光纤激光器与不同激光器的比较
- 格式:pdf
- 大小:216.14 KB
- 文档页数:1
光纤激光器与YAG激光器在切割领域中对比分析内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.光纤通常是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全内反射机理。
普通裸光纤一般由中心高折射率……一、光纤激光器1.原理:光纤通常是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全内反射机理。
普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9-62.5um)、中间为低折射率硅玻璃包层(芯径一般为125um)和最外部的加强树脂涂层组成(见图一)。
光纤可分为单模光纤和多模光纤。
单模光纤:中心玻璃芯较细(直径9um+0.5um),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。
多模光纤:中心玻璃芯较粗(50um+1um),可传多种模式的光,但其模间色散较大,传输的光不纯。
2.优点:光纤激光器具有体积小、能耗低、寿命长、稳定性高、免维护、多波段、绿色环保等特征,它以优越的光束质量、稳定的性能、超高的光电转换效率,赢得了众多激光业内人士的肯定。
光纤激光器以其超高的可靠性,卓越的光束质量,低廉的运行成本,为激光加工行业建立了新的标准。
它增益介质长、耦合效率高、散热好、结构简单紧凑、使用灵活方便、输出激光光束质量好且输出波长范围宽(400~3400nm)。
1、高功率高功率光纤激光器都是双包层光纤,泵浦光打到外包层上,能量被吸收,再部分转换为激光,因此包层的材料和结构对光纤激光器的影响很大,目前各国已研制出各种形状的光纤,有圆形的、D形的、矩形的、非稳腔形、梅花形、正方形、平面螺纹形等。
2、无需热电冷却器这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。
一、光纤飞秒激光器是什么飞秒是一种时间单位,1飞秒只有1秒的一千万亿分之一,即1e−15秒或0.001皮秒(1皮秒是,1e−12秒)。
光纤飞秒激光器是新一代的飞秒激光器,具有小型化、便携化、风冷却、低成本和稳定性高等优势。
光纤飞秒激光器是光纤频率梳的核心种子光源,光纤频率梳已成为很多高端研究的基础科学仪器,例如光钟的频率测量、引力波的测量、高精度绝对距离测量,导航定位以及时间频率标准传递等。
二、光纤飞秒激光器的应用以光纤飞秒激光频率梳为核心的精密光谱源标准装置的建立,不仅为我国国防、军事等领域广泛应用的红外激光源提供精密的校准测试服务,而且为将来便携式激光跟踪仪、小型化激光雷达等高新武器提供更精密的激光源。
此外,光纤激光频率梳的研究还可改进现有的全球定位系统、提高全球定位系统的精度,同时为战略武器导航、全球通信、航空航天、探矿、救援等涉及国防安全的领域提供精确地的定位,使我国在该领域的工作彻底摆脱对国外的封锁和限制,它的建立还可以将长度、时间和频率等物理量统一到极高精度的标准,最终促成新一代全球定位系统的产生。
三、飞秒激光器和光纤激光器的区别飞秒光纤激光器是主体以光纤为基础,包括光纤做成的增益介质,光纤做成的锁模谐振器等等,制造的飞秒脉冲激光器。
飞秒激光器指的是所有能够产生飞秒脉冲激光的激光器,包括飞秒光纤激光器,飞秒半导体激光器,飞秒调Q激光器,等等。
飞秒激光器和光纤激光器的区别有以下几点:1、波长不同,飞秒激光器是800nm,光纤激光器一般是1064nm2、脉宽不同,飞秒激光器脉宽单位是fs,光纤激光器脉宽单位是ns3、功率不同,飞秒激光器功率一般在5W以下,光纤激光器一般在10W以上4、峰值功率不同,飞秒激光器峰值功率远远高于光纤激光器的峰值功率。
