵AE=EG,PC=PH,AE=PC,∴EG=PH,∴四边形EGPH是平行四边形.(2)解:如图2中,设AP交EF于J.在Rt△ABP中,AB=12,BP=4,∴AP===4,∵EA=EG,AF=FG,∴EF垂直平分线段AG,∴∠AEF+∠EAJ=90°,∵∠EAJ+∠BAP=90°,∴∠AEF=∠BAP,∵∠AJE=∠ABP=90°,∴△EJA∽△ABP,∴=,∴=,∴AJ=,∴AG=2AJ=,∴PG=AP﹣AG=3,∵四边形EGPH是平行四边形,∴EG=PH=5,PG=EH=3,∴四边形EGPH的周长为10+6.(3)解:延长EF交CB的延长线于T,过点T作TR⊥DA交DA的延长线于R,连接CH.∵EF∥PG,CH⊥PG,∴CH⊥ET,∴∠CHT=90°,∵PC=PH=5,∴∠PCH=∠PHC,∵∠PTH+∠PCH=90°,∠PHT+∠PHC=90°,∴∠PTH=∠PHT,∴PH=PT=5,∵PB=4,∴BT=PT﹣PB=1,∵∠R=∠RAB=∠ABT=90°,∴四边形ARTB是矩形,∴AR=BT=1,RT=AB=12,∵AF∥RT,∴=,∴=,∴AF=10,BF=2,∴==,∴=,∵∠EAF=∠PBF=90°,∴△AEF∽△BFP,∴∠AFE=∠FPB,∵∠FPB+∠PFB=90°,∴∠AFE+∠PFB=90°,∴∠EFP=90°,∵∠EFG+∠PFG=90°,∴∠PFB=∠PFM,∵∠PMF=∠PBF,PF=PF,∴△PFM≌△PFB(AAS),∴PB=PM=4,BF=FM=2,∵PH=PC=5,∴HM=1,∵FA=FG=10,∴MG=FG﹣FM=10﹣2=8,∵∠MHN=∠HMG=∠MGN=90°,∴四边形MGHN是矩形,∴四边形MGNH的面积=1×8=8.28.如图,在平面直角坐标系xOy中,直线y=﹣x+10分别交x轴,y轴于点A,B.抛物线y=ax2+bx(a<0)经过点A,且C点是该抛物线的顶点.(1)求点C的横坐标;(2)该抛物线经过线段AB上的另点D(点D不与C重合),直线CD交y轴于点E,分别求点D的坐标(用含a的代数式表示)和点E的坐标;(3)在(2)的条件下,连接OD,OC,AC,是否存在恰当的a值,使得△ODC和△ACD的面积之间满足其中一个是另一个的4倍?若存在,求出a的值;若不存在,请说明理由.解:(1)∵直线y=﹣x+10分别交x轴,y轴于点A,B,∴A(10,0),B(0,10),∵抛物线y=ax2+bx(a<0)经过点A(10,0),∴a×102+10b=0,∴b=﹣10a,∴y=ax2﹣10ax=ax(x﹣10),当x=0时,y=0,∴抛物线y=ax(x﹣10)经过O(0,0),∴抛物线对称轴为直线x==5,∴该抛物线的顶点C的横坐标为5;(2)∵抛物线y=ax2﹣10ax经过线段AB上的另点D(点D不与C重合),∴ax2﹣10ax=﹣x+10,∴x=﹣或x=10(舍去),∴D(﹣,+10),∵y=ax2﹣10ax=a(x﹣5)2﹣25a,∴C(5,﹣25a),设直线CD解析式为y=kx+n,则:,解得:,∴直线CD解析式为y=(﹣5a﹣1)x+5,∴E(0,5);(3)存在,a=﹣或a=﹣.理由如下:设直线AB与抛物线对称轴交于点M,∴M(5,5),∴CM=﹣25a﹣5,∵S△ACD=S△ACM+S△CDM=×CM×[10﹣(﹣)]=×(﹣25a﹣5)×(10+),S△OCD=S△OCE﹣S△ODE=×OE×[5﹣(﹣)]=(5+),∵△ODC和△ACD的面积之间满足其中一个是另一个的4倍,∴S△ACD=4S△OCD或S△OCD=4S△ACD,当S△ACD=4S△OCD时,×(﹣25a﹣5)×(10+)=4×(5+),解得:a=﹣或a=﹣,当S△OCD=4S△ACD时,(5+)=4×[×(﹣25a﹣5)×(10+)],解得:a=﹣或a=﹣,当a=﹣时,C的坐标为(5,5),D的坐标为(5,5),不符合题意,舍去,∴当a=﹣时,S△ACD=4S△OCD;当a=﹣时,S△OCD=4S△ACD;∴a=﹣或a=﹣.。
2021年江西省南昌市中考数学二调试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项。
1.(3分)的倒数是()A.﹣5B.5C.D.2.(3分)江西省面积大约为16.69万平方公里,数据16.69万用科学记数法表示为()A.1.669×106B.1.669×105C.16.69×105D.0.1669×106 3.(3分)下列图形中,不是正方体表面展开图的是()A.B.C.D.4.(3分)如图,点A和点B恰好分别在GH和EF上,GH∥EF且BA平分∠DBE,若∠C =90°,∠CAD=32°,则∠BAD的度数为()A.28°B.29°C.30°D.31°5.(3分)若一元二次方程x2﹣8x+3=0的两个实数根分别是a、b,则关于x的一次函数y =abx﹣a﹣b的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,函数图象C1与C2都经过x轴上的点B并关于垂直于x轴的直线l对称,已知C1是抛物线y=﹣2x2+8x﹣6在x轴上方的部分,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:﹣+=.8.(3分)函数中,自变量x的取值范围是.9.(3分)吴老师将本校体育训练队甲、乙、丙、丁四名跳远运动员选拔赛的成绩整理成了如下表格:甲乙丙丁平均数375350375350方差s212.513.5 2.4 5.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择.10.(3分)数学家斐波那契编写的《算经》中有如下问题,一组人平分10元钱,每人分得若干,若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x,则可列方程为.11.(3分)如图,点C在DE上,∠B=∠E,AB=AE,∠CAD=∠BAE=45°,则∠ACB =°.12.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,D是边AC的中点,CE⊥BD于E.若F是边AB上的点,且使△AEF为等腰三角形,则AF的长为.三、解答题(本大题共8小题,每小题6分,共30分)13.(6分)(1)解不等式组:.(2)化简:(﹣)÷.14.(6分)如图,在△ABC中,AB=AC,AE⊥BC,AD平分∠F AC,CD⊥AD于点D.求证:四边形AECD是矩形.15.(6分)今年三八妇女节期间,某公司决定对公司女职工发放礼品进行慰问,慰问品实行弹性选择的方法,每位女职工可从小电器购物卡、化妆品打折券、床上用品、旅游年票中任选两种.(所选的两种礼品不能相同)(1)若李丽已经选择了小电器购物卡,则她再选择床上用品的概率是.(2)用列表或画树状图的方法求李丽选了化妆品打折券和旅游年票的概率.16.(6分)请按以下要求用无刻度直尺作图:(1)如图1,将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1.(2)如图2,设∠BAC=α,将△ABC绕点C顺时针旋转α得△A'B'C,画出△A'B'C.17.(6分)某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?18.(8分)为增强学生体质,某学校推行大课间跳绳活动,通过一段时间的锻炼后,该校七年级采用随机抽签的方式选出了40名同学,并对这40名同学一分钟跳绳的成绩进行了统计,绘制了如下统计图和统计表:等级次数频数不合格100≤x<1204合格120≤x<140a良好140≤x<16012优秀160≤x<180b 请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“合格”等级对应的圆心角的度数是;(4)若该校有3000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳成绩达到良好及以上的人数.19.(8分)如图1,将一个直角三角形形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩台底下,可以使木桩向上运动.如果楔子底面的倾斜角∠ABC为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),如图2,留在外面的楔子长度HC为3厘米.(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)(1)求BH的长.(2)木桩上升了多少厘米?20.(8分)如图,直线BC与两坐标轴的正半轴分别交于点B、C(5,0),与反比例函数y =﹣的图象交于点A(﹣1,m),D是反比例函数位于第二象限内的图象上一点.(1)求m的值及直线BC的解析式.(2)将点D绕原点O顺时针旋转90°后的对应点D'恰好落在直线BC上,求D点的坐标.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,在△ABC中,∠BAC=90°,过点A、B的⊙O分别交AC、BC于点DE,AB=AE,CD的垂直平分线交BC于点F,连接DF.(1)求证:DF是⊙O的切线.(2)已知EF=3,DE=4,求BE和AB的长.22.(9分)如图,在正方形ABCD中,E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.(1)如图1,当点N与点D重合时,求证:MN=AE.(2)如图2,当F为AE的中点时,连接正方形的对角线BD,分别交MN于点G,交AE于点O,连接BF.求证:BF=FG.(3)在(2)的条件下,若正方形ABCD的边长为4,BE=1,求OG的长度.六、(本大题共1小题,共12分)23.(12分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标为(0,c),那么我们把经过点(0,c)且平行于x轴的直线称为这条抛物线的极限分割线.[特例感知](1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为.[研究深入](2)经过点A(﹣1,0)和B(x,0)(x>﹣1)的抛物线y=﹣x2+mx+n与y轴交于点C,它的极限分割线与该抛物线的另一个交点为D,请用含m的代数式表示点D的坐标.[深入拓展](3)在(2)的条件下,设抛物线y=﹣x2+mx+n的顶点为P,直线EF垂直平分OC,垂足为E,交该抛物线的对称轴于点F.①当∠CDF=45°时,求点P的坐标.②若直线EF与直线MN关于极限分割线对称,是否存在使点P到直线MN的距离与点B 到直线EF的距离相等的m的值?若存在,直接写出m的值;若不存在,请说明理由.2021年江西省南昌市中考数学二调试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项。
2021年武汉市中考数学模拟试题2勤学早(二)及答案《勤学早》2021年武汉市四月调考逼真模拟试题(二)一、选择置l共10小置,每小题3分,共30分l 1.在-4,O,3,-8这四个数中,最大的数是( ) A.-4 B.O C.3 D.-8 210x+有意义的x的取值范围是( ) 7***-*****Ax B x≤- C_x≥ Dx≥77773不等式8-2x0的解集在数轴上表示正确的是( )4.下列事件是随机事件的是( ) A.购买一张福利彩票,中奖.B.在-个标准大气压下,加热到l00°C,水沸腾.C.有一名运动员奔跑的速度是50米/秒.D.在一个仅装着白球和黑球的袋中摸球,摸出红球.25.已知一元二次方程x-4x+3=0两根为x1、x2则x1+x2的值是( ) A.4 B.3 C.-4 D.-36.如图,空心圆柱的主视图是( )7.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC= ∠E=60°, 若BE=6,DE=2,则BC的长度是( ) A.6 B.8 C.9 D.108.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑥个图形中矩形的个数一共有()A.30个B.25个C.28个D.31个9.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按四个等级进行统计,其中A级:90分-100分;B级:75分-89分;c级:60分-74分;D级:60分以T(D级为不合格),将统计结果绘制如下两幅统计图,则以下四个结论:①D级学生的人数占全班总人数的百分比为4%;②扇形统计图中c级所在的扇形圆心角的度数为72。
;③该班学生体育测试成绩的中位数落在c等级内;④若该校九年级学生共有500人,估计这次考试中合格的学生共有480人,其中结论正确的个数有( ) A.1个B.2个C.3个D.4个10.如图,梯形ABCD中,AB//DC,AB上BC,AB=2cm,CD=4cm .以BC上一点0为圆心的圆经过A、D两点,且∠AOD=90°.则圆心O 到弦AD的距离是( )A.6cm B10 cm C.23 cm D.25cm二、填空题(共6小分,每小题3分,共18分)11。
2021年北京市东城区中考数学二模试卷一、选择题(共8小题).1.下列各数中,小于的正整数是()A.﹣1B.0C.1D.22.在下列不等式中,解集为x>﹣1的是()A.2x>2B.﹣2x>﹣2C.2x<﹣2D.﹣2x<23.在平面直角坐标系xOy中,⊙O的半径为2,点A(1,)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定4.下列式子中,运算正确的是()A.(1+x)2=1+x2B.a2⋅a4=a8C.﹣(x﹣y)=﹣x﹣y D.a2+2a2=3a25.如图,⊙O是正五边形ABCDE的外接圆.若⊙O的半径为5,则半径OA,OB与围成的扇形的面积是()A.2πB.5πC.D.10π6.在平面直角坐标系xOy中,点A,B是直线y=x与双曲线的交点,点B在第一象限,点C的坐标为(6,﹣2).若直线BC交x轴于点D,则点D的横坐标为()A.2B.3C.4D.57.多年来,北京市以强有力的措施和力度治理大气污染,空气质量持续改善,主要污染物的年平均浓度值全面下降.如图是1998年至2019年二氧化硫(SO2)和二氧化氮(NO2)的年平均浓度值变化趋势图()A.1998年至2019年,SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数B.1998年至2019年,SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数C.1998年至2019年,SO2的年平均浓度值的方差小于NO2的年平均浓度值的方差D.1998年至2019年,SO2的年平均浓度值比NO2的年平均浓度值下降得更快8.四位同学在研究函数y=﹣x2+bx+c(b,c是常数)时,甲同学发现当x=1时,函数有最大值;乙同学发现函数y=﹣x2+bx+c的图象与y轴的交点为(0,﹣3);丙同学发现函数的最大值为4;丁同学发现当x=3时,函数的值为0.若这四位同学中只有一位同学的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁二、填空题(本题共16分,每小题2分)9.若分式有意义,则x的取值范围是.10.分解因式:mx2﹣9m=.11.用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,这个值可以是k=.12.某校九年级(1)班计划开展“讲中国好故事”主题活动.第一小组的同学推荐了“北大红楼、脱贫攻坚、全面小康、南湖红船、抗疫精神、致敬英雄”六个主题,并将这六个主题分别写在六张完全相同的卡片上,然后将卡片放入不透明的口袋中.组长小东从口袋中随机抽取一张卡片,抽到含“红”字的主题卡片的概率是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.在平面直角坐标系xOy中,已知点A(2,0),B(5,4).若四边形OABC是平行四边形,则OABC的周长等于.15.若点P在函数的图象上,且到x轴的距离等于1,则点P的坐标是.16.数学课上,李老师提出如下问题:已知:如图,AB是⊙O的直径,射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了四种方案:①如图1,连接BC,作BC的垂直平分线,交⊙O于点D.②如图2,过点O作AC的平行线,交⊙O于点D.③如图3,作∠BAC的平分线,交⊙O于点D.④如图4,在射线AC上截取AE,使AE=AB,连接BE,交⊙O于点D.上述四种方案中,正确的方案的序号是.三、解答题(本题共68分,第17-22每小题5分,第23-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:.18.先化简代数式,再求当a满足a﹣2=0时,此代数式的值.19.如图,在等腰△ABC中,AB=AC,直线l过点A.点B与点D关于直线l对称,连接AD,CD.求证:∠ACD=∠ADC.20.已知:如图,点C在∠MON的边OM上.求作:射线CD,使CD∥ON,且点D在∠MON的角平分线上.作法:①以点O为圆心,适当长为半径画弧,分别交射线OM,ON于点A,B;②分别以点A,B为圆心,大于的长为半径画弧,交于点Q;③画射线OQ;④以点C为圆心,CO长为半径画弧,交射线OQ于点D;⑤画射线CD.射线CD就是所求作的射线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:∵OD平分∠MON,∴∠MOD=.∵OC=CD,∴∠MOD=.∴∠NOD=∠CDO.∴CD∥ON()(填推理的依据).21.已知关于x的一元二次方程mx2﹣(m+1)x+1=0(m≠0).(1)求证:此方程总有实数根;(2)写出一个m的值,使得此该方程的一个实数根大于1,并求此时方程的根.22.如图,在菱形ABCD中,点E是CD的中点,连接AE,交BD于点F.(1)求BF:DF的值;(2)若AB=2,AE=,求BD的长.23.在平面直角坐标系xOy中,直线l与双曲线的两个交点分别为A(﹣3,﹣1),B(1,m).(1)求k和m的值;(2)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线于点Q.当点Q位于点P的右侧时,求点P的纵坐标n的取值范围.24.如图,⊙O是△ABC的外接圆,圆心O在AC上.过点B作直线交AC的延长线于点D,使得∠CBD=∠CAB.过点A作AE⊥BD于点E,交⊙O于点F.(1)求证:BD是⊙O的切线;(2)若AF=4,,求BE的长.25.中国新闻出版研究院组织实施的全国国民阅读调查已持续开展了18次,对我国国民阅读总体情况进行了综合分析.2021年4月23日,第十八次全国国民阅读调查结果发布.下面是关于样本及国民图书阅读量的部分统计信息:a.本次调查有效样本容量为46083,成年人和未成年人样本容量的占比情况如图1.b.2020年,成年人的人均纸质图书阅读量约为4.70本,人均电子书阅读量约为3.29本;2019年,成年人的人均纸质图书阅读量约为4.65本,人均电子书阅读量约为2.84本.c.2012年至2020年,未成年人的年人均图书阅读量如图2.根据以上信息,回答问题:(1)第十八次全国国民阅读调查中,未成年人样本容量占有效样本容量的;(2)2020年,成年人的人均图书阅读量约为本,比2019年多本;(3)在2012年至2020年中后一年与前一年相比,年未成年人的年人均图书阅读量的增长率最大;(4)2020年,未成年人的人均图书阅读量比成年人的人均图书阅读量高%(结果保留整数).26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+1与y轴交于点A.(1)求抛物线的对称轴;(2)点B是点A关于对称轴的对称点,求点B的坐标;(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线与恰有一个公共点,结合函数图象,求a的取值范围.27.已知△ADE和△ABC都是等腰直角三角形,∠ADE=∠BAC=90°,P为AE的中点,连接DP.(1)如图1,点A,B,D在同一条直线上,直接写出DP与AE的位置关系;(2)将图1中的△ADE绕点A逆时针旋转,当AD落在图2所示的位置时,点C,D,P恰好在同一条直线上.①在图2中,按要求补全图形,并证明∠BAE=∠ACP;②连接BD,交AE于点F.判断线段BF与DF的数量关系,并证明.28.对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(0,8),Q2(﹣4,2),Q3(8,4)中,是点A的“直角点”;(2)已知点B(﹣3,4),C(4,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(t,0),E(t+1,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,直接写出t 的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列各数中,小于的正整数是()A.﹣1B.0C.1D.2【分析】估算确定出的大小,判断即可.解:∵1<2<4,∴1<<2,则小于的正整数是1.故选:C.2.在下列不等式中,解集为x>﹣1的是()A.2x>2B.﹣2x>﹣2C.2x<﹣2D.﹣2x<2【分析】根据不等式的性质逐一判断即可,在不等式两边同乘或同除一个正数或式子,不等号的方向不变;在不等式两边同乘或同除一个负数或式子,不等号的方向改变.解:A.2x>2,不等式的两边同时除以2得:x>1,即该不等式的解集不合题意,故本选项不合题意;B.﹣2x>﹣2,不等式的两边同时除以﹣2得:x<1,即该不等式的解集不合题意,故本选项不合题意;C.2x<﹣2,不等式的两边同时除以2得:x<﹣1,即该不等式的解集不合题意,故本选项不合题意;D.﹣2x<2,不等式的两边同时除以﹣2得:x>﹣1,即该不等式的解集符合题意,故本选项符合题意;故选:D.3.在平面直角坐标系xOy中,⊙O的半径为2,点A(1,)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定【分析】根据两点间的距离公式求出AO的长,然后与⊙O的半径比较,即可确定点A 的位置.解:∵点A(1,),∴AO==2,∵⊙O的半径为2,∴点A在⊙O上,故选:A.4.下列式子中,运算正确的是()A.(1+x)2=1+x2B.a2⋅a4=a8C.﹣(x﹣y)=﹣x﹣y D.a2+2a2=3a2【分析】分别根据完全平方公式,同底数幂的乘法法则,去括号法则以及合并同类项法则逐一判断即可.解:A.(1+x)2=1+2x+x2,故本选项不合题意;B.a2⋅a4=a6,故本选项不合题意;C.﹣(x﹣y)=﹣x+y,故本选项不合题意;D.a2+2a2=3a2,故本选项符合题意;故选:D.5.如图,⊙O是正五边形ABCDE的外接圆.若⊙O的半径为5,则半径OA,OB与围成的扇形的面积是()A.2πB.5πC.D.10π【分析】首先求出圆心角,根据扇形的面积=计算即可.解:∵ABCDE是正五边形,∴∠AOB==72°,∴S扇形OAB==5π,故选:B.6.在平面直角坐标系xOy中,点A,B是直线y=x与双曲线的交点,点B在第一象限,点C的坐标为(6,﹣2).若直线BC交x轴于点D,则点D的横坐标为()A.2B.3C.4D.5解:∵点A,B是直线y=x与双曲线的交点,∴联立方程得:,解得:或,∵点B在第一象限,∴B(2,2),∵点C的坐标为(6,﹣2),设直线BC的解析式为:y=kx+b,把B(2,2),C(6,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+4,∵直线BC交x轴于点D,∴令y=0,即﹣x+4=0,解得:x=4,∴点D横坐标是4,故选:C.7.多年来,北京市以强有力的措施和力度治理大气污染,空气质量持续改善,主要污染物的年平均浓度值全面下降.如图是1998年至2019年二氧化硫(SO2)和二氧化氮(NO2)的年平均浓度值变化趋势图()A.1998年至2019年,SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数B.1998年至2019年,SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数C.1998年至2019年,SO2的年平均浓度值的方差小于NO2的年平均浓度值的方差D.1998年至2019年,SO2的年平均浓度值比NO2的年平均浓度值下降得更快解:由图可得:A、1998年至2019年,SO2的年平均浓度值的平均数值都在SO2的NO2的年平均浓度值的平均数以下,由此可得SO2的年平均浓度值的平均数小于NO2的年平均浓度值的平均数,此选项正确,不合题意;B、1998年至2019年,SO2的年平均浓度值的平均数值都在SO2的NO2的年平均浓度值的平均数以下,由此可得SO2的年平均浓度值的中位数小于NO2的年平均浓度值的中位数,此选项正确,不合题意;C、根据图中两折线中点的离散程度可得SO2的年平均浓度值的方差大于NO2的年平均浓度值的方差,此选项错误,符合题意;D、1998年至2019年,根据图中两折线的起止点可得SO2的年平均浓度值比NO2的年平均浓度值下降得更快,此选项正确,不合题意.故选:C.8.四位同学在研究函数y=﹣x2+bx+c(b,c是常数)时,甲同学发现当x=1时,函数有最大值;乙同学发现函数y=﹣x2+bx+c的图象与y轴的交点为(0,﹣3);丙同学发现函数的最大值为4;丁同学发现当x=3时,函数的值为0.若这四位同学中只有一位同学的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁解:由甲的结论可知:对称轴是直线x=1时,即﹣==1时b=2;由乙的结论可知:函数y=﹣x2+bx+c的图象与y轴的交点为(0,﹣3)时,c=﹣3;若甲、乙正确,则y=﹣x2+2x﹣3,当x=1时,y有最大值=﹣1+2﹣3=﹣2,当x=3时,y=﹣9+6﹣3=﹣6,所以甲、乙中有一个错误,若丙正确,可知:函数的最大值为4时,=4,即﹣4c﹣b2=﹣16;若甲正确,则b=2,此时﹣4c﹣b2=﹣16,得c=3,则y=﹣x2+2x+3,当x=3时,y=﹣9+6+3=0;所以丁正确,所以甲、丙、丁正确,乙错误.故选:B.二、填空题(本题共16分,每小题2分)9.若分式有意义,则x的取值范围是x≠1.解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.10.分解因式:mx2﹣9m=m(x+3)(x﹣3).解:原式=m(x2﹣9)=m(x+3)(x﹣3).故答案为:m(x+3)(x﹣3).11.用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,这个值可以是k=﹣1(答案不唯一).解:当k=﹣1时,一次函数为y=﹣x+1,y随着x的增大而减小,∴命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,故答案为:﹣1(答案不唯一).12.某校九年级(1)班计划开展“讲中国好故事”主题活动.第一小组的同学推荐了“北大红楼、脱贫攻坚、全面小康、南湖红船、抗疫精神、致敬英雄”六个主题,并将这六个主题分别写在六张完全相同的卡片上,然后将卡片放入不透明的口袋中.组长小东从口袋中随机抽取一张卡片,抽到含“红”字的主题卡片的概率是.解:含“红”字的主题卡片有“北大红楼”和“南湖红船”共2张,所以抽到含“红”字的主题卡片的概率是.故答案为:.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是BC=DF(答案不唯一).解:添加BC=DF.∵AD=BE,∴AD+DB=BE+BD,∴AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SSS),故答案为:BC=DF(答案不唯一).14.在平面直角坐标系xOy中,已知点A(2,0),B(5,4).若四边形OABC是平行四边形,则OABC的周长等于14.解:过点B作BM⊥x轴交于点M,如图,∵点A,B的坐标为(2,0),(5,4)∴OA=2,AM=5﹣2=3,BM=4,∴AB==5,∵四边形OABC是平行四边形,∴OA=BC=2,CO=AB=5,\∴OABC的周长等于2×2+5×2=14,故答案为:14.15.若点P在函数的图象上,且到x轴的距离等于1,则点P的坐标是(﹣1,1)或(1,1).解:∵点P在函数的图象上,且到x轴的距离等于1,∴点P的纵坐标y=1.∴点P的坐标为(﹣1,1)或(1,1).故答案为:(﹣1,1)或(1,1).16.数学课上,李老师提出如下问题:已知:如图,AB是⊙O的直径,射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了四种方案:①如图1,连接BC,作BC的垂直平分线,交⊙O于点D.②如图2,过点O作AC的平行线,交⊙O于点D.③如图3,作∠BAC的平分线,交⊙O于点D.④如图4,在射线AC上截取AE,使AE=AB,连接BE,交⊙O于点D.上述四种方案中,正确的方案的序号是①②③④.【分析】①利用垂径定理可以证明=.②证明BC⊥OD,可得结论.③利用圆周角定理可得结论.④利用等腰三角形的三线合一的性质证明即可.解:①由∵OD⊥BC,∴=.②如图2中,连接BC,∵AB是直径,∴∠ACB=90°,∴AC⊥BC,∵OD∥AC,∴OD⊥BC,∴=.③∵AD平分∠BAC,∴∠BAD=∠DAC,∴∴=.④如图4中,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BE,∵AB=AE,∴AD平分∠BAC,∴=.故答案为:①②③④.三、解答题(本题共68分,第17-22每小题5分,第23-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:.【分析】根据零指数幂,二次根式的性质,负整数指数幂,特殊角的三角函数值计算即可.解:原式=1+3+﹣=+2.18.先化简代数式,再求当a满足a﹣2=0时,此代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.解:原式=﹣(a﹣1)=﹣=﹣=,当a﹣2=0,即a=2时,原式==4.19.如图,在等腰△ABC中,AB=AC,直线l过点A.点B与点D关于直线l对称,连接AD,CD.求证:∠ACD=∠ADC.【分析】设直线l交BD于点E,根据轴对称的性质得到∠AEB=∠AED=90°,BE=DE,从而根据SAS可判定△ABE≌△ADE,由全等三角形的性质得到AB=AD,从而得到AD =AC,根据等腰对等角即可求解.【解答】证明:设直线l交BD于点E,∵点B与点D关于直线l对称,∴∠AEB=∠AED=90°,BE=DE,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴AB=AD,∵AB=AC,∴AD=AC,∴∠ACD=∠ADC.20.已知:如图,点C在∠MON的边OM上.求作:射线CD,使CD∥ON,且点D在∠MON的角平分线上.作法:①以点O为圆心,适当长为半径画弧,分别交射线OM,ON于点A,B;②分别以点A,B为圆心,大于的长为半径画弧,交于点Q;③画射线OQ;④以点C为圆心,CO长为半径画弧,交射线OQ于点D;⑤画射线CD.射线CD就是所求作的射线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:∵OD平分∠MON,∴∠MOD=∠NOD.∵OC=CD,∴∠MOD=∠CDO.∴∠NOD=∠CDO.∴CD∥ON(内错角相等两直线平行)(填推理的依据).【分析】(1)根据要求作出图形即可.(2)根据等腰三角形的性质以及角平分线的定义证明∠CDO=∠DON即可.解:(1)如图,射线CD即为所求作.(2)∵OD平分∠MON,∴∠MOD=∠NOD.∵OC=CD,∴∠MOD=∠CDO,∴∠NOD=∠CDO.∴CD∥ON(内错角相等两直线平行).故答案为:∠NOD,∠CDO,内错角相等两直线平行.21.已知关于x的一元二次方程mx2﹣(m+1)x+1=0(m≠0).(1)求证:此方程总有实数根;(2)写出一个m的值,使得此该方程的一个实数根大于1,并求此时方程的根.【分析】(1)根据方程的系数,结合根的判别式可得出△=(m﹣1)2,利用偶次方的非负性可得出(m﹣1)2≥0,即△≥0,再利用“当△≥0时,方程有实数根”即可证出结论;(2)利用因式分解法解一元二次方程可得出原方程的解且x1=,x2=1,结合该方程的一个实数根大于1,可得出>1,解之可得出0<m<1,任取其内的一值即可得出结论.【解答】(1)证明:∵a=m,b=﹣(m+1),c=1,∴△=b2﹣4ac=[﹣(m+1)]2﹣4×m×1=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2.∵(m﹣1)2≥0,∴△≥0,∴此方程总有实数根;(2)解:∵mx2﹣(m+1)x+1=0,∴(mx﹣1)(x﹣1)=0,∴x1=,x2=1.又∵该方程的一个实数根大于1,∴>1,∴0<m<1,∴当m=时,该方程的一个实数根大于1,此时方程的解为x1==2,x2=1.22.如图,在菱形ABCD中,点E是CD的中点,连接AE,交BD于点F.(1)求BF:DF的值;(2)若AB=2,AE=,求BD的长.【分析】(1)根据菱形性质,可得△ABF∽△EDF,利用对应边成比例即可求解.(2)连接AC,利用已知,可得△ADE是直角三角形,即可求出∠ADC=60°,利用面积法即可求出BD的长度.解:(1)在菱形ABCD中,AB∥CD.∴∠BAF=∠DEF,∠ABF=∠EDF.∴△ABF∽△EDF,∴.∵点E是CD的中点.∴.∴BF:DF=1:2.(2)连接AC.∵AB=2,∴AD=2..∵AE=,∴AE2+DE2=AD2.∴△ADE是直角三角形,∴AE⊥DC,∠ADC=60°.∴△ADC是等边三角形.∴AC=2.利用菱形的面积等于对角线乘积的一半,也可底乘高,可得:.∴BD=.23.在平面直角坐标系xOy中,直线l与双曲线的两个交点分别为A(﹣3,﹣1),B(1,m).(1)求k和m的值;(2)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线于点Q.当点Q位于点P的右侧时,求点P的纵坐标n的取值范围.【分析】(1)利用待定系数法可求k,然后把B(1,m)代入即可求得m;(2)由图象可知,P点在x轴的上方、B点的下方或P点在A点的下方符合题意.解:(1)∵双曲线过点A(﹣3,﹣1),∴k=﹣3×(﹣1)=3,∴反比例函数解析式为y=,∵B(1,m)在反比例函数y=的图象上,∴m==3;(2)∵直线l与双曲线的两个交点分别为A(﹣3,﹣1),B(1,3),且点Q位于点P的右侧,∴0<n<3或n<﹣1.24.如图,⊙O是△ABC的外接圆,圆心O在AC上.过点B作直线交AC的延长线于点D,使得∠CBD=∠CAB.过点A作AE⊥BD于点E,交⊙O于点F.(1)求证:BD是⊙O的切线;(2)若AF=4,,求BE的长.【解答】证明:(1)连接OB,∵圆心O在AC上.∴AC是直径,∴∠ABC=90°,∵OA=OB,∴∠CAB=∠OBA,∵∠CBD=∠CAB,∴∠CBD=∠OBA,∴∠OBC+∠CBD=∠OBC+∠OBA=90°,∴OB⊥BD,∵OB为半径,∴BD是⊙O的切线;(2)连接CF,∵AC是直径,∴∠AFC=90°,∵AE⊥BD,∴∠AED=90°,∴∠AFC=∠AED,∴CF∥DE,∴∠D=∠ACF,在Rt△ACF中,∵AF=4,∴sin∠ACF=,∴AC=6,由勾股定理可得:CF=,∵∠AEB=∠EFC=∠OBE=90°,∴四边形EFHB是矩形,∴BE=FH,∵OH∥AF,OA=OC,∴H为CF的中点,∴FH=BE=.25.中国新闻出版研究院组织实施的全国国民阅读调查已持续开展了18次,对我国国民阅读总体情况进行了综合分析.2021年4月23日,第十八次全国国民阅读调查结果发布.下面是关于样本及国民图书阅读量的部分统计信息:a.本次调查有效样本容量为46083,成年人和未成年人样本容量的占比情况如图1.b.2020年,成年人的人均纸质图书阅读量约为4.70本,人均电子书阅读量约为3.29本;2019年,成年人的人均纸质图书阅读量约为4.65本,人均电子书阅读量约为2.84本.c.2012年至2020年,未成年人的年人均图书阅读量如图2.根据以上信息,回答问题:(1)第十八次全国国民阅读调查中,未成年人样本容量占有效样本容量的25.2%;(2)2020年,成年人的人均图书阅读量约为7.99本,比2019年多0.5本;(3)在2012年至2020年中后一年与前一年相比,2012年至2013年未成年人的年人均图书阅读量的增长率最大;(4)2020年,未成年人的人均图书阅读量比成年人的人均图书阅读量高34%(结果保留整数).【解答】(1)1﹣74.8%=25.2%,故答案为:25.2%;(2)2020年,成年人的人均图书阅读量:4.70+3.29=7.99(本),2019年,成年人的人均图书阅读量:4.65+2.84=7.49(本),7.99﹣7.49=0.5(本),故答案为:7.99,0.5;(3)2012年至2013年的增长率为:(6.97﹣5.49)÷5.49≈27%,2013年至2014年的增长率为:(8.45﹣6.97)÷6.97≈21%,2014年至2015年的增长率为:(7.19﹣8.45)÷8.45≈﹣18%,2015年至2016年的增长率为:(8.34﹣7.19)÷7.19≈16%,2016年至2017年的增长率为:(8.81﹣8.34)÷8.34≈6%,2017年至2018年的增长率为:(8.91﹣8.81)÷8.81≈1%,2018年至2019年的增长率为:(10.36﹣8.91)÷8.91≈16%,2019年至2020年的增长率为:(10.71﹣10.36)÷10.36≈3%,∴2012年至2013年的增长率最大,故答案为:2012年至2013;(4)(10.71﹣7.99)÷7.99≈34%,故答案为:34.26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+1与y轴交于点A.(1)求抛物线的对称轴;(2)点B是点A关于对称轴的对称点,求点B的坐标;(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线与恰有一个公共点,结合函数图象,求a的取值范围.解:(1)∵y=ax2﹣3ax+1=a(x2﹣3x)+1=a+,∴抛物线y=ax2﹣3ax+1的对称轴为直线x=.(2)令x=0,则y=1.∴A(0,1).∵点B是点A关于对称轴的对称点,∴A与B的纵坐标相同.∵对称轴为直线x=,∴点A与B到直线x=的距离均为,∴点B的横坐标为.∴B(3,1).(3)由题意:a≠0.①当a>0时,如图,∵Q(a+1,1),A(0,1),B(3,1),∴点Q,A,B在直线y=1上.∵P(0,2),∴从图上可以看到:当点Q在点A的左侧(包括点A)或在点B的右侧(包括点B)时,线段PQ与抛物线只有一个公共点.∵A(0,1),B(3,1),∴a+1≤0(不合题意,舍去)或a+1≥3.∴a≥2.②当a<0时,如图,由①知:点Q,A,B在直线y=1上.∵P(0,2),∴从图上可以看到:当Q在点A与点B之间(包括点A,不包括点B)时,线段PQ与抛物线只有一个公共点.∵A(0,1),B(3,1),∴0≤a+1<3.∴﹣1≤a<2.又∵a<0,∴﹣1≤a<0.综上,若线段PQ与抛物线与恰有一个公共点,a的取值范围为:﹣1≤a<0或a≥2.27.已知△ADE和△ABC都是等腰直角三角形,∠ADE=∠BAC=90°,P为AE的中点,连接DP.(1)如图1,点A,B,D在同一条直线上,直接写出DP与AE的位置关系;(2)将图1中的△ADE绕点A逆时针旋转,当AD落在图2所示的位置时,点C,D,P恰好在同一条直线上.①在图2中,按要求补全图形,并证明∠BAE=∠ACP;②连接BD,交AE于点F.判断线段BF与DF的数量关系,并证明.解:(1)∵△ADE是等腰直角三角形,∠ADE=90°,∴AD=ED,∵P为AE的中点,∴DP⊥AE;(2)①补全图形如图2所示;证明:∵△ADE和△ABC都是等腰直角三角形,∠ADE=∠BAC=90°,∴∠DAE=45°,AD=ED,∵P为AE的中点,∴∠ADP=∠EDP=45°,∴∠BAE+∠CAD=∠BAC﹣∠DAE=45°,∵∠CAD+∠ACP=∠ADP=45°,∴∠BAE=∠ACP;②BF=DF.证明:如图3,延长CP至G,使PG=DP连接AG,BG,∵△ADE是等腰直角三角形,∠ADE=90°,∴AD=DE,∠DAE=45°,∵P为AE的中点,∴∠APD=∠APG=90°,AP=DP=PG,∠ADP=45°,∴△APG≌△APD(SAS),∴AG=AD,∠PAG=∠DAE=∠AGP=45°,∴∠GAD=∠BAC=90°,∴∠BAG+∠BAD=∠CAD+∠BAD=90°,∴∠BAG=∠CAD,∵AG=AD,AB=AC,∴△BAG≌△CAD(SAS),∴∠AGB=∠ADC=180°﹣∠ADP=135°,∴∠BGC=∠AGB﹣∠AGP=90°,∴∠BGC=∠APG,∴PF∥BG,∴==1,∴BF=DF.28.对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(0,8),Q2(﹣4,2),Q3(8,4)中,Q1和Q3是点A的“直角点”;(2)已知点B(﹣3,4),C(4,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(t,0),E(t+1,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,直接写出t 的取值范围.【分析】(1)根据勾股定理和勾股定理的逆定理证明OQ12+AQ12=OA2,OQ32+AQ32=OA2,可得∠OQ1A=90°,∠OQ3A=90°,再根据“直角点”的定义可得结论;(2)连接OB,OC,取BO的中点M,OC的中点N,分别以M,N为圆心,OB,OC 为直径作圆,由图可知,Q1,Q2为两个临界点,即可求得答案;(3)如图2,⊙M、⊙N分别与x轴交于B′(﹣3,0),C′(4,0),可得出﹣3≤t ≤3,再结合(2)的结论即可求得答案.解:(1)∵点Q1(0,8),Q2(﹣4,2),Q3(8,4),点A(6,8),∴OQ1==8,OQ2==,OQ3===,OA==10,AQ1==6,AQ2===,AQ3===,∴OQ12+AQ12=OA2,OQ32+AQ32=OA2,OQ22+AQ22≠OA2,∴∠OQ1A=90°,∠OQ3A=90°,∴Q1和Q3是点A的直角点;故答案为:Q1和Q3;(2)如图所示,连接OB,OC,取BO的中点M,OC的中点N,分别以M,N为圆心,OB,OC为直径作圆,由图可知,Q1,Q2为两个临界点,则=x M﹣Q2M=﹣﹣=﹣4,同理,=2+2,∴﹣4≤n≤2+2;(3)如图2,⊙M、⊙N分别与x轴交于B′(﹣3,0),C′(4,0),∴,解得:﹣3≤t≤3,∵D(t,0),E(t+1,0),∴DE=1,由(2)可知,Q为BC的“直角点”,Q的横坐标n的取值范围为﹣4≤n≤2+2,∴,解得:﹣3≤t≤3,综上所述,﹣3≤t≤3.。