光纤激光器与不同激光器的优劣比较光纤激光器与不同激光器的比较光纤机和YAG固体激光机及其它激光器工作原理区别YAG激光熟称红宝石固体激光,光纤则是另外一种高端产品。
不管是YAG激光还是光纤激光焊接原理都一样,主要是发生器不一样。
光纤激光器是把泵浦物质掺入到光纤中,由半导体激光器发出的特定的波长的激光耦合后。
使光纤产生激光,光纤激光的优点是模式好,利于焊接。
光电转换率高可以达到二氧化碳激光(CO2)的两倍。
而且在焊接的时候有优势,因为光纤激光器发出的光是1070纳米的波长所以吸收率更高。
其半导体泵浦光纤激光器和光纤传导直接半导体管激光器系列,包括1Kw以上的单模激光器、高达50 kW的多模激光器、25 kW 调Q脉冲激光器以及高达10 kW的直接半导体激光器。
所有光纤激光器都具有性能可靠、结构紧凑、半导体泵浦源寿命长、免维护、电光转换效率最高、以及在全功率范围内,光束发散角和光束质量完全保持一致等特点。
光纤激光机可用于微电子、印刷、汽车、医疗设备、造船、航空等诸多行业,可加工材料涵盖从心脏支架和计算机存储芯片的微机械加工,直到厚管壁的深熔焊。
使用操作灵活,是光纤激光器最具革命性的特点之一,能够轻松地集成于多轴机器人和振镜系统内。
其结构紧凑,整体大小要比传统的CO2或YAG激光系统小一个数量级,因而移动非常灵活,半导体泵浦源的使用寿命估计超过10万个小时,根本无需更换半导体光源。
一.电光转换率方面:1)光纤激光器达到30%, 2)YAG固体激光器仅3%, 3)CO2激光器有10%, 4)碟片激光器达到15%。
二.最大输出功率方面:1).光纤激光器达到50kw, 2)YAG固体激光器为6kw, 3)CO2激光器达到20kw, 4)碟片激光器达到8kw。
三, BPP(4/5Kw)方面:Beam Parameter Product (光束参数乘积远场发散角半角×近场光束半径)1)光纤激光器小于2.5,2)YAG固体激光器为25左右, 3)CO2激光器达到6, 4)碟片激光器为8左右。
CO2激光器与光纤激光器的比较2009年, 大功率光纤激光器开始逐渐引入中国, 从此激光切割行业的用户又多了一个选择。
以下我们就CO2激光器和光纤激光器做一个比较:激光器类型二氧化碳激光器激光器光纤激光器工作方式CO2激光器是通过高压对经过激光器光腔里的一定比例的CO2,HE和N2的混合气体放电,混合气体中的原子受激释放能量,能量以光子或电子的形式输出形成激光。
光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,在泵浦光的作用下,光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
波长10.6UM, 为可见光, 长期直视会造成视网膜和皮肤较轻微受损, 建议操作人员使用时佩带防护眼镜1.06UM, 为不可见光, 直视会造成视网膜和皮肤较严重受损, 要求设备运行时,设备处于全封闭状态, 操作人员必须佩带特殊的防护眼镜光电转换效率8%-10%20%-30%激光器产生激光的气体消耗德国ROFIN板条CO2激光器约2万元-3万元人民币一年;其它轴快流式CO2激光器约5万元-10万元人民币一年。
没有气体消耗。
激光器内光路及机床外光路镜片消耗结构较复杂, 光学镜片消耗更大外光路通过一根光纤传导, 结构较简单,光学镜片消耗更少激光器电功率消耗33KW-62KW/小时(激光器类型不同,功率不同,耗电量不同)7kw/小时(以2000W光纤激光器为例),年使用省电费约10万元装机功率至少100KVA 50KVA即可对环境的要求对外部环境有要求, 尽量少尘, 设备要跟附近的震源隔开, 保证激光器干燥和恒温因光路简单,对外部环境的要求不高,对灰尘、震荡、冲击、湿度、温度具有较高的容忍度。
维护成本及维护方便性ROFIN激光器已上市十余年, 为成熟免维护产品, 定期由专业人士做维护即可, 维护费用比较低, 激光器内部部件更换频率也很低产品上市时间比较短, 专业的维修维护人员比较少, 平时使用成本很低, 若需更换光纤或更换功率模块, 则售后费用较高可切割材料种类主要用于切割碳钢、不锈钢和铝合金板等。
一、半导体激光器工作原理半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。
半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:1、要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;2、有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;3、要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。
二、半导体激光器和光纤激光器一样吗半导体激光器和光纤激光器是不一样的。
1、介质材料不同光纤激光器和半导体激光器的区别就是他们发射激光的介质材料不同。
光纤激光器使用的增益介质是光纤,半导体激光器使用的增益介质是半导体材料,一般是砷化镓,铟镓申等。
2、发光机理不同半导体激光器的发光机理是粒子在导带和价带之间跃迁产生光子,因为是半导体,所以使用电激励即可,是直接的电光转换。
而光纤不能够直接实现电光转换,需要用光来泵浦增益介质(一般用激光二极管泵浦),它实现的是光光转换。
3、散热性能不同光纤激光器散热好,一般风冷即可。
半导体激光器受温度影响非常大,当功率较大时,需要水冷。
4、主要特性不同光纤激光器的主要特性是器件体积小,灵活。
激光输出谱线多,单色性好,调谐范围宽。
并且其性能与光偏振方向无关,器件与光纤的耦合损耗小。
转换效率高,激光阈值低。
光纤的几何形状具有很低的体积和表面积,再加上在单模状态下激光与泵浦可充分耦合。
半导体激光器易与其他半导体器件集成。
具有的特性是可直接电调制;易于与各种光电子器件实现光电子集成;体积小,重量轻;驱动功率和电流较低;效率高、工作寿命长;与半导体制造技术兼容;可大批量生产。
5、应用不同光纤激光器主要应用于激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。
光纤打标机和半导体及灯泵浦激光打标机三者主要性能比较武汉百一机电工程有限公司光纤激光打标机与灯泵浦激光器性能对比光纤激光打标机设备型号及性能“武汉百一”的BY-YLP光纤激光打标机在激光打标应用方面具有许多独特的优势。
与传统的固体激光器使用晶体棒作为激光介质不同,光纤激光器的激光介质是很长的掺镱双包层光纤,并被高功率多模激光二极管所泵浦。
BY-YLP系列光纤激光打标机使用特点1、光束质量极好,适用于精密、精细打标BY-YLP系列光纤激光打标机光束质量比传统的灯泵浦固体激光打标机好得多,为基模(TEM00)输出,发散角是灯泵浦激光器的1/4。
尤其适用于要求高的精密、精细打标。
2、体积小巧、搬运方便、实现便携化BY-YLP采用光纤传输,由于光纤具有极好的柔绕性,激光器设计得相当小巧灵活、结构紧凑、体积小。
其重量和占地面积分别是灯泵浦泵浦激光打标机的1/10和1/4,节省空间,便于搬运。
且采用光纤传输决定了其能适应加工地点经常变换的要求,实现产品的便携化。
3、激光输出功率稳定、设备可靠性高能量波动低于2%,确保激光打标质量的稳定;平均无故障使用时间可达10万小时以上,灯泵浦激光打标机的氪灯的使用寿命在800小时左右。
4、效率高、能耗低、节省使用成本电光转换效率为30%(灯泵浦激光打标机为3%),设备功率仅500-1000W,日均耗电10度,是灯泵浦激光打标机的1/10左右,长期使用可为用户节省大量的能耗支出。
5、自主知识产权的操作软件,操作简便、功能强大可以标刻矢量式图形、文字、条形码、二维码等,可升级实现在线打标,自动打标日期、班次、批号、序列号,支持PLT、PCX、DXF、BMP等文件格式,直接使用SHX、TTF字库。