2021年上海市静安区中考数学二模试卷(含解析)2021年上海市静安区中考数学二模试卷一、选择题(共6小题)1.下列计算正确的是()A。
1-1=-1B。
1+1=2C。
(-1)-1=-2D。
(-1)×(-1)=12.如果关于x的方程x²-6x+m=0有实数根,那么m的取值范围是()A。
m>9B。
m≥9C。
m<9D。
m≤93.一次函数y=3x-2的图象不经过的象限是()A。
第一象限B。
第二象限C。
第三象限D。
第四象限4.对于等边三角形,下列说法正确的为()A。
既是中心对称图形,又是轴对称图形B。
是轴对称图形,但不是中心对称图形C。
是中心对称图形,但不是轴对称图形D。
既不是中心对称图形,又不是轴对称图形5.某厂对一个班组生产的零件进行调查,该班组在8天中每天所出的次品数如下(单位:个):3,3,2,2,3,4,3.那么该班组在8天中出的次品数的中位数与方差分别是()A。
2.5与1.5B。
2与1.5C。
2.5与2D。
2与66.对于命题:①如果一个圆上所有的点都在另一个圆的内部,那么这两个圆内含;②如果一个圆上所有的点都在另一个圆的外部,那么这两个圆外离。
下列判断正确的是()A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①、②都是真命题D。
①、②都是假命题二、填空题(共12题,每题4分,满分48分)7.化简:|4-7|÷|3-6|=1/3.8.计算:x÷(x²-x)=1/(x-1)。
9.函数f(x)=√(x²-4x+3)的定义域为(-∞,1]∪[3,∞)。
10.如果正比例函数的图象经过第二、四象限,那么函数值y随x的增大而减小。
11.方程组2x-3y=7,3x+2y=1的解为x=-5,y=-9.12.从1,2,3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被3整除的概率是1/3.13.为了了解学生用于阅读课外书籍的时间的情况,某校在300名九年级学生中随机对40名学生每周阅读课外书籍所用的时间进行统计。
绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
2.试卷满分150分,考试时间100分钟。
3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效。
4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号并填涂在答题纸的相应位置上】1.方程230x -+=根的情况( ) A. 有两个不相等的实数根 B. 有一个实数根; C. 无实数根D. 有两个相等的实数根2.若m n >,下列不等式不一定成立的是( ) A .33m n +>+B .33m n -<-C .33m n> D .22m n >3.在平面直角坐标系中,反比例函数(0)ky k x=≠图像在每个象限内,y 随着x 的增大而增大,那么它的图像的两个分支分别在( ) A. 第一、三象限 B. 第二、四象限 C. 第一、二象限D. 第三、四象限4.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是25.顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 等腰梯形6.已知,在△ABC中,∠A=30°,∠B=135°,CD⊥AB,且CD=1.若以点A为圆心,√3为半径作⊙A,以点B为圆心,1为半径作⊙B,则⊙A与⊙B的位置关系是()A.内切B.外切C.相交D.外离二.填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.若2a b=+,则代数式222a ab b-+的值为.8.化简:113a a-=______.9.若一个数的平方等于5,则这个数等于.10.0=的解是_____________.11.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.13.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为__________;14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;.5B天;.6C天;.7D天),则扇形统计图B部分所对应的圆心角的度数是.15.已知在梯形ABCD中,AD∥BC,∠ABC = 90°,对角线AC、BD相交于点O,且AC⊥BD,如果AD︰BC = 2︰3,那么DB︰AC =______.16.如图,在ABC中,90C∠=︒,30A∠=︒,BD是ABC∠的平分线,如果AC x=,那么CD =(用x表示).17.如图,在ABC∆中,30B∠=︒,2AC=,3cos5C=.则AB边的长为.18.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.三.解答题(共7小题,满分78分)19.(本题满分10分)计算:1327﹣(12)﹣2+|3.20.(本题满分10分)解不等式组:1076713x xxx>+⎧⎪+⎨-<⎪⎩21.(本题满分10分)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.22.(本题满分10分)两栋居民楼之间的距离30CD m =,楼AC 和BD 均为10层,每层楼高为3m .上午某时刻,太阳光线GB 与水平面的夹角为30︒,此刻楼BD 的影子会遮挡到楼AC 的第几层?(参考数1.7≈ 1.4)≈23.已知:如图,AB 、AC 是⊙O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E ,联结CD 并延长交⊙O 于点F. (1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.24.如图6,在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--<与x 轴交于A B、两点(点A 在点B 的左侧),经过点A 的直线:l y kx b =+与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且4CD AC =.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k b 、用含a 的式子表示) (2)点E 是直线l 上方的抛物线上的动点,若ACE ∆的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A D P Q 、、、为顶点的四边形为矩形时,请直接写出点P 的坐标.25.已知:如图,在菱形ABCD 中,2AC =,60B ∠=︒.点E 为边BC 上的一个动点(与点B 、C 不重合),60EAF ∠=︒,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE x =,EG y =.(1)求证:AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG EO 时,求x 的值.绝密★启用前上海市2021年初中毕业统一学业考试数学预测试题二考生注意: 1.本试卷共25题。
2021年四川省成都市中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.化简√9的结果是()A. 3B. −3C. ±3D. 9【答案】A【解析】解:√9=3,故A正确,故选:A.根据算术平方根是非负数,可得答案.本题考查了二次根式的化简,算术平方根是非负数.2.下列运算正确的是()A. a+a=a2B. a3÷a=a3C. a2⋅a=a3D. (a2)3=a5【答案】C【解析】解:A、a+a=2a,此选项计算错误;B、a3÷a=a2,此选项计算错误;C、a2⋅a=a3,此选项计算正确;D、(a2)3=a6,此选项计算错误;故选:C.根据合并同类项法则、同底数幂的除法、同底数幂的乘法和幂的乘方分别计算即可判断.本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】B【解析】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.把0.0813写成a×10n(1≤a<10,n为整数)的形式,则n为()A. 1B. −2C. 2D. 8.13【答案】B【解析】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式为8.13×10−2,则n为−2.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转.打一数学学习用具,谜底为()A. 量角器B. 直尺C. 三角板D. 圆规【答案】D【解析】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选:D.利用圆规的特点直接得到答案即可.本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341A. 1.70、0.25B. 1.75、3C. 1.75、0.30D. 1.70、3【答案】C【解析】解:∵这组数据中1.75m出现次数最多,有4次,∴这组数据的众数为1.75m,∵最大数据为1.80m、最小数据为1.50m,∴极差为1.80−1.50=0.30,故选:C.根据众数和极差的定义分别进行解答即可.本题主要考查极差与众数,解题的关键是掌握极差=最大值−最小值、一组数据中出现次数最多的数据叫做众数.7.将抛物线y=−18x2向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是()A. y=−18(x−2)2−3 B. y=−18(x−2)2+3C. y=−18(x+2)2−3 D. y=−18(x+2)2+3【答案】C【解析】解:∵将抛物线y=−18x2向左平移2个单位长度,再向下平移3个单位长度,∴平移后所得抛物线解析式为y=−18(x+2)2−3,故选:C.直接根据平移的规律即可求得答案.本题主要考查函数图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.若关于x的一元二次方程(m−2)x2−2x+1=0有实根,则m的取值范围是()A. m<3B. m≤3C. m<3且m≠2D. m≤3且m≠2【答案】D【解析】解:∵关于x的一元二次方程(m−2)x2−2x+1=0有实根,∴m−2≠0,并且△=(−2)2−4(m−2)=12−4m≥0,∴m≤3且m≠2.故选:D.由于x的一元二次方程(m−2)x2−2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.9.如图:有一块含有45∘的直角三角板的两个顶点放在直尺的对边上,如果∠1=20∘,那么∠2的度数是()A. 30∘B. 25∘C. 20∘D. 15∘【答案】B【解析】解:∵AB//CD,∴∠AFE=∠2,∵∠GFE=45∘,∠1=20∘,∴∠AFE=25∘,∴∠2=25∘,故选:B.直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.10.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则AB⏜的长度为()A. πB. 2πC. 5πD. 10π【答案】B【解析】解:连接OA、OB,∵五边形ABCDE是正五边形,∴∠AOB=360∘÷5=72∘,=2π,∴AB⏜的长度=72×π×5180故选:B.连接OA、OB,根据正五边形的性质求出∠AOB,根据弧长公式计算即可.本题考查的是正多边形的性质、弧长的计算,掌握正多边形的中心角的计算公式、弧长的计算公式是解题的关键.二、填空题(本大题共9小题,共36.0分)11.因式分解:x2+14x+49=______.【答案】(x+7)2【解析】解:原式=(x+7)2.故答案为:(x+7)2.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.12.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.【答案】13【解析】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率=26=13.故答案为:13.根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.13.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为______cm.【答案】6【解析】解:AE=EF,AB=BF;△FDE的周长为DE+FE+DF=AD+DF=8cm,△FCB的周长为FC+AD+ AB=20cm,分析可得:FC=12[FC+AD+AB−(AD+DF)]=12(2FC)=12(△FCB的周长−△FDE的周长)=12(20−8)=6cm.故答案为6.根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.把直线y=−x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是______.【答案】m >1【解析】解:方法一:直线y =−x +3向上平移m 个单位后可得:y =−x +3+m ,联立两直线解析式得:{y =2x +4y=−x+3+m ,解得:{x =m−13y =2m+103, 即交点坐标为(m−13,2m+103),∵交点在第一象限,∴{m−13>02m+103>0, 解得:m >1.故答案为:m >1.方法二:如图所示:把直线y =−x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是m >1.故答案为:m >1.直线y =−x +3向上平移m 个单位后可得:y =−x +3+m ,求出直线y =−x +3+m 与直线y =2x +4的交点,再由此点在第一象限可得出m 的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.15. 某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.【答案】11【解析】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.a=1是关于字母a,b的二元一次方程ax+ay−b=7的一个解,代数式x2+2xy+y2−1的值是16.若{b=−2______.【答案】24【解析】解:把a=1,b=−2代入ax+ay−b=7,得x+y=5,∴x2+2xy+y2−1=(x+y)2−1=52−1=24.故答案为:24.把a=1,b=−2代入原方程可得x+y的值,把代数式x2+2xy+y2−1变形为(x+y)2−1,然后计算.本题考查了公式法分解因式,把(x+y)作为一个整体是解题的关键,而x2+2xy+y2−1也需要运用公式变形,以便计算.17.如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为______.【答案】39.2【解析】解:连接OA,OD,作OP⊥AB,OM⊥AD,ON⊥CD,根据矩形的面积和三角形的面积公式发现:矩形的面积为△AOD面积的4倍,∵OA、OD的长是定值,∴当∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90∘,则AD=√OA2+OD2=10,∵12AD⋅OM=12OA⋅OD,∴OM=4.8,AB=9.6,则矩形ABCD的周长是:2(AD+AB)=2×(10+9.6)=39.2.故答案是:39.2.连接OA,OD,作OP⊥AB,OM⊥AD,ON⊥CD,将此题转化成三角形的问题来解决,根据三角函数的定义可以证明三角形的面积S=12absinC,根据这一公式分析面积的最大值的情况,然后熟练应用勾股定理,以及直角三角形斜边上的高等于两条直角边乘积除以斜边求得长方形的长和宽,进一步求其周长.本题考查了垂径定理和矩形的性质,考生应注意熟练运用勾股定理,来求边长和周长.18.如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点G.连接、若AD=7,CG=4,,则(结果保留根号).【答案】√745【解析】解:连接AC,AG,,由旋转可得,,,,,∽,,,,是等腰直角三角形,,设,则AG=√2x,DG=x−4,∵Rt△ADG中,AD2+DG2=AG2,∴72+(x−4)2=(√2x)2,解得x1=5,x2=−13(舍去),∴AB=5,∴Rt△ABC中,AC=√AB2+BC2=√52+72=√74,, 故答案为:√745. 先连接AC ,AG ,,构造直角三角形以及相似三角形,根据∽,可得到,设,则AG =√2x ,DG =x −4,Rt △ADG 中,根据勾股定理可得方程72+(x −4)2=(√2x)2,求得AB 的长以及AC 的长,即可得到所求的比值.本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为ACAB ,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB ,这也是本题的难点所在.19. 在平面直角坐标系,对于点P(x,y)和Q(x,y ′),给出如下定义:若y ′={−y(x <0)y(x≥0),则称点Q 为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(−1,3)的“可控变点”为点(−1,−3).点(−5,−2)的“可控变点”坐标为______;若点P 在函数y =−x 2+16(−5≤x ≤a)的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是−16≤y ′≤16,实数a 的值为______.【答案】(−5,2) a =4√2【解析】解:(1)根据定义,点(−5,−2)的“可控变点”坐标为(−5,2);(2)依题意,y =−x 2+16图象上的点P 的“可控变点”必在函数y ′={x 2−16(−5≤x <0)−x 2+16(x≥0)的图象上,如图.①当0≤x ≤a 时,y ′=−x 2+16,此时,抛物线y ′的开口向下,故当0≤x ≤a 时,y ′随x 的增大而减小,即:−16≤y ′≤16,当时,−a 2+16=−16, ∴a 2=32,∴a =±4√2,②当−5≤x <0时,y ′=x 2−16,抛物线y ′的开口向上,故当−5≤x <0时,y ′随x 的增大而减小,即:−16<y ′≤9,又∵−5≤x ≤a ,∴a 的值是:a =4√2.故答案为(−5,2),a =4√2.(1)直接根据“可控变点”的定义直接得出答案;(2)y =−16时,求出x 的值,再根据“可控变点”的定义即可解决问题.本题主要考查了二次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要掌握二次函数的性质,此题有一定的难度,属于创新题目,中考常考题型.三、计算题(本大题共1小题,共6.0分)20. 先化简,再求值:2x−6x−2÷(5x−2−x −2),其中x =√2−1【答案】解:原式=2(x−3)x−2÷(5x−2−x 2−4x−2)=−2(x −3)x −2×x −2(x +3)(x −3) =−2x+3,当x =√2−1时,原式=−2√2−1+3=√2−2. 【解析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.四、解答题(本大题共8小题,共78.0分)21. (1)计算:|1−√2|+(−14)−1+(π−3)0−2cos45∘;(2)解不等式{x ≥x−121+3(x −1)<6−x ,并把解集在数轴上表示出来.【答案】解:(1)原式=√2−1+(−4)+1−2×√22=√2−1−4+1−√2=−4;(2){x ≥x−12①1+3(x −1)<6−x ②, ∵解不等式①得:x ≥−1,解不等式②得:x <2,∴不等式组的解集为−1≤x <2,在数轴上表示为. 【解析】(1)先求出每一部分的值,再代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、零指数幂、负整数指数幂、特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能正确根据不等式的解集得出不等式组的解集是解(2)的关键.22.为了测量白塔的高度AB,在D处用高为1.5米的测角仪CD,测得塔顶A的仰角为42∘,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61∘,求白塔的高度AB.(参考数据sin42∘≈0.67,tan42∘≈0.90,sin61∘≈0.87,tan61∘≈1.80,结果保留整数)【答案】解:设AE=x,=1.1x,在Rt△ACE中,CE=AEtan42∘=0.55x,在Rt△AFE中,FE=AEtan61∘由题意得,CF=CE−FE=1.1x−0.55x=12,,解得:x=24011+1.5≈23米.