激光打标机系统组成BY-YLP型光纤激光打标机主要由四部分组成,即:进口光纤激光器、光路及振镜扫描系统、计算机控制系统及工作台。
1、光纤激光器光纤激光器一体化整体结构,无光学污染、无功率的耦合损失,结构小巧紧凑,空气冷却,具有其他激光器不具备的高效率和可靠性。
光纤激光器的特点与应用特点:1.高效率:光纤激光器的光电转换效率高,能将大部分的电能转化为光能,较低的功率损耗使其能够工作在较长时间内。
2.高光束质量:光纤激光器通过光纤内部的多次全反射使光线能够沿着光纤轴向传输,从而减少光线的发散。
这使得光纤激光器的光束聚焦度高、光斑质量好,适合用于高精度加工。
3.线性调制:光纤激光器的输出功率与泵浦光功率之间呈线性关系,能够实现根据需要进行连续、快速的功率调节,满足不同加工需求。
4.体积小、重量轻:光纤激光器相比于其他类型的激光器体积小巧、重量轻,便于安装、移动和集成于机械设备中。
5.寿命长:光纤激光器的泵浦光源通常采用半导体激光器,其寿命长达几万小时,因此光纤激光器的工作寿命相对较长。
应用:1.材料加工:光纤激光器在材料加工方面有广泛的应用,如激光焊接、激光切割、激光打标等。
其高光束质量和线性调制特性使其能够实现高精度的加工,应用于金属、塑料、陶瓷等材料的加工。
2.通信:光纤激光器被广泛应用于光纤通信系统中。
其稳定的输出功率、较低的电-光转换损耗和容易调制等特点使其成为高速通信的重要光源。
光纤激光器还可以实现WDM(波分复用)技术,将多路的信号通过一个光纤传输,提高通信带宽。
3.医疗:光纤激光器在医疗领域有广泛的应用,如激光手术、激光治疗等。
其高光束质量和可调节的输出功率使其能够实现精细的目标组织切割和病变区域消融,且对周围组织损伤小。
4.科学研究:光纤激光器的高功率、短脉冲宽度和高重复频率使其成为研究领域的重要工具。
在激光光谱学、激光脉冲探测、精密光谱分析、激光等离子体物理等领域都有重要应用。
5.展示与投影:光纤激光器的高亮度和调制灵活性使其在展示和投影领域有广泛应用。
激光投影仪通过光纤激光器的光线聚束和调制,能够实现高亮度、真彩色和高分辨率的投影效果。
总结起来,光纤激光器具有高效率、高光束质量、线性调制、体积小、重量轻和寿命长等特点。
在材料加工、通信、医疗、科学研究和展示等领域都有广泛的应用。
光纤激光器是激光切割机中的核心部件,对激光切割机的切割效果有很大的影响。
在选择激光切割机时,需要考虑光纤激光器的模块集成方式是怎样的?光纤激光器的模块组成分为单模和多模两种,在切割应用中,聚焦光斑对切割出的质量有很大影响,单模激光器的纤芯比较细,光束质量优于多模,能量分布呈高斯分布,中间能量密度最高,三维图是一个尖圆的山峰状。
多模激光器的纤芯相比粗一些,光束质量相比单模要差一些,能量分布相比单模光斑平均一些,三维图像一个倒扣的杯子,从边缘陡峭程度来看,多模的比单模的陡峭很多。
同功率的1.5KW单模和1.5KW的多模激光器对比1mm薄板切割速度单模比多模高20%,视觉效果差不多,但从2mm开始,速度优势逐步下降,从3mm开始,无论是速度还是效果,高功率多模激光器速度和效果的优势就非常明显的体现出来,如下图:所以单模的优势在薄板,多模的优势在厚板,单模和多模并没有相互比较的价值,都是光纤激光器的一项配置,就好比一辆车,轿车适合公路,越野适合山地,但是轿车也能跑山地,越野也能跑公路,所以光纤激光器到底选多模还是单模要看实际终端客户的加工需求。
单模和多模,该如何选择呢?从功率级区分来看,1000W以内的激光器因为本身能量不高的原因,主要加工材料厚度偏向于薄板,因此1KW以内的激光器用单模配置比较符合市场实际情况,1KW以上功率的激光器要薄厚兼顾。
从整个加工行业来讲,加工质量的提升是一项刚性需求,是不能妥协的,因此很多高功率激光器选型不会考虑单模,必须保证加工质量为第一位!同时,单模的纤芯一般较细,意味着同样功率的激光在其中传输,单模纤芯的光能量承载更大,对材料是一项考验。
同时当切割高反材料时,高强度反射光和射出的激光叠加,如果光纤材料容忍度不足会非常容易“烧纤芯”,同时对纤芯材料寿命也是一项挑战!因此很多激光器厂商在高功率光纤激光器的配置上仍选用多模的配置!。
光纤激光和CO2激光那种好,有什么不同特点?激光设备以期的优异性能,越来越多的应用于各个行业,激光器有很多种类,产生的激光也是不同的,每种激光都有自己的特点,适用的行业也是不同的,我们现在应用于雕刻、切割行业的激光器,主要是光纤激光器和CO2激光器这两种,那么,光纤激光和CO2激光那种好哪,都有什么不同?首先,两种激光器的激发介质不同,产生的激光特性是不同的,光纤激光的波长是1.06μm,CO2激光的波长是10.8μm,都属于红外光,聚集后都能产生高热,融化或者气化材料,但是不同的材料对他们的吸收性能不同;非金属材料对光纤激光的吸收率很低,所以光纤激光不适用切割非金属材料;CO2激光非金属和金属都可以吸收,都能切割,但是对高反光材料就不行了,铜、铝类材料不适用。
光纤激光的电-光转换率一般是30%,CO2激光的电-光转换率是10%,一样的激光功率,光纤激光器能耗低;光纤激光因为波长小,聚集的光斑很小,可以达到0.01mm,在切割薄板时割缝小,速度快,是CO2激光的2-3倍,割缝最小0.1mm,最小割圆能0.45mm,所以光纤激光特别适合金属薄板切割。
CO2激光现在主要是用于非金属材料的雕刻切割了。
光纤激光是通过光纤传输的,可以弯曲,设备安装简便,适应多种工况;CO2激光是直线传输不能弯曲,通过反射镜折射,对设备的安装技术要求高。
光纤激光器是免维护的,寿命期内没有维护和配件费用;CO2激光器,需要定期清理激光管壁和反射镜的杂质,技术要求也高,使用中维护费用高。
以上的这些性能差异,所以在金属板材切割行业,大家普遍采用了光纤激光器;但是在非金属材料的加工时,还是需要CO2激光器。
CO2激光也有他的突出特点,那就是切割面光洁度好,垂直度高,在精密加工和高级工艺品加工时,还是会选用CO2激光器,正所谓:尺有所短,寸有所长,采用哪种激光器,就要看是加工什么材料,要达到什么加工效果了。
以上是我公司的技术人员在工作中的一些经验总结,希望对您有帮助,不足之处请各位大神们批评指正。
CO2激光和光纤激光的对比大家平时都是在使用激光切割机,激光刀模机,激光雕刻机。
大家知道对激光设备最重要的是什么吗?激光器。
那么今天畅新激光就和大家来讲讲CO2激光器和光纤激光器。
目前CO2激光器是主流激光加工的激光器,再就是灯泵固体激光器,其次是用于中小功率的光纤激光器。
数据表明,光纤激光器,灯泵固体激光器和DPL激光器在加工领域的销售量上比率是4:3.1:2.9;但是大功率CO2激光,灯泵,光纤,DPL的平均销售价格分别是15万美元,6.5万,2.9万,2.2万。
目前光纤激光器没有达到“十分明显的转换效率高、光束质量非常好的优势”据广州工研院的人说,他们使用的SPI200瓦的光纤激光器,切割1毫米厚的钢板速度不快,1.5毫米切不动,而据重庆一台进口的五百瓦灯泵激光器在300——400瓦功率下,可以切割3毫米钢板;据2006年LFW一篇通讯报道,1000瓦的光纤激光器切割0.5毫米钢板速度大大超过CO2,而切割3毫米时就远不如CO2了。
这一现象恰恰说明一个光纤激光器不为大功率加工市场接受的事实和依据!大家好好好想想。
光纤激光器“十分明显的柔性加工等优势”?如果光纤激光用于柔性加工,是直接将双包层光纤用于传输,还是将双包层输出的光再耦合入单模光纤?那么光纤激光器有哪些优点和限制呢?光纤激光的结构使自己具有了在高功率下,具有高光束质量,也有可能实现高效率!这是它的优点!但是,不说明目前的IPG和其他公司的光线激光器就具有了这些优点,市场已经说明他们不具备这些优点。