故AB=AE+BE=24011答:这个电视塔的高度AB为23米.【解析】设AE=x,在Rt△ACE中表示出CE,在Rt△AFE中表示出FE,再由DH=CF=12米,可得出关于x的方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般.23.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.(1)参加考试的人数是______,扇形统计图中D部分所对应的圆心角的度数是______,请把条形统计图补充完整;(2)若考核为D等级的人中仅有2位女性,公司领导计划从考核为D等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;(3)为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率.(精确到0.01,√5=2.236)【答案】50 36∘【解析】解:(1)参加考试的总人数为24÷48%=50人,扇形统计图中D部分所对应的圆心角的度数是360∘×550=36∘,C等级人数为50−(24+15+5)=6,补全图形如下:故答案为:50、36∘;(2)画树状图为:共有20种等可能的结果数,其中恰好抽到一名男生和一名女生的结果数为12,所以恰好抽到一名男生和一名女生的概率1220=35;(3)设增长率是x,根据题意,得:24(1+x)2=30,(负值舍去),解得:x=−1±√52≈0.12,所以x=−1+√52答:每年的增长率为12%.(1)由A等级人数及其百分比可得总人数,用360∘乘以D等级人数所占比例可得其圆心角度数,再用总人数减去其他学生人数求得C等级人数即可补全图形;(2)画树状图展示所有20种等可能的结果数,再找出恰好抽到一名男生和一名女生的结果数,然后利用概率公式求解.(3)设增长率是x,根据“两年内考核A等级的人数达到30人”列出关于x的方程,解之即可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和一元二次方程.24.如图,已知A(3,m),B(−2,−3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.,【答案】解:(1)设反比例函数解析式为y=kx把B(−2,−3)代入,可得k=−2×(−3)=6,∴反比例函数解析式为y=6;x,可得3m=6,把A(3,m)代入y=6x即m=2,∴A(3,2),设直线AB的解析式为y=ax+b,2=3a+b,把A(3,2),B(−2,−3)代入,可得{−3=−2a+ba=1,解得{b=−1∴直线AB的解析式为y=x−1;(2)由题可得,当x 满足:x <−2或0<x <3时,直线AB 在双曲线的下方;(3)存在点C .如图所示,延长AO 交双曲线于点C 1, ∵点A 与点C 1关于原点对称, ∴AO =C 1O ,∴△OBC 1的面积等于△OAB 的面积, 此时,点C 1的坐标为(−3,−2);如图,过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积, 由B(−2,−3)可得OB 的解析式为y =32x , 可设直线C 1C 2的解析式为,把C 1(−3,−2)代入,可得,解得,∴直线C 1C 2的解析式为y =32x +52, 解方程组{y =6xy =32x +52,可得C 2(43,92); 如图,过A 作OB 的平行线,交双曲线于点C 3,则△OBC 3的面积等于△OBA 的面积, 设直线AC 3的解析式为y =32x +b “, 把A(3,2)代入,可得2=32×3+b “, 解得b “=−52,∴直线AC 3的解析式为y =32x −52, 解方程组{y =6xy =32x −52,可得C 3(−43,−92); 综上所述,点C 的坐标为(−3,−2),(43,92),(−43,−92).【解析】(1)运用待定系数法,根据A(3,m),B(−2,−3),即可得到直线AB 和反比例函数的解析式; (2)根据直线AB 在双曲线的下方,即可得到x 的取值范围;(3)分三种情况进行讨论:延长AO 交双曲线于点C 1,过点C 1作BO 的平行线,交双曲线于点C 2,过A 作OB 的平行线,交双曲线于点C 3,根据使得△OBC 的面积等于△OAB 的面积,即可得到点C 的坐标为(−3,−2),(43,92),(−43,−92).本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.,过点B的直线l是⊙O的切线,点D是直线l 25.如图,⊙O是Rt△ABC的外接圆,∠C=90∘,tanB=12上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.(1)求证:△ACB∽△BED;(2)当AD⊥AC时,求DG的值;CG(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.【答案】(1)证明:如图1中,∵DE⊥CB,∴∠ACB=∠E=90∘,∵BD是切线,∴AB⊥BD,∴∠ABD=90∘,∴∠ABC+∠DBE=90∘,∠BDE+∠DBE=90∘,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如图2中,∵△ACB∽△BED;四边形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF//BC,∴△GCB∽△GDF,∴DGCG =14.(3)解:如图3中,∵tan∠ABC=ACBC =12,AC=2,∴BC=4,易证△DBE≌△DBF,△ABC∽△DBE,∴DE:BC=BE:AC,∴DE=2BE,设BE=x,则DE=2x,∵∠DCE=45∘,∴CE=DE,∴4+x=2x,∴x=4,可得BF=BE=4=BC,∴AC=AF=2,∴CF⊥AB,设CF交AB于H.则CF=2CH=2×AC×BCAB =8√55.【解析】(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得DGCG =14;(3)想办法证明AB垂直平分CF即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.26.为进一步缓解城市交通压力,湖州推出公共自行车.公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x还车数借车数存量y7:00−8:00175158:00−9:00287n……………(1)m=______,解释m的实际意义:______;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00−11:00这个时段的还车数比借车数的2倍少4,求此时段的借车数.【答案】13 7:00时自行车的存量【解析】解:(1)m+7−5=15,m=13,则m的实际意义:7:00时自行车的存量;故答案为:13,7:00时自行车的存量;(2)由题意得:n=15+8−7=16,设二次函数的关系式为:y=ax2+bx+c,把(0,13)、(1,15)和(2,16)分别代入得:{c=13a+b+c=154a+2b+c=16,解得:{a =−12b =52c =13,∴y =−12x 2+52x +13;(3)当x =3时,y =−12×32+52×3+13=16, 当x =4时,y =−12×42+52×4=13=15,设10:00−11:00这个时段的借车数为x ,则还车数为2x −4, 根据题意得:16+2x −4−x =15, x =3,答:10:00−11:00这个时段的借车数为3辆.(1)根据等量关系式:m +借车数−还车数=8:00的存量,列式求出m 的值,并写出实际意义;(2)先求出9点时自行车的存量,当x =2时所对应的y 值,即求出n 的值;再设一般式将三点坐标代入求出解析式;(3)先分别计算9:00−10:00和10:00−11:00的自行车的存量,即当x =3和x =4时所对应的y 值,设10:00−11:00这个时段的借车数为x ,根据上一时段的存量+还车数−借车数=此时段的存量,列式求出x 的值即可.本题是二次函数的应用,理解各量的实际意义:还车数、借车数、存量;弄清等量关系式:上一时段的存量+还车数−借车数=此时段的存量,考查了利用待定系数法求二次函数的关系式,并根据图象理解真正意义.27. 在正六边形ABCDEF 中,N 、M 为边上的点,BM 、AN 相交于点P(1)如图1,若点N 在边BC 上,点M 在边DC 上,BN =CM ,求证:BP ⋅BM =BN ⋅BC ; (2)如图2,若N 为边DC 的中点,M 在边ED 上,AM//BN ,求MEDE 的值;(3)如图3,若N 、M 分别为边BC 、EF 的中点,正六边形ABCDEF 的边长为2,请直接写出AP 的长.【答案】(1)证明:在正六边形ABCDEF 中,AB =BC ,∠ABC =∠BCD =120∘, ∵BN =CM , ∴△ABN ≌△BCM ,∴∠ANB =∠BMC , ∵∠PBN =∠CBM , ∴△BPN ∽△BCM , ∴BP BC=BNBM,∴BP ⋅BM =BN ⋅BC ;(2)延长BC ,ED 交于点H ,延长BN 交DH 于点G ,取BG 的中点K ,连接KC , 在正六边形ABCDEF 中,∠BCD =∠CDE =120∘, ∴∠HCD =∠CDH =60∘, ∴∠H =60∘, ∴DC =DH =CH , ∵DC =BC , ∴CH =BC , ∵BK =GK ,∴2KC =GH ,KC//DH , ∴∠GDN =∠KCN ,∵CN =DN ,∠DNG =∠CNK , ∴△DNG ≌△CNK , ∴KC =DG , ∴DG =13DH =13DE , ∵MG//AB ,AM//BG , ∴四边形MABG 是平行四边形, ∴MG =AB =ED ,∴ME =DG =13DE ,即MEDE =13,(3)如图3,过N 作NH ⊥AB ,交AB 的延长线于H , ∵∠ABC =120∘, ∴∠NBH =60∘,Rt △NBH 中,∠BNH =30∘,BN =1, ∴BH =12BN =12, ∴NH =√12−(12)2=√32, Rt △ANH 中,AN =√AH 2+NH 2=√(2+12)2+(√32)2=√7,连接FC ,延长FC 与AN 交于G ,设FC 与BM 交于K , 易证△ANB ≌△GNC ,∴CG =AB =2,AN =NG =√7,FC =2AB =4,∴FG=FC+CG=6,∵EF//BC,∴FMBC =FKKC,∴12=FKKC,∵FK+KC=4,∴FK=43,KC=83,KG=83+2=143,∵KG//AB,∴PGAP =KGAB,∴PGAP =1432=73,设PG=7x,AP=3x,由PG+AP=AG=2√7得:7x+3x=2√7,x=√75,∴AP=3x=3√75.【解析】(1)先证明△ABN≌△BCM,得∠ANB=∠BMC,再证明△BPN∽△BCM,列比例式可得结论;(2)作辅助线,构建等边三角形的三角形的中位线CK,先证明△CDH是等边三角形得:∠HCD=∠CDH=∠H=60∘,DC=DH=CH,由△DNG≌△CNK,得KC=DG,DG=13DH=13DE,利用四边形MABG是平行四边形,得MG=AB=ED,所以ME=DG=13DE,即MEDE=13;(3)如图3,作辅助线,构建直角三角形和全等三角形,根据直角三角形30∘的性质得:BH=12,NH=√32,利用勾股定理求AN=√7,证明△ANB≌△GNC,利用EF//BC和KG//AB,列比例式可得:PGAP =1432=73,设PG=7x,AP=3x,根据PG+AP=AG=2√7得:7x+3x=2√7,可得结论.本题是相似三角形的综合题,考查了正六边形的性质、全等三角形和相似三角形的性质和判定、平行四边形的性质和判定、平行线分线段成比例定理等知识,一般情况下,正多边形的题解答都比较麻烦,熟练掌握正多边形的定义及性质是关键,第三问比较复杂,辅助线的作法是关键.28.如图,直线l:y=−3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】解:(1)将x =0代入y =−3x +3,得y =3,∴点B 的坐标为(0,3),∵抛物线y =ax 2−2ax +a +4(a <0)经过点B ,∴3=a +4,得a =−1,∴抛物线的解析式为:y =−x 2+2x +3;(2)将y =0代入y =−x 2+2x +3,得x 1=−1,x 2=3,∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m ,∴0<m <3,点M 的坐标为(m,−m 2+2m +3),将y =0代入y =−3x +3,得x =1,∴点A 的坐标(1,0),∵△ABM 的面积为S ,∴S =S 四边形OAMB −S △AOB =S △BOM +S △OAM −S △AOB =3×m 2+1×(−m 2+2m+3)2−1×32, 化简,得 S =−m 2−5m2=−12(m −52)2+258, ∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =−m 2−5m 2,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′,∵∠HOA ′=∠A ′OB ,,OA ′OB =13, ∴△OHA ′∽△OA ′B ,,即BA ′3=A ′H , ∵A ′H +A ′C ≥HC =√(13)2+32=√823, ∴t ≥√823, 即点M 在整个运动过程中用时最少是√823秒. 【解析】(1)根据题意可以求得点B 的坐标,从而可以求得抛物线的解析式;(2)根据题意可以求得点A 的坐标,然后根据题意和图形可以用含m 的代数式表示出S ,然后将其化为顶点式,再根据二次函数的性质即可解答本题;(3)根据题意作出点H ,然后利用三角形相似和勾股定理、两点之间线段最短即可求得t 的最小值.这是一道二次函数综合题,主要考查二次函数的最值、最短路径、三角形相似,待定系数法求二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用数形结合的思想和转化的数学思想解答.。
2021年河南省郑州市中牟县中考数学二模试卷一、选择题(共10小题).1.﹣的相反数是()A.﹣B.﹣C.D.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.3.2020年6月3日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002s,则0.00000002用科学记数法表示为()A.0.2×10﹣6B.0.2×10﹣7C.2×10﹣7D.2×10﹣84.下列运算正确的是()A.3a+2a=5a2B.﹣8a2÷4a=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a65.如图,a∥b,一块含有45°角的直角三角板的一个顶点落在直线b上,若∠1=65°,则∠2的度数是()A.15°B.25°C.35°D.45°6.郑州市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.8900名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重是总体的一个样本D.以上调查是普查7.已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1 8.如图,在Rt△ABC中,∠A=90°,利用尺规在BA,BC上分别截取BD,BE,使BD=BE;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠ABC内交于点F;作射线BF交AC于点H.若HA=2,P为BC上一动点,则HP的最小值是()A.2B.C.1D.无法确定9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=310.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ 的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.二、填空题(每小题3分,共15分)11.计算:﹣(﹣2021)0=.12.不等式组的解集是.13.小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则是:由小明和小颖做“石头、剪刀、布”游戏,如果两个人的手势相同,那么小凡获胜;如果两个人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.这个游戏中小凡获胜的概率是.14.如图,在矩形ABCD中,CB=,CD=1,将矩形ABCD绕点A逆时针旋转至AB'C'D'的位置,此时边BC的对应边B'C'恰好经过点D,连接AC,AC',S扇形CAC′=.15.如图,在正方形ABCD中,AB=8,点P是线段DC上的动点,将△ADP沿直线AP翻折,得到△AEP,点H是BC上一点,且BH=3,连接AH,HE,当DP的长为时,△AHE是直角三角形.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(﹣)÷,其中x=.17.为落实校园生活垃圾分类工作,2021年3月韩寺镇中学举办了“绿色校园你我共建”活动;紫薇路中学进行了“美丽河南我是行动者”环保专题讲座.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,我县某初中在4月份进行了“垃圾分类人人有责”的知识测试,李明从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分)进行整理、分析,得到下面的条形统计图和表格.年级平均数众数中位数8分及以上所占百分比七年级7.5a7c八年级7.58b50%根据以上信息,解答下列问题:(1)上述表中的a=,b=,c=;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可).(3)该校七、八年级共有1500名学生参加了此次测试活动,估计参加此次测试活动成绩合格(6分及6分以上)的学生人数是多少?18.如图,AO是⊙O的半径,DA⊥AO且DA=AO,B是半圆O上一点,连接AB,作▱ABCD,过点C作半圆O的切线CE,交AO的延长线于点P,切点为E,连接BE.(1)当BE∥AP时,求证:CE=OP;(2)当∠BAP=度时,ABCD为菱形.19.2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y(元)与购买洗手液的数量x(瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为元/瓶,请直接写出y与x之间的函数关系式;(2)请求出a的值;(3)如果该高校共有m名教职工,请你帮王老师设计最省钱的购买方案.20.如图①是某社区进行合村并点改造后的居民住宅,如图②是其中一部分的示意图,它是一个轴对称图形,对称轴是房屋的高PC所在的直线,郑州市某初中九(1)班数学活动小组,为测量房屋的高度,他们在地面上A点测得屋顶P的仰角是28°,此时地面上A 点、屋檐上E点、屋顶上P点三点恰好共线;继续向房屋方向走10m到达点B,又测得屋檐E点的仰角是60°.已知房屋的顶层横梁DE=4.8m,DE∥CA,PC交DE于点F (点C,B,A在同一水平直线上).(参考数据:sin28°≈0.3,cos28°≈0.9,tan28°≈0.5,≈1.7)(1)求屋顶到横梁的距离PF;(2)求房屋的高度PC(结果精确到0.1m).21.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于B(﹣1,0),C两点.(1)求抛物线的解析式;(2)连接AB,点P为抛物线上一点,且∠ABP=45°,求点P的坐标;(3)M(x1,y1),N(x2,y2)是抛物线上两点,当m﹣≤x1≤m+,x2≥2时,总有y1≥y2,请直接写出m的取值范围.22.如图①,在△ABC中,AB=AC=2,延长CA至点D,过点C作CE∥AB交DB的延长线于点E,设AD=x,CE=y.数学思考:(1)用含x的代数式表示CD的长是;与△DAB相似的三角形是;y与x之间的函数关系式是;数学探究:王芳同学根据学习函数的经验,对y与x之间的函数关系的图象与性质进行了探究.下面是王芳的探究过程,请补充完整:(2)下表列出了y与x的几组对应值,其中m=,n=;x…1234…y…6m4n3…(3)在如图②所示的平面直角坐标系中描出上表中各组对应值对应的点,并画出该函数的图象;(4)结合函数图象解决下列问题:①写出该函数的一条性质;②当该函数图象与直线y=﹣x+b只有一个交点时,图①中线段CE的长是.23.如图①,在Rt△ABC中,∠BAC=90°,∠ACB=30°,P为边AB上一动点(不与点A,B重合),过点P作PD⊥BC于点D,连接PC,取PC的中点E,连接AE,DE.(1)填空:AE与DE的数量关系为,∠AED的度数为;(2)将△PDB绕点B逆时针旋转,旋转角为β(0°<β<360°),请判断(1)中的结论是否仍然成立.若成立,请结合图②给出证明;若不成立,请说明理由;(3)将△PDB绕点B在平面内自由旋转,且BA=6,BP=2,请直接写出线段AE的最大值.参考答案一、选择题(每小题3分,共30分)1.﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣的相反数是,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.3.2020年6月3日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002s,则0.00000002用科学记数法表示为()A.0.2×10﹣6B.0.2×10﹣7C.2×10﹣7D.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是整数负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000002=2×10﹣8.故选:D.4.下列运算正确的是()A.3a+2a=5a2B.﹣8a2÷4a=2aC.(﹣2a2)3=﹣8a6D.4a3•3a2=12a6【分析】直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.解:A、3a+2a=5a,故此选项错误;B、﹣8a2÷4a=﹣2a,故此选项错误;C、(﹣2a2)3=﹣8a6,正确;D、4a3•3a2=12a5,故此选项错误;故选:C.5.如图,a∥b,一块含有45°角的直角三角板的一个顶点落在直线b上,若∠1=65°,则∠2的度数是()A.15°B.25°C.35°D.45°【分析】过直角顶点作直线c∥a,则a∥b∥c,根据平行线的性质得到∠1=∠3,∠2=∠4,结合∠3+∠4=90°,∠1=65°即可求出∠2.解:过直角顶点作直线c∥a,如图:则∠3=∠1,∵∠1=65°,∴∠3=65°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=25°,∵a∥b,∴b∥c,∴∠2=∠4=25°,故选:B.6.郑州市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.8900名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重是总体的一个样本D.以上调查是普查【分析】根据总体,个体、样本、普查、抽查的意义进行判断即可.解:“8900名学生的体重情况”是考查的总体,因此选项A不符合题意;“每一名学生的体重情况”是总体的一个个体,因此选项B不符合题意;“1500名学生的体重情况”是总体的一个样本,因此选项C符合题意;以上调查是抽样调查,不是普查,因此选项D不符合题意;故选:C.7.已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.解:∵关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,∴,解得:m≤2且m≠1.故选:D.8.如图,在Rt△ABC中,∠A=90°,利用尺规在BA,BC上分别截取BD,BE,使BD=BE;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠ABC内交于点F;作射线BF交AC于点H.若HA=2,P为BC上一动点,则HP的最小值是()A.2B.C.1D.无法确定【分析】根据作图过程可得BH平分∠ABC,当HP⊥BC时,HP最小,根据角平分线的性质即可得HP的最小值.解:根据作图过程可知:BH平分∠ABC,当HP⊥BC时,HP最小,∴HP=HA=2.故选:A.9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=3【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.解:依题意,得:3(x﹣1)=.故选:A.10.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤4时,根据四边形PBDQ的面积=△ABD的面积﹣△APQ的面积,列出函数关系式,从而得到函数图象;②4≤x≤8时,根据四边形PBDQ的面积=△BCD的面积﹣△CPQ的面积,列出函数关系式,从而得到函数图象,再结合四个选项即可得解.解:①0≤x≤4时,∵正方形的边长为4cm,∴y=S△ABD﹣S△APQ,=×4×4﹣•x•x,=﹣x2+8,②4≤x≤8时,y=S△BCD﹣S△CPQ,=×4×4﹣•(8﹣x)•(8﹣x),=﹣(8﹣x)2+8,所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有B选项图象符合.故选:B.二、填空题(每小题3分,共15分)11.计算:﹣(﹣2021)0=2.【分析】直接利用零指数幂的性质以及算术平方根分别化简得出答案.解:原式=3﹣1=2.故答案为:2.12.不等式组的解集是≤x<6.【分析】先求每个不等式的解集,再求出不等式组的解集即可.解:,解不等式①得:x≥,解不等式②得:x<6,∴不等式组的解集是≤x<6,故答案为:≤x<6.13.小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则是:由小明和小颖做“石头、剪刀、布”游戏,如果两个人的手势相同,那么小凡获胜;如果两个人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.这个游戏中小凡获胜的概率是.【分析】列表得出所有等可能的情况数,找出小明、小颖两人手势相同的情况,再由概率公式求出小凡获胜的概率即可.解:列表如下:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)所有等可能的情况有9种,其中小明、小颖两人的手势相同的情况有3种,则P(小凡获胜)==,故答案为:.14.如图,在矩形ABCD中,CB=,CD=1,将矩形ABCD绕点A逆时针旋转至AB'C'D'的位置,此时边BC的对应边B'C'恰好经过点D,连接AC,AC',S扇形CAC′=.【分析】首先证明△ADB′是等腰直角三角形,求出∠B′AD=∠B′DA=45°,进而求得∴∠ACA′=∠B′AB=45°,AC=,利用扇形面积公式求解即可.解:在Rt△ADB′中,∠B′=90°,AD=CB=,AB′=AB=CD=1,∴BD′===1,∴BD′=AB′=1,∴∠B′AD=∠B′DA=45°,∴∠ACA′=∠B′AB=45°,AC===,∴S扇形ACA′==故答案为:.15.如图,在正方形ABCD中,AB=8,点P是线段DC上的动点,将△ADP沿直线AP翻折,得到△AEP,点H是BC上一点,且BH=3,连接AH,HE,当DP的长为8或时,△AHE是直角三角形.【分析】分两种情况讨论:①点E在AH的右边时,可得∠AEH=90°,点H、E、P三点共线.由折叠可证Rt△ABH≌Rt△AEH,设DP=x,则PE=x,PC=8﹣x,HC=8﹣3=5,在Rt△PCH中,根据勾股定理建立方程(3+x)2=(8﹣x)2+52,即可得解;②点E在AH的左边时,点E、B重合,点P、C重合,故DP=8.解:①点E在AH的右边时,且∠AEH=90°,∵∠AEP=∠ADP=90°,∴点H、E、P三点共线.由折叠性质可知,在Rt△ABH和Rt△AEH中,,Rt△ABH≌Rt△AEH(HL).∴HE=BH=3,设DP=x,则PE=x,PC=8﹣x,HC=8﹣3=5,在Rt△PCH中,由勾股定理得:PH2=HC2+PC2,即(3+x)2=(8﹣x)2+52,解得:x=.故DP=.②点E在AH的左边时,且∠AEH=90°时,点E、B重合,此时P、C重合,故DP=8.故答案为:8或.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(﹣)÷,其中x=.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(﹣)÷=[+]=()====,当x=时,原式===1+2.17.为落实校园生活垃圾分类工作,2021年3月韩寺镇中学举办了“绿色校园你我共建”活动;紫薇路中学进行了“美丽河南我是行动者”环保专题讲座.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,我县某初中在4月份进行了“垃圾分类人人有责”的知识测试,李明从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分)进行整理、分析,得到下面的条形统计图和表格.年级平均数众数中位数8分及以上所占百分比七年级7.5a7c八年级7.58b50%根据以上信息,解答下列问题:(1)上述表中的a=7,b=7.5,c=45%;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可).(3)该校七、八年级共有1500名学生参加了此次测试活动,估计参加此次测试活动成绩合格(6分及6分以上)的学生人数是多少?【分析】(1)根据条形统计图中的数据,可以计算出a、b、c的值;(2)先判断哪个年级掌握的好,然后根据判断说明理由即可;(3)根据条形统计图中的数据,可以计算出参加此次测试活动成绩合格(6分及6分以上)的学生人数是多少.解:(1)由条形统计图可得,a=7,b=(7+8)÷2=7.5,c=×100%=45%,故答案为:7,7.5,45%;(2)八年级掌握垃圾分类知识比较好,理由:八年级的中位数高于七年级的中位数,说明八年级学生掌握的较好;(3)1500×=1350(人),答:估计参加此次测试活动成绩合格(6分及6分以上)的学生有1350人.18.如图,AO是⊙O的半径,DA⊥AO且DA=AO,B是半圆O上一点,连接AB,作▱ABCD,过点C作半圆O的切线CE,交AO的延长线于点P,切点为E,连接BE.(1)当BE∥AP时,求证:CE=OP;(2)当∠BAP=60度时,ABCD为菱形.【分析】(1)证明△CBE≌△OEP(AAS),即可求解;(2)▱ABCD为菱形,则DA=AB=AO=OE,即△BAO为等边三角形,即可求解.【解答】(1)证明:延长CB交AP于点F,连接OB、OE,∵AD⊥AO,AD∥BC,∴CF⊥AP,∵BE∥AP,CF⊥AP,∴CB⊥BE,即∠CBE=90°,∵CE是圆的切线,则∠OEP=90°=∠CBE,∵四边形ABCD是平行四边形,∴AD=BC=AO=OE,∵BE∥AP,∴∠P=∠CEB,在△CBE和△OEP中,,∴△CBE≌△OEP(AAS),∴CE=OP;(2)解:∵▱ABCD为菱形,∴DA=AB=AO=OB,∴△BAO为等边三角形,∴∠BAP等于60度时,▱ABCD为菱形,故答案为:60.19.2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y(元)与购买洗手液的数量x(瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为14元/瓶,请直接写出y与x之间的函数关系式;(2)请求出a的值;(3)如果该高校共有m名教职工,请你帮王老师设计最省钱的购买方案.【分析】(1)根据图象可得洗手液的单价,根据题意,可以分别写出两种优惠活动y与x的函数关系式;(2)根据(1)的结论列方程组解答即可;(3)由(2)求得的值并结合图象解答即可.解:(1)由图象可得,100瓶洗手液的价格是1400元,∴洗手液的单价为1400÷100=14(元/瓶),∴活动一:y与x的函数关系式为y1=0.9×14x=12.6x;活动二:当0<x≤100时,y2=14x(0<x≤100),当x>100时,y2=1400+(x﹣100)×14×0.8=11.2x+280(x>100),∴y1=12.6x,y2=,故答案为:14;(2)由题意得:12.6x=11.2x+280,解得x=200,∴a=12.6×200=2520;(3)结合图象可知,当0<x≤200时,y2>y1,按活动一购买最省钱.当x=200时,y2=y1,按活动一,活动二购买价格一样.当x>200时,y2<y1,按活动二购买最省钱.∵计划为教职工购买一批洗手液(每人2瓶).∴当0<m≤100时,y2>y1,按活动一购买最省钱.当m=100时,y2=y1,按活动一,活动二购买价格一样.当m>100时,y2<y1,按活动二购买最省钱.20.如图①是某社区进行合村并点改造后的居民住宅,如图②是其中一部分的示意图,它是一个轴对称图形,对称轴是房屋的高PC所在的直线,郑州市某初中九(1)班数学活动小组,为测量房屋的高度,他们在地面上A点测得屋顶P的仰角是28°,此时地面上A 点、屋檐上E点、屋顶上P点三点恰好共线;继续向房屋方向走10m到达点B,又测得屋檐E点的仰角是60°.已知房屋的顶层横梁DE=4.8m,DE∥CA,PC交DE于点F (点C,B,A在同一水平直线上).(参考数据:sin28°≈0.3,cos28°≈0.9,tan28°≈0.5,≈1.7)(1)求屋顶到横梁的距离PF;(2)求房屋的高度PC(结果精确到0.1m).【分析】(1)根据题意得到PC⊥DE,EF=DE=2.4,∠PEF=∠EAH=28°,解直角三角形即可得到结论;(2)过E作EH⊥AB于H,设EH=PC=x,解直角三角形即可得到结论.解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高PC所在的直线,DE∥AC,∴PC⊥DE,EF=DE=2.4,∠PEF=∠EAH=28°,在Rt△PEF中,∠PFE=90°,∠PEF=28°,∵tan∠PEF=tan28°=,EF=2.4,∴PF≈2.4×0.5=1.2(米);答:屋顶到横梁的距离AG约为1.2米;(2)过E作EH⊥AB于H,设EH=PC=x,在Rt△EBH中,∠EHB=90°,∠EBH=60°,∵tan∠EBH=,∴BH=,在Rt△EAH中,∠EHA=90°,∠EAH=28°,∵tan∠EAH=,∴AH=,∵AH﹣BH=AB=10,∴﹣=10,解得:x≈3.86,∴PC=PF+FC=5.06≈5.1(米),答:房屋的高PC约为5.1米.21.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于B(﹣1,0),C两点.(1)求抛物线的解析式;(2)连接AB,点P为抛物线上一点,且∠ABP=45°,求点P的坐标;(3)M(x1,y1),N(x2,y2)是抛物线上两点,当m﹣≤x1≤m+,x2≥2时,总有y1≥y2,请直接写出m的取值范围.【分析】(1)将点A(0,3)、B(﹣1,0)代入抛物线y=﹣x2+bx+c中即可求得b、c 的值,进而得到解析式;(2)过点A作AM⊥BP于点M,过点M作MN⊥y轴于点N,构造等腰直角三角形,利用“一线三垂直模型”证明△ABO≌△MAN.继而得到点M坐标,求出直线BM解析式,联立BM解析式与抛物线解析式即可得交点P的坐标;(3)结合抛物线图象,可直观看到当x2≥2时,y2≤3.要使y1≥y2恒成立,则y1≥3,得0≤x1≤2,从而,解不等式即可.解:(1)将点A(0,3)、B(﹣1,0)代入抛物线y=﹣x2+bx+c中,得:,解得:.∴该抛物线解析式为:y=﹣x2+2x+3.(2)过点A作AM⊥BP于点M,过点M作MN⊥y轴于点N.又∠ABP=45°,则△ABM为等腰直角三角形,AM=AB,∵∠BAO+∠PAO=∠BAM=90°,∠PAO+∠APN=90°,∴∠BAO=∠APN.在△ABO和△MAN中,,∴△ABO≌△MAN(AAS).∴AN=BO=1,ON=OA﹣AN=3﹣1=2,MN=AO=3,∴点M坐标为(3,2).设直线BM解析式为y=kx+b,代入点B(﹣1,0)、M(3,2)得:,解得:.故直线BM解析式为y=.把BM解析式与抛物线解析式联立:,解得,故点P坐标为(,).(3)由图可知,当x=2时,y=﹣x2+2x+3=﹣4+4+3=3,当x2≥2时,y2≤3.要使y1≥y2恒成立,则y1≥3,即﹣x2+2x+3≥3,解得:0≤x≤2,即0≤x1≤2,∴,解不等式得到:.22.如图①,在△ABC中,AB=AC=2,延长CA至点D,过点C作CE∥AB交DB的延长线于点E,设AD=x,CE=y.数学思考:(1)用含x的代数式表示CD的长是x+2;与△DAB相似的三角形是△DCE;y与x之间的函数关系式是y=+2;数学探究:王芳同学根据学习函数的经验,对y与x之间的函数关系的图象与性质进行了探究.下面是王芳的探究过程,请补充完整:(2)下表列出了y与x的几组对应值,其中m=,n=;x…1234…y…6m4n3…(3)在如图②所示的平面直角坐标系中描出上表中各组对应值对应的点,并画出该函数的图象;(4)结合函数图象解决下列问题:①写出该函数的一条性质y随x的增大而减小;②当该函数图象与直线y=﹣x+b只有一个交点时,图①中线段CE的长是4.【分析】(1)CD=AD+AC;两条平行线截两条相交直线所得的两个三角形相似即△DAB ∽△DCE.根据相似比得y与x之间的函数关系式.(2)将x=和3分别代入解析式可求得.(3)根据表格描点即可;(4)由图象可知y随x的增大而减小.y=+2和直线y=﹣x+b联立,得一元二次方程只有两个相等根即可求得.解:(1)∵AD=x,AC=2,∴CD=AD+AC=x+2,∵AB∥CE,∴△DAB∽△DCE(两条平行线截两条相交直线所得的两个三角形相似),∴=⇒=,∴y==+2;(2)将x=代入解析式y=+2得y=m=,将x=3,代入y=+2,得y=n=;(3)如图,(4)由图象可知y随x的增大而减小,且x>0,由题可列方程+2=﹣x+b,∴x2﹣4x+4=0,解得b1=6,b2=﹣2(舍去),x=2,∴y=+2=4,即CE=4.23.如图①,在Rt△ABC中,∠BAC=90°,∠ACB=30°,P为边AB上一动点(不与点A,B重合),过点P作PD⊥BC于点D,连接PC,取PC的中点E,连接AE,DE.(1)填空:AE与DE的数量关系为AE=DE,∠AED的度数为60°;(2)将△PDB绕点B逆时针旋转,旋转角为β(0°<β<360°),请判断(1)中的结论是否仍然成立.若成立,请结合图②给出证明;若不成立,请说明理由;(3)将△PDB绕点B在平面内自由旋转,且BA=6,BP=2,请直接写出线段AE的最大值.【分析】(1)利用直角三角形斜边中线的性质解决问题即可.(2)结论成立.取BC的中点R,连接AR,ER,AD.利用全等三角形的性质,证明△ADE是等边三角形即可.(3)求出ER,AR,根据AE≤AR﹣ER,可得结论.解:(1)如图①中,∵PD⊥BC,∴∠PDC=∠CAP=90°∵PE=EC,∴AE=PC,DE=PC,∴AE=DE,∵EA=EC=ED,∴∠EAC=∠ECA,∠EDC=∠ECD,∴∠AED=∠AEP+∠PED=∠EAC+∠ECA+∠EDC+∠ECD=2(∠ECA+∠ECD)=60°,故答案为:AE=DE,60°.(2)解:结论成立.理由:如图②中,取BC的中点R,连接AR,ER,AD.∵BR=CR,PE=EC,∴ER∥PB,ER=PB,∵∠BAC=90°,BR=RC,∴AR=BR,∵∠ACB=30°,∴∠ABR=60°,∴△ABR是等边三角形,∴AB=AR,∠ARB=∠BAR=60°,∵∠PDB=90°,∠PBD=60°,∴∠BPD=30°,∴BD=PB,∴BD=RE,∵∠PBD=∠ABR=60°,∴∠ABD+∠PBR=120°,∵RE∥PB,∴∠PBR=∠CRE,∵∠ARE+∠CRE=120°,∴∠ABD=∠ARE,∴△ABD≌△ARE(SAS),∴AD=AE,∠BAD=∠RAE,∴∠DAE=∠BAR=60°,∴△ADE是等边三角形,∴EA=ED,∠AED=60°.(3)解:如图②中,由(2)可知,ER=PB=1,AB=AR=6,∴AE≤AR﹣ER,∴AE≤5,∴AE的最大值为5.。
2021年湖北省武汉市中考数学逼真模拟试卷(二)一、选择题(共10小题).1.2的相反数是()A.﹣2B.﹣C.2D.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣33.下列说法正确的是()A.打开电视机,它正在播广告是必然事件B.“明天降水概率80%“,是指明天有80%的时间在下雨C.方差越大数据的波动越大,方差越小数据的波动越小D.在抽样调查过程中,样本容量越小,对总体的估计就越准确4.下列四个图案中,轴对称图形的个数是()A.1B.2C.3D.45.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A.B.C.D.6.公元前3世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力×阻力臂=动力×动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.7.小明投掷一次骰子,向上一面的点数记为x,再投掷一次骰子,向上一面的点数记为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为()A.B.C.D.8.如图,反比例函数y=(x>0)的图象分别与矩形OABC的边AB,BC相交于点D,E,与对角线OB交于点F,以下结论:①若△OAD与△OCE的面积和为2,则k=2;②若B点坐标为(4,2),AD:DB=1:3.则k=1;③图中一定有=;④若点F是OB的中点,且k=6,则四边形ODBE的面积为18.其中一定正确个数是()A.1B.2C.3D.49.如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2B.C.D.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A.B.C.D.二、填空题(共6小题,共18分)11.化简的结果为.12.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,8,8,10,7,9,7,则这组数据的中位数是.13.化简:+的结果是.14.如图,AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=40°,那么∠BED的度数为.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.16.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是.三、解答题(共8小题,共72分)17.计算:2x3•x3+(3x3)2﹣8x6.18.如图,AC=DB,AB=DC,求证:EB=EC.19.某校组织了2000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6020a60≤x<70160.0870≤x<80b0.15请你根据以上的信息,回答下列问题:(1)a=,b=.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全校参加竞赛的学生约有人参赛成绩被评为“B”.20.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.21.如图,⊙O的直径AB=6cm,直线DM与⊙O相切于点E.连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=cm.(1)求线段BE的长;(2)求图中阴影部分的面积.22.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件150元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?23.△ABC中,D是BC的中点,点G在AD上(点G不与A重合),过点G的直线交AB 于E,交射线AC于点F,设AE=xAB,AF=yAC(x,y≠0).(1)如图1,若△ABC为等边三角形,点G与D重合,∠BDE=30°,求证:△AEF ∽△DEA;(2)如图2,若点G与D重合,求证:x+y=2xy;(3)如图3,若AG=nGD,x=,y=,直接写出n的值.24.已知抛物线的顶点A(﹣1,﹣4),经过点B(﹣2,﹣3),与x轴分别交于C,D两点.(1)求该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB交于点N,当MN取最大值时,求点M的坐标;(3)如图2,AE∥y轴交x轴于点E,点P是抛物线上A,D之间的一个动点,直线PC,PD与AE分别交于F,G,当点P运动时,①直接写出EF+EG的值;②直接写出tan∠ECF+tan∠EDG的值.参考答案一、选择题(共10小题,共30分)1.2的相反数是()A.﹣2B.﹣C.2D.解:2的相反数是﹣2.故选:A.2.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3解:根据题意得,x+3≥0,解得x≥﹣3.故选:B.3.下列说法正确的是()A.打开电视机,它正在播广告是必然事件B.“明天降水概率80%“,是指明天有80%的时间在下雨C.方差越大数据的波动越大,方差越小数据的波动越小D.在抽样调查过程中,样本容量越小,对总体的估计就越准确解:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、“明天降水概率80%“,意味着明天降雨的可能是80%,故本选项错误;C、方差越大数据的波动越大,方差越小数据的波动越小,故本选项正确;D、在抽样调查过程中,样本容量越大,对总体的估计就越准确,故本选项错误;故选:C.4.下列四个图案中,轴对称图形的个数是()A.1B.2C.3D.4解:第1个不是轴对称图形,符合题意;第2个是轴对称图形,不合题意;第3个是轴对称图形,不合题意;第4个不是轴对称图形,符合题意,故有2个轴对称图形.故选:B.5.如图是由五个完全相同的小正方体组成的几何体,这个几何体的俯视图是()A.B.C.D.解:根据俯视图是从上面看所得到的图形,可知这个几何体的俯视图C中的图形,故选:C.6.公元前3世纪,古希腊数学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即“阻力×阻力臂=动力×动力臂”.若现在已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=,是反比例函数,A选项符合,故选:A.7.小明投掷一次骰子,向上一面的点数记为x,再投掷一次骰子,向上一面的点数记为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为()A.B.C.D.解:画树状图为:共有36种等可能的结果数,其中点P落在双曲线y=上有:(1,6),(2,3),(3,2),(6,1),所以点P落在双曲线y=上的概率==.故选:B.8.如图,反比例函数y=(x>0)的图象分别与矩形OABC的边AB,BC相交于点D,E,与对角线OB交于点F,以下结论:①若△OAD与△OCE的面积和为2,则k=2;②若B点坐标为(4,2),AD:DB=1:3.则k=1;③图中一定有=;④若点F是OB的中点,且k=6,则四边形ODBE的面积为18.其中一定正确个数是()A.1B.2C.3D.4解:①∵D、E均在反比例函数图象上,∴S△OAD=S△OCE,又∵△OAD与△OCE的面积和为2,∴S△OAD=S△OCE=1,∴k=2,故本选项正确;②∵B点坐标为(4,2),∴AB=4,AO=2,∵AD:DB=1:3,∴AD=1,AO=2,∴k=1×2=2,故本选项错误;③∵△OAD与△OCE的面积相等,∴AD•AO=OC•CE,∴=,∴=,∴=,∴=,∴=,故本选项正确;④∵k=6,∴S四边形OGFH=6,∴S四边形ABCO=6×4=24,∴S△AOD=S△CEO=6×=3,∴S四边形ODBE=24﹣3﹣3=18,故本选项正确.故选:C.9.如图,正方形ABCD的边长为1,点E是AB边上的一点,将△BCE沿着CE折叠得△FCE.若CF,CE恰好都与正方形ABCD的中心O为圆心的⊙O相切,则折痕CE的长为()A.2B.C.D.解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BEC中,cos∠ECB=,∴CE===,故选:B.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A.B.C.D.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴=+++…+=++…++++…+=(1﹣)+(﹣)=,故选:A.二、填空题(共6小题,共18分)11.化简的结果为2.解:=2,故答案为:2.12.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,8,8,10,7,9,7,则这组数据的中位数是8.解:将这组数据按从小到大的顺序排列为:7,7,7,8,8,9,10,10,那么由中位数的定义可知,这组数据的中位数是=8.故答案为:8.13.化简:+的结果是.解:原式=﹣===,故答案为:.14.如图,AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=40°,那么∠BED的度数为130°.解:∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∵ED∥AC,∴∠CAE+∠DEA=180°,∴∠DEA=180°﹣40°=140°,∵∠AED+∠AEB+∠BED=360°,∴∠BED=360°﹣140°﹣90°=130°.故答案为:130°.15.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=19,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=19,故3x+12y=19,x+4y=,所以S2=x+4y=.故答案为:.16.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是7.解:如图,取AC的中点N,连接MN,BN.∵∠ABC=90°,AB=8,BC=6,∴AC=10,∵AN=NC,∴BN=AC=5,∵AN=NC,DM=MC,∴MN==2,∴BM≤BN+NM,∴BM≤5+2=7,即BM的最大值是7.故答案为7.三、解答题(共8小题,共72分)17.计算:2x3•x3+(3x3)2﹣8x6.解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.18.如图,AC=DB,AB=DC,求证:EB=EC.【解答】证明:在△ABC与△DCB中,,∴△ABC≌△DCB(SSS);∴∠ECB=∠EBC,∴EB=EC.19.某校组织了2000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6020a60≤x<70160.0870≤x<80b0.15请你根据以上的信息,回答下列问题:(1)a=0.1,b=30.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是36°;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全校参加竞赛的学生约有920人参赛成绩被评为“B”.解:(1)本次调查的人数为:16÷0.08=200,a=20÷200=0.1,b=200×0.15=30,故答案为:0.1,30;(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是360°×0.1=36°,故答案为:36°;(3)2000×=920(人),即这次全校参加竞赛的学生约有920人参赛成绩被评为“B”,故答案为:920.20.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.解:如图所示21.如图,⊙O的直径AB=6cm,直线DM与⊙O相切于点E.连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=cm.(1)求线段BE的长;(2)求图中阴影部分的面积.解:(1)连接AE.∵AB是⊙O的直径,∴∠AEB=90°,又∵BC⊥DM,∴∠ECB=90°,∴∠AEB=∠ECB,∵直线DM与⊙O相切于点E,∴∠CEB=∠EAB,∴△AEB∽△ECB,∴=,∴BE2=AB•BC,∴BE==3(cm);(2)连接OE,过点O作OG⊥BE于点G.∴BG=EG,在Rt△ABE中,cos∠ABE==,∴∠ABE=30°,在Rt△OBG中,∠ABE=30°,BO=3,∴OG=1.5,∴S△EOB=××=,∵OE=OB,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S扇形OBE==3π,∴S阴影=S扇形OBE﹣S△EOB=(3π﹣)cm2.22.某公司经过市场调查,发现某种运动服的销量与售价是一次函数关系,具体信息如表:售价(元/件)200210220230…月销量(件)200180160140…已知该运动服的进价为每件150元.(1)售价为x元,月销量为y件.①求y关于x的函数关系式:②若销售该运动服的月利润为w元,求w关于x的函数关系式,并求月利润最大时的售价;(2)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,这时月销量与调整后的售价仍满足(1)中函数关系式.结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低15元,则a的值是多少?解:(1)①设y关于x的函数关系式为y=kx+b,把(200,200),(210,180)代入得:,解得:,∴y关于x的函数关系式为y=﹣2x+600;②月利润w=(x﹣150)(﹣2x+600)=﹣2x2+900x﹣90000=﹣2(x﹣225)2+11250.∵﹣2<0,∴w为开口向下的抛物线,∴当x=225时,月最大利润为11250元;∴w关于x的函数关系式为w=﹣2x2+900x﹣90000,月利润最大时的售价为225元;(2)设调整后的售价为t元,则调整后的单件利润为(t﹣150+a)元,销量为(﹣2t+600)件.月利润w=(t﹣150+a)(﹣2t+600)=﹣2t2+(900﹣2a)t+600a﹣90000,∴当t=时,月利润最大,则=210,解得a=30.∴a的值是30元.23.△ABC中,D是BC的中点,点G在AD上(点G不与A重合),过点G的直线交AB 于E,交射线AC于点F,设AE=xAB,AF=yAC(x,y≠0).(1)如图1,若△ABC为等边三角形,点G与D重合,∠BDE=30°,求证:△AEF ∽△DEA;(2)如图2,若点G与D重合,求证:x+y=2xy;(3)如图3,若AG=nGD,x=,y=,直接写出n的值.解:(1)∵△ABC为等边三角形,∴∠BAC=∠B=60°,AB=AC,∵AD是△ABC的中线,∴∠BAD=∠BAC=30°,∵∠BDE=30°,∴∠BED=90°∴EF⊥AB,∴∠F=90°﹣∠EAF=30°=∠BAD,∵∠AED=∠FEA=90°,∴△AEF∽△DEA.(2)如图2,过C作CH∥AB交EF于H,∴∠B=∠DCH,∠BED=∠CHD,∵AD是△ABC的中线,∴BD=CD,∴△DEB≌△DHC(AAS),∴CH=BE,∵CH∥AB,∴△FCH∽△FAE,∴=,∴=,∵=,=,∴=1﹣=1﹣,=﹣1=﹣1∴1﹣=﹣1,∴+=2,∴x+y=2xy.(3)如图3,连接DE.∵y=,∴AF=AC,∴AC=AF,∵x=,∴AE=AB,∴点E是AB的中点,∵AD是△ABC的中线,∴点D是BC的中点,∴DE=AC=•AF=AF,∵DE∥AC,∴△DGE∽△AGF,∴==,∴DG=AG,∴AG=3DG,∴n=3.24.已知抛物线的顶点A(﹣1,﹣4),经过点B(﹣2,﹣3),与x轴分别交于C,D两点.(1)求该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的下方,过点M作x轴的平行线与直线OB交于点N,当MN取最大值时,求点M的坐标;(3)如图2,AE∥y轴交x轴于点E,点P是抛物线上A,D之间的一个动点,直线PC,PD与AE分别交于F,G,当点P运动时,①直接写出EF+EG的值;②直接写出tan∠ECF+tan∠EDG的值.解:(1)∵抛物线顶点坐标为(﹣1,﹣4),∴可设抛物线解析式为y=a(x+1)2﹣4,∵抛物线经过B(﹣2,﹣3),∴﹣3=a﹣4,解得a=1,∴抛物线为y=x2+2x﹣3;(2)设直线OB解析式为y=kx,由题意可得﹣3=﹣2k,解得k=,∴直线OB解析式为y=x,设M(t,t2+2t﹣3),MN=s,则N的横坐标为(t﹣s),纵坐标为(t﹣s).∵MN∥x轴,∴t2+2t﹣3=(t﹣s),得s=﹣t2﹣t+2=﹣(t+)2+.∴当t=﹣时,MN有最大值,最大值为,此时点M的坐标是(﹣,﹣);(3)EF+EG=8.理由如下:如图2,过点P作PQ∥y轴交x轴于Q,在y=x2+2x﹣3中,令y=0可得0=x2+2x﹣3,解得x=﹣3或x=1.∴C(﹣3,0),D(1,0).设P(t,t2+2t﹣3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t.∵PQ∥EF,∴△CEF∽△CQP.∴=.∴EF=•PQ=×(﹣t2﹣2t+3).同理△EGD∽△QPD得=.∴EG=•PQ=•(﹣t2﹣2t+3),∴EF+EG=(﹣t2﹣2t+3)+•(﹣t2﹣2t+3)=2(﹣t2﹣2t+3)(+)=2(﹣t2﹣2t+3)×=8,∴当点P运动时,EF+EG为定值8;②由①知,EF+EG=8,则tan∠ECF+tan∠EDG==4.。
上海市中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.2.下列属于最简二次根式的是()A.B.C.D.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=04.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.85.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .8.用科学记数法表示:3402000= .9.化简分式:= .10.不等式组的解集是.11.方程x+=0的解是.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐.(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= .16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?.(填“红”或“黄”)17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.20.解方程组:.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.上海市中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.下列属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、,无法化简,故是最简二次根式,故本选项正确;B、,被开方数中含有分母;故本选项错误;C、,被开方数中含有分母,故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的数;故本选项错误;故选:A.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=0【考点】根的判别式;无理方程;分式方程的解.【专题】计算题.【分析】根据二次很式的性质可对A进行判断;根据判别式的意义对B、D进行判断;通过解分式方程对C进行判断.【解答】解:A、方程=﹣2没有实数解,所以A选项错误;B、△=0﹣4<0,方程没有实数解,所以B选项错误;C、去分母得1=x+1,解得x=0,经检验x=0是原方程的解,所以C选项正确;D、△=14<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了分式方程和无理方程.4.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.8【考点】三角形的重心.【专题】计算题.【分析】如图,连结AG并延长交BC于F,根据三角形重心性质得=2,再证明△ADE∽△ABC,根据相似三角形的性质得=,然后利用比例的性质计算BC的长.【解答】解:如图,连结AG并延长交BC于F,如图,∵点G为△ABC的重心,∴=2,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,∴BC=6.故选B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元【考点】众数;中位数.【分析】根据题意先计算出本周销售套餐12元和18元的份数,再根据中位数和众数的定义即可得出答案.【解答】解:12元的份数有500×20%=100(份),18元的份数有500﹣100﹣180=220(份),∵本周销售套餐共计500份,∴所购买的盒饭费用的中位数是第250和251个数的平均数,∴中位数是15元;18元出现的次数最多,则众数是18元;故选A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75【考点】解直角三角形的应用-坡度坡角问题.【分析】先过点E作EM⊥GH于点M,根据水渠的横断面是等腰梯形,求出GM,再根据斜坡AD 的坡度为1:0.6,得出EM:GM=1:0.6,最后代入计算即可.【解答】解:如图;过点E作EM⊥GH于点M,∵水渠的横断面是等腰梯形,∴GM=×(GH﹣EF)=×(2.1﹣1.2)=0.45,∵斜坡AD的坡度为1:0.6,∴EM:GM=1:0.6,∴EM:0.45=1:0.6,∴EM=0.75,故选:D.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度、等腰三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .【考点】负整数指数幂.【专题】计算题.【分析】根据负整数指数幂的定义求解:a﹣p=(a≠0,p为正整数)【解答】解:2﹣2==,故答案为.【点评】本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题比较简单,易于掌握.8.用科学记数法表示:3402000= 3.402×106.【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于3402000有7位,所以可以确定n=7﹣1=6.【解答】解:3402000=3.402×106.故答案为:3.402×106.【点评】此题考查科学记数法,用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.化简分式:= .【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后进行约分即可.【解答】解:原式==.故答案为.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.10.不等式组的解集是x≥3 .【考点】解一元一次不等式组.【分析】根据不等式的性质求出不等式①和②的解集,根据找不等式组的解集的规律找出不等式组的解集即可.【解答】解:由①得:x>﹣2,由②得:x≥3,∴不等式组的解集是x≥3.故答案为x≥3.【点评】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.方程x+=0的解是0 .【考点】无理方程.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x=x2即x2﹣x=0∴(x﹣1)x=0∴x=0或x=1∵x=1时不满足题意.∴x=0.故答案为:0.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐减小.(填“减小”或“增大”)【考点】反比例函数的性质.【分析】首先利用待定系数法确定反比例函数的比例系数,然后根据其符号确定其增减性即可.【解答】解:设反比例函数的解析式为y=(k≠0),∵反比例函数图象过点(﹣1,﹣3),∴把(﹣1,﹣3)代入得3=k>0,根据反比例函数图象的性质可知它在每个象限内y随x的增大而减小,故答案为:减小;【点评】考查了反比例函数的性质,解答此题的关键是要熟知反比例函数图象的性质及用待定系数法求反比例函数的解析式.反比例函数图象的性质:(1)当k>0时,反比例函数的图象位于一、三象限;(2)当k<0时,反比例函数的图象位于二、四象限.13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,直接利用概率公式求解即可求得答案.【解答】解:∵文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,∴随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价9.9 万元.【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10×(1﹣10%)×(1+10%)=9.9(万元),则现售价为9.9万元.故答案为:9.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= 3 .【考点】*平面向量.【分析】首先由在正方形ABCD中,如果AC=3,可求得BC的长,又由=,=,可得|﹣|=||=BC.【解答】解:∵在正方形ABCD中,AC=3,∴AB=BC=3,∵=,=,∴﹣=﹣=,∴|﹣|=||=BC=3.故答案为:3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?黄.(填“红”或“黄”)【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出红颜色和黄颜色的方差,然后进行比较,即可得出答案.【解答】解:红颜色的郁金香的方差是:[(54﹣40)2+(44﹣40)2+(37﹣40)2+(36﹣40)2+(35﹣40)2+(34﹣40)2]≈49.67,黄颜色的郁金香的方差是:[(48﹣40)2+(35﹣40)2+(38﹣40)2+(36﹣40)2+(43﹣40)2+(40﹣40)2]≈29.67,>S2黄,∵S2红∴黄颜色的郁金香样本长得整齐;故答案为:黄.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是3或27 .【考点】垂径定理;等腰三角形的性质;勾股定理.【分析】从圆心在三角形内部和外部两种情况讨论,根据垂径定理和三角形的性质求出答案.【解答】解:当圆心在三角形内部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=9,S△=×6×9=27,ABC当圆心在三角形外部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=1,=×6×1=3,S△ABC故答案为:3或27.【点评】本题考查的是垂径定理、等腰三角形的性质和勾股定理,正确运用定理和性质是解题的关键,注意分情况讨论思想的运用.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .【考点】相似三角形的性质;翻折变换(折叠问题).【分析】根据△BED与△ABC相似和△ABC沿BD折叠,点C恰巧落在边AB上的C′处,求出∠A=∠DBA=∠DBC=30°,利用三角函数求出BD、AC的长,得到答案.【解答】解:△BED与△ABC相似,∴∠DBA=∠A,又∠DBA=∠DBC,∴∠A=∠DBA=∠DBC=30°,设BC为x,则AC=x,BD=x,=.故答案为:.【点评】本题考查的是相似三角形的性质和翻折变换的知识,掌握相似三角形的对应角相等和锐角三角函数的应用是解题的关键.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.【考点】二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=﹣|﹣1|+1+,然后分母有理化和去绝对值后合并即可.【解答】解:原式=﹣|﹣1|+1+=2﹣+﹣1+1+=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分数指数幂.20.解方程组:.【考点】高次方程.【分析】把①化为x=±2y,把②化为x+y=±2,重新组成方程组,解二元一次方程组即可.【解答】解:,由①得,x=±2y,由②得,x+y=±2,则,,,解得,,,,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程根据平方差公式和完全平方公式进行变形化为两个二元一次方程是解题的关键.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.【考点】勾股定理.【分析】(1)设ED=a,则EC=a,在Rt△EDC中根据勾股定理用a表示出DC的长,在Rt△ABE 中,根据BE2=AB2+AE2求出a的值,故可得出ED及CD的长,由锐角三角函数的定义即可得出结论;(2)由(1)中,DE=a,CD=3a,a=2可得出DE=2,CD=6,再根据四边形ABCD是矩形,BE=AD 即可得出结论.【解答】解:(1)设ED=a,则EC=a,在Rt△EDC中,∵DC===3a,∴BE=AE+ED=8+a.在Rt△ABE中,∵BE2=AB2+AE2,即(8+a)2=(3a)2+82,解得a=2,∴ED=2,CD=6,∴tan∠ECD===.(2)∵由(1)知,DE=a,CD=3a,a=2,∴DE=2,CD=6.∵四边形ABCD是矩形,BE=AD,AE=8,∴AB=CD=6,BC=AD=AE+DE=8+2=10.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式y A=2.5x ;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式y B=200+0.9x ;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?【考点】一次函数的应用.【分析】(1)根据表可知:当运输路程跑80公里时,收费200元,所以每公里收费为2.5元,所以y A=2.5x.(2)根据题意得:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=2000+0.9×500=2450,因为y A>y B,所以选择B运输队.【解答】解:(1)根据表可知:当运输路程跑80公里时,收费200元,∴每公里收费为2.5元,=2.5x.∴yA故答案为:y A=2.5x.(2)根据题意得:y B=200+0.9x.故答案为:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=200+0.9×500=650,>y B,∴yA∴选择B运输队.【点评】本题考查了一次函数的应用,解决本题的关键是读懂题意,列出函数解析式.23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.【考点】相似形综合题.【分析】(1)通过AAS证得△AEB≌△AFD,则其对应边相等:AB=AD,所以“邻边相等的平行四边形是菱形”;(2)欲证明AF2=AG•DF,需要通过相似三角形△GAD∽△AFD的对应边成比例得到AD=AF,则AF2=AG•DF;(3)根据菱形的性质和平行线分线段成比例得到:AH:HG=BH:HD,BH:HD=EH:AH,故AH:HG=EH:AH.把相关线段的长度代入来求AH的长度即可.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.在△AEB和△AFD中,,∴△AEB≌△AFD(AAS)∴AB=AD,∴平行四边形ABCD是菱形;(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.如图2,∵四边形ABCD是平行四边形,∴AB∥DG,∴∠BAE=∠G,∴∠G=∠DAF.又∵∠ADF=∠GDA,∴△GAD∽△AFD,∴DA:DF=DG:DA,∴DA2=DG•DF.∵DG:DA=AG:FA,且AD=AF,∴DG=AG.又∵AD=AF,∴AF2=AG•DF;(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,∴AH:HG=BH:HD,BH:HD=EH:AH,∴AH:HG=EH:AH.∵HE=4,EG=12,∴AH:16=4:AH,∴AH=8.【点评】本题考查了相似综合题.此题综合性比较强,其中涉及到了菱形的性质,平行线分线段成比例,相似三角形的判定与性质,解题时,需要弄清楚相似三角形的对应边与对应角,以防弄错.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;二次函数的应用.【分析】(1)由二次函数对称轴为直线x=2,根据A坐标确定出二次函数与x轴的另一个交点坐标,设出二次函数解析式为y=a(x+6)(x﹣2),把C坐标代入求出a的值,确定出二次函数解析式,进而确定出C与D坐标即可;(2)连接AB、BC、CD、DA,点E在线段AB上,连接DE,如图1所示,利用勾股定理求出AB,BC,CD与BD的长,根据直线CD与直线AB斜率相等,得到DC与AB平行,继而得到四边形ABCD 为直角梯形,若DE平分四边形ABCD的面积,可得直角梯形面积等于三角形ADE面积的2倍,求出AE的长即可;(3)在二次函数的图象上存在点P,能够使∠PCA=∠BAC,如图2所示,直线CP与AB交于点G,可得GA=GC,根据直线AB解析式设出G坐标(x,x+6),利用两点间的距离公式求出x的值,确定出G坐标,利用待定系数法求出直线CG解析式,与二次函数解析式联立求出P坐标;由(2)得到四边形ABCD为直角梯形,即DC与AB平行,利用两直线平行内错角相等,得到P 与D重合时,满足题意,确定出此时P的坐标即可.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,,即×2×(2+6)=2××2×AE,若S梯形ABCD=2S△ADE解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G(x,x+6),∴=,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,直角梯形的判定,直线与二次函数的交点,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.【考点】圆的综合题.【分析】(1)作AH⊥BC于点H,根据直线CD与⊙B相切,得到CD⊥AB,从而得到cos∠DBC=cos∠ACH,利用余弦的定义得到BD:BC=CH:CA,从而得到BD:4=2:6,求得BD 的长即可求得圆的半径;(2)作PK⊥BC于点K,求得两圆的圆心距,然后根据两圆的半径和圆心距的大小关系得到位置关系即可;(3)设EF与PB交于点G,BG=m,在△PBE中,PE2﹣PG2=BE2﹣BG2求得m的值,然后根据EG2﹣BG2=BE2求得EG的长即可求得EF的长.【解答】解:(1)如图1,作AH⊥BC于点H,∵AB=AC=6,BC=4,∴BH=2.∵直线CD与⊙B相切,∴CD⊥AB,∵∠DBC=∠ACH,∴cos∠DBC=cos∠ACH,∴BD:BC=CH:CA,∴BD:4=2:6,∴BD=.(2)如图1,作PK⊥BC于点K,∴PK∥AH.∵AH⊥BC,AB=AC=6,BC=4,∴BH=2,∴AH=4.∵以AC为直径作⊙P,∴AP=PC,∴PK=2,CK=BC=1,∴BK=3,∴在Rt△PBK中,PB===,∴当0<x<﹣3时,⊙B与⊙P外离,当x=﹣3时,⊙B与⊙P外切,当﹣3<x≤4时,⊙B与⊙P相交;(3)如图2,点E即为BC边的中点H,∴PE=3.设EF与PB交于点G,BG=m,∴在△PBE中,PE2﹣PG2=BE2﹣BG2,∴32﹣(﹣m)2=22﹣m2,∴m=.∵EG2﹣BG2=BE2,∴EG2﹣()2=22,∴EG=,∴EF=.【点评】本题考查了圆的综合知识,题目中还涉及到了勾股定理、两圆的位置关系等知识,知识点较多,难度较大,特别是最后一题中两次运用勾股定理求得EG的长更是解决本题的关键.。
黑龙江省中考数学模拟检测试题含答案一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.(3.00分)下列计算正确的是()A.a2•a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab33.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013 B.8.2×1012 C.8.2×1011 D.8.2×1094.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10° B.15° C.18° D.30°5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数 B.平均数C.中位数D.方差7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼 B.杀鸡取卵C.探囊取物 D.日月经天,江河行地10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个B.3个C.4个D.5个二、填空题(共7小题,每小题3分,满分21分)(写(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.11.出满足条件的一个k的值即可)12.(3.00分)已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为.13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.14.(3.00分)若关于x的方程+=无解,则m的值为.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD= .17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a= ;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.23.(12.00分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD 相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.24.(14.00分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3.00分)下列计算正确的是()A.a2•a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)2=a4,正确;C、a8÷a4=a4,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算、幂的乘方运算,正确掌握运算法则是解题关键.3.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013 B.8.2×1012 C.8.2×1011 D.8.2×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把82万亿用科学记数法表示为8.2×1013.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10° B.15° C.18° D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.【点评】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数 B.平均数C.中位数D.方差【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个米店老板来说,他最关注的是数据的众数.【解答】解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.【点评】考查了众数、平均数、中位数和方差意义,比较简单,属于基础题.7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼 B.杀鸡取卵C.探囊取物 D.日月经天,江河行地【分析】直接利用不可能事件以及必然事件的定义分析得出答案.【解答】解:A、缘木求鱼,是不可能事件,符合题意;B、杀鸡取卵,是必然事件,不合题意;C、探囊取物,是必然事件,不合题意;D、日月经天,江河行地,是必然事件,不合题意;故选:A.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个B.3个C.4个D.5个【分析】①利用抛物线对称轴方程可判定;②与y轴相交设x=0,问题可解;③当抛物线过A(﹣1,2)时,带入可以的到2n=3﹣5m,函数关系式中只含有参数m,由抛物线与x轴有两个公共点,则由一元二次方程根的判别式可求;④求出线段AB端点坐标,画图象研究临界点问题可解;⑤把不等式问题转化为函数图象问题,答案易得.【解答】解:抛物线对称轴为直线x=﹣故①正确;当x=0时,y=2n﹣1故②错误;把A点坐标(﹣1,2)代入抛物线解析式得:2=m+4m+2n﹣1整理得:2n=3﹣5m带入y1=mx2﹣4mx+2n﹣1整理的:y1=mx2﹣4mx+2﹣5m由已知,抛物线与x轴有两个交点则:b2﹣4ac=(﹣4m)2﹣4m(2﹣5m)>0整理得:36m2﹣8m>0m(9m﹣2)>0∵m>09m﹣2>0即m>故③错误;由抛物线的对称性,点B坐标为(5,2)当y2=ax2的图象分别过点A、B时,其与线段分别有且只有一个公共点此时,a的值分别为a=2、a=a的取值范围是≤a<2;故④正确;不等式mx2﹣4mx+2n>0的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1位于直线y=﹣1上方的部分,其此时x的取值范围包含在使y1=mx2﹣4mx+2n﹣1函数值范围之内故⑤正确;故选:B.【点评】本题为二次函数综合性问题,考查了二次函数对称轴、与坐标轴交点、对称性、抛物线与x轴交点个数判定、与抛物线有关的临界点问题以及从函数的观点研究不等式.二、填空题(共7小题,每小题3分,满分21分)11.(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是 1 .(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y 随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.12.(3.00分)已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为20 .【分析】设圆锥的母性长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•20•l=400π,然后解方程即可.【解答】解:设圆锥的母性长为l,根据题意得•2π•20•l=400π解得l=20,即这个圆锥的母线长为20.故答案为20.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.14.(3.00分)若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的 6 倍.【分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD= 17 .【分析】作AH⊥BD于H,CG⊥BD于G,根据正切的定义分别求出AH、BH,根据勾股定理求出HD,得到BD,根据勾股定理计算即可.【解答】解:作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,∴∠ABD=∠CBH,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,故答案为:17.【点评】本题考查的是勾股定理、锐角三角函数的定义,掌握解直角三角形的一般步骤、理解锐角三角函数的定义是解题的关键.17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为32019.【分析】根据题意,分别找到AB、A1B1、A2B2……及 BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:32019【点评】本题是平面直角坐标系规律探究题,考查了含有特殊角的直角三角形各边数量关系,解答时注意数形结合.三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简得出答案;(2)直接提取公因式3(a﹣b),进而分解因式得出答案.【解答】解:(1)原式=4+1﹣2×﹣(π﹣3)=5﹣1﹣π+3=7﹣π;(2)6(a﹣b)2+3(a﹣b)=3(a﹣b)[2(a﹣b)+1]=3(a﹣b)(2a﹣2b+1).【点评】此题主要考查了实数运算以及提取公因式分解因式,正确提取公因式是解题关键.19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).【分析】移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可.【解答】解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.【点评】本题考查了因式分解法解一元二次方程,解题的关键是先移项,然后提取公因式,避免两边同除以x﹣3,这样会漏根.20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90°,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..【点评】本题考查了切线的判定,扇形面积,直角三角形的性质和判定的应用,关键是求出∠ABD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50 人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?【分析】(1)由第二组频数及其频率可得总人数;(2)先由二、三组的频率和求得对应频数和,从而求得第三组频数,再由第三,四,五组的频数比求得后三组的频数,继而根据频数和为总数求得最后一组频数,从而补全统计图;(3)用总人数乘以样本中后三组人数和所占比例即可得;(4)根据概率公式计算即可得.【解答】解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为40 km,大客车途中停留了 5 min,a= 15 ;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待10 分钟,大客车才能到达景点入口.【分析】(1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后,大客车行驶的路程,从而可得结论;(3)先计算直线AF的解析式为:S=t﹣20,计算小轿车驶过景点入口6km时的时间为66分,再计算大客车到达终点的时间:t=+35=70,根据路程与时间的关系可得小轿车行驶6千米的速度与80作比较可得结论.【解答】本题满分10分:解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,。
2021年广东省中考数学仿真模拟试卷(二)一、选择题(共10小题).1.﹣2021的倒数为()A.B.C.﹣2021D.20212.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣83.下列计算正确的是()A.=±3B.=2C.D.=24.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.126.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣27.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7 8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题4分,共28分)11.分解因式:a2b﹣ab=.12.若有意义,那么x满足的条件是.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为.14.计算:(π﹣2020)0﹣()﹣1=.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.19.解不等式组:,并在数轴上表示出不等式组的解集.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2021的倒数为()A.B.C.﹣2021D.2021【分析】直接利用倒数的定义分析得出答案.解:﹣2021的倒数为:﹣.故选:A.2.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000022=2.2×10﹣8.故选:D.3.下列计算正确的是()A.=±3B.=2C.D.=2【分析】根据算术平方根、立方根以及实数的平方的计算方法,逐项判断即可.解:∵=3,∴选项A不符合题意;∵=﹣2,∴选项B不符合题意;∵=5∴选项C不符合题意;∵=2,∴选项D符合题意.故选:D.4.在第四象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的横坐标和纵坐标,然后写出答案即可.解:∵点P在第四象限且到x轴的距离是1,到y轴的距离是4,∴点P的横坐标为4,纵坐标为﹣1,∴点P的坐标是(4,﹣1).故选:B.5.若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6B.8C.10D.12【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷30°,计算即可求解.解:这个正多边形的边数:360°÷30°=12,故选:D.6.如果x=2是关于x的方程2x﹣a=6的解,那么a的值是()A.1B.2C.﹣1D.﹣2【分析】把x=2代入方2x﹣a=6得出4﹣a=6,求出方程的解即可.解:把x=2代入方程2x﹣a=6得:4﹣a=6,解得:a=﹣2,故选:D.7.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式即可.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.8.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.【分析】首先根据菱形的性质知AC垂直平分BD,再由Rt△ABO求出BO,即可求出BD 的长.解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAO=60°,∠ABO=30°,∴AO=AB=1,BO==,∴BD=2.故选:C.9.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°【分析】根据三角形内角和定理求出∠ABC,根据旋转得出∠EDA=∠ABC=120°,根据平行线的性质求出∠DAB即可.解:∵在△ABC中,∠BAC=45°,∠C=15°,∴∠ABC=180°﹣∠BAC﹣∠C═180°﹣45°﹣15°=120°,∵将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE,∴∠ADE=∠ABC=120°,∵DE∥AB,∴∠ADE+∠DAB=180°,∴∠DAB=180°﹣∠ADE=60°∴旋转角α的度数是60°,故选:C.10.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,下列结论:①abc<0;②9a+3b+c<0;③a>;④若方程ax2+bx+c=0两个根x1和x2,则3<|x1﹣x2|<4,其中正确的结论有()A.①②③B.①②④C.①③④D.②③④【分析】①抛物线对称轴在y轴右侧,则ab异号,而c>0,即可求解;②x=3时,y=9a+3b+c<0,即可求解;③由对称轴,和x=1时的函数值的符号即可求解;④根据图象即可求解.解:①抛物线对称轴在y轴右侧,则ab异号,而c>0,则abc<0,故结论正确;②由图象可知x=3时,y=9a+3b+c<0,故结论正确;③∵﹣=2,∴b=﹣4a,∵x=1时,y=a+b+c<0,∴﹣3a+c<0,∴a>,故结论正确;④若方程ax2+bx+c=0两个根x1和x2,由图象可知,0<x1<1,3<x2<4,∴则2<|x1﹣x2|<4,故结论错误;故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a2b﹣ab=ab(a﹣1).【分析】提取公因式ab,即可得出答案.解:原式=ab(a﹣1).故答案为:ab(a﹣1).12.若有意义,那么x满足的条件是x≤1.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.解:要使有意义,则1﹣x≥0,解得,x≤1,故答案为:x≤1.13.已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为6.【分析】先根据中位数的概念列方程求出x的值,再由众数的定义即可得出答案.解:∵数据﹣2,0,4,x,6,8的中位数为5,∴=5,解得x=6,所以这组数据为﹣2,0,4,6,6,8,所以众数为6,故答案为:6.14.计算:(π﹣2020)0﹣()﹣1=﹣1.【分析】首先利用零次幂和负整数指数幂的性质进行计算,再算加减即可.解:原式=1﹣2=﹣1,故答案为:﹣1.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan C =.【分析】如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,根据tan C=,求解即可.解:如图,过点A作AE⊥CB交CB的延长线于E.Rt△AEC中,tan C===,故答案为:.16.如图在以点O为圆心的两个同心圆中,大圆的半径为2,小圆的半径为1,∠AOB=100°.则阴影部分的面积是.【分析】用大扇形的面积减去小扇形的面积得出阴影部分的面积.解:S阴影=﹣=π,故答案为π.17.如图,已知点D、点E分别是边长为2a的等边三角形ABC的边BC、AB的中点,连接AD,点F为AD上的一个动点,连接EF、BF.若AD=b,则△BEF的周长的最小值是a+b.【分析】根据等边三角形的性质AD⊥BC,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,根据等边三角形的性质即可得到结论.解:∵△ABC是等边三角形,点D是边BC的中点,∴AD⊥BC,∴点B,C关于AD对称,连接CE交AD于F,则此时EF+CF的值最小,且最小值CE的长度,∵点E边AB的中点,∴CE⊥AB,∴CE=AD=b,∵BE=AB=a,∴△BEF的周长的最小值是a+b,故答案为:a+b.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.19.解不等式组:,并在数轴上表示出不等式组的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:由①解得x<4,由②解得x≥3,所以不等式组的解集为3≤x<4.解集在数轴上表示如下图:.20.在△ABC中,BD是边BC上的高.(1)尺规作图:作∠C的角平分线,交BD于E.(2)若DE=4,BC=10,求△BCE的面积.【分析】(1)利用基本作图作CE平分∠BCD;(2)作EH⊥BC于H,如图,根据角平分线的性质得EH=ED=4,然后利用三角形面积公式计算即可.解:(1)如图,CE为所作;(2)作EH⊥BC于H,如图,∵CE平分∠BCD,ED⊥CD,EH⊥BC,∴EH=ED=4,∴△BCE的面积=×4×10=20.四、解答题(二)(本大题3小题,每小题8分,共24分)21.为了解全县6000名初中七年级学生对“阳光跑操”活动的喜欢程度,某校学生课外小组随机抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价.(1)小华在本校调查了30名初中七年级学生对“阳光跑操”活动的喜欢程度.他的抽样是否合理?为什么?(2)该校学生课外小组从全县初中七年级学生中随机抽取了200名初中七年级学生,调查他们对“阳光跑操”活动的喜欢程度.如图所示,是该小组采集数据后绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:①图①中“D”所在扇形的圆心角为54°;②在图②中补画条形统计图中不完整的部分;③全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有多少人?解:(1)不合理,理由:因为调查的30名初中七年级学生全部来自同一所学校,样本不具有代表性;样本容量过小,不具有广泛性;(2)①360°×(1﹣20%﹣40%﹣25%)=360°×15%=54°,即图①中“D”所在扇形的圆心角为54°,故答案为:54°;②C等级的学生有200×25%=50(人),补全的条形统计图如右图所示;③6000×(20%+40%)=6000×60%=3600(人),即全县6000名初中七年级学生对“阳光跑操”活动“非常喜欢”和“比较喜欢”的学生共有3600人.22.为提升青少年的身体素质,在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.23.如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.【分析】(1)欲证明BE=BE,只要证明∠4=∠5即可.(2)因为DF=BD﹣BF,只要求出BD,BF即可解决问题.【解答】(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠1+∠3=90°,∵∠ABC=90°∴∠2+∠5=90°,∵CE为∠ACB的角平分线,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴BE=BF.(2)解:在Rt△ABD中,∵∠A=300,AB=6,∴DB=3,在Rt△ACB中,∠A=300,AB=6∴BC=,在Rt△BCE中,∠2=30°,BC=,∴BE=2,∴BF=2,∴DF=BD﹣BF=3﹣2=1.五、解答题(三)(本大题2小题,每小题10分,共20分)24.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,1),与AB边交于点E(2,n).(1)求反比例函数的解析式和n值;(2)当=时,求直线AB的解析式;(3)设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B、C、P为顶点的三角形与△EDB相似?若存在,请直接写出此时点P的坐标;若不存在,请说明理由.解:(1)∵D(4,1)、E(2,n)在反比例函数y=的图象上,∴4=k,2n=k,∴k=4,n=2,∴反比例函数的解析式为y=;(2)如图1,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A==,∵D(4,1),E(2,2),EH=4﹣2=2,∴BH=1.∴B(4,3).设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得,解得:,因此直线AB的函数解析式为:y=x+1;(3)存在,如图2,作EF⊥BC于F,PH⊥BC于H,当△BED∽△BPC时,,∴=,∵BF=1,∴BH=,∴CH=,可得=x+1,x=1,点P的坐标为(1,);如图3,当△BED∽△BCP时,=,∵EF=2,BF=1,由勾股定理,BE=,∴=,∴BP=,∴,BF=1,BH=,∴CH=,可得=x+1,x=,点P的坐标为(,),点P的坐标为(1,);(,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.∴S△BCD=CD•BC=××3=3,即△CDB的面积是3.(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1 (舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3).。
2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。
一.选择题(每题3分,满分18分)
1.|﹣|的值为()
A.B.﹣C.2019D.﹣2019
2.下列运算正确的是()
A.2x2÷x2=2xB.(﹣a2b)3=﹣a6b3
C.3x2+2x2=5x4D.(x﹣3)2=x2﹣9
3.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理的是()
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超过300万人次D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳4.如图,四边形ABCD内接于半径为9的⊙O,∠ABC=110°,则
劣弧AC的长为()
A.7πB.8πC.9πD.10π
5.若点M在抛物线y=(x+3)2﹣4的对称轴上,则点M的坐标可能是()
A.(3,﹣4)B.(﹣3,0)C.(3,0)D.(0,﹣4)
6.观察下列图形:用黑白两种颜色的五边形地砖按如图所示的规律,拼成若干个蝴蝶图案,则第7幅蝴蝶图案中白色地砖有()
A.7块B.22块C.35块D.44块
二.填空题(满分18分,每小题3分)
7.要使分式有意义,x的取值应满足.
8.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为.9.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简a﹣b﹣|a+b|的是.
10.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.
11.若二次函数y=x2﹣4x+c的图象经过点(0,3),则函数y的最小值是.
12.如图,正比例函数y=x的与反比例函数y=的图象交于A(a,﹣2)、B两点.P是第一象限内反比例函数图象上一点,过点P 作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,则点P的坐标为.
三.解答题
13.计算:|﹣3|﹣(﹣π)0+()﹣1+(﹣1)2019﹣.14.如图,已知△ABC中,AB=AC,AD是角平分线,F为BA延长线上的一点,AE平分∠FAC,DE∥BA交AE于E.求证:四边形ADCE是矩形.
15.(6分)解不等式组,并把解集在数轴上表示出来.16.(6分)已知∠α和线段a,如图.用直尺和圆规作一个菱形,使它的一个内角等于∠α,边长为a.
17.(6分)一个不透明的纸箱里有分别标有汉字“热”“爱”“祖”
“国”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先摇匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“国”字的概率;
(2)小红从中任取球,不放回,再从中任取一球,请用树状图或列表法,求小红取出的两个球上的汉字恰好能组成“爱国”或“祖国”的概率.
18.(6分)如图,一次函数y=x+4的图象与反比例函数y=(k 为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求a,k的值及点B的坐标;
(2)若点P在x轴上,且S△ACP=S△BOC,直接写出点P的坐标.
四.解答题
19.(8分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
(Ⅰ)收集、整理数据
请将表格补充完整:
年份2014 2015 2016 2017 2018 动车组发送旅客量a
亿人次
0.87 1.14 1.46 1.80 2.17
铁路发送旅客总量b
亿人次
2.52 2.76
3.07 3.42 3.82
动车组发送旅客量占比×100% 34.5% 41.3%
47.6% 52.6%
(Ⅱ)描述数据
为了更直观地显示动车组发送旅客量占比的变化趋势,需要用(填“折线图”或“扇形图”)进行描述;
(Ⅲ)分析数据、做出推测
预估2019年春运期间动车组发送旅客量占比约为,你的预估理由是.
20.(8分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)。