光纤激光不是IPG说的那样具有单模1000瓦甚至几千瓦;也不像西西光所报道的千瓦光纤激光器的突破(他们目前LD直接耦合进光纤,仅400微米,NA0.38,这个千瓦如何实现?),北京光电所报道的全光纤激光器那样,也不是清华大学说的光纤激光能够相干合束,这四个件事,不用高深理论,就可以破解!内容很枯燥,大家只了解一下就可以了!畅新激光就在你身边。
FBGDFBFP三类激光器的比较分析FBG(Fiber Bragg Grating)激光器、DFB(Distributed Feedback)激光器和FP(Fabry-Perot)激光器是三种常见的光纤激光器。
它们在结构、工作原理、性能等方面有很大的差异。
下面,我将对它们进行比较分析。
首先,从结构上看,FBG激光器和DFB激光器都采用了光纤光栅,而FP激光器则是基于Fabry-Perot腔。
光纤光栅可以通过改变光纤的折射率分布来实现波长选择性反射,而FP激光器中的Fabry-Perot腔则是由两面反射镜构成的。
其次,从工作原理上看,FBG激光器和DFB激光器都是基于布拉格散射原理工作的,利用光栅的回波特性产生激光输出。
而FP激光器则是基于共振腔效应工作的,激光通过腔内的反射镜来得到增强。
再次,从性能上看,FBG激光器和DFB激光器具有较窄的光谱宽度和较高的光谱纯度,可以实现单纵模输出。
它们还具有较好的频率稳定性和较低的噪声水平,适用于需要精确频率输出的应用场景。
而FP激光器的光谱宽度较宽,有时候会出现多模输出,频率稳定性和噪声水平相对较差。
此外,FBG激光器和DFB激光器可以通过改变光栅的周期和折射率分布来实现波长调谐。
而FP激光器则需要调整腔内反射镜之间的距离来实现波长调谐。
最后,从应用领域上看,由于FBG激光器和DFB激光器具有较好的频率稳定性和光谱纯度,它们适用于光纤通信、光纤传感和光谱分析等领域。
而FP激光器则适用于光纤传感、光纤传输和光纤惯性导航等应用。
综上所述,FBG激光器、DFB激光器和FP激光器在结构、工作原理、性能和应用领域上存在差异。
选择合适的激光器要根据具体需求和应用场景来进行综合考虑。
光纤激光器与光纤激光器技术光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。
光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势;(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故;(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低;(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多;(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。
(6)由于光纤激光器的諧振腔内无光学鏡片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。
(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。
(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。
(9)不需热电制冷和水冷,只需简单的风冷。
(10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。
(11)高功率,目前商用化的光纤激光器是六千瓦。
高功率的光纤激光器及其包层泵浦技术双包层光纤的出现无疑是光纤领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。
自1988年E Snitzer首次描述包层泵浦光纤激光器以来,包层泵浦技术已被广泛地应用到光纤激光器和光纤放大器等领域,成为制作高功率光纤激光器首选途径。
固体激光器与光纤激光器对光子晶体光纤棒耦合的分析与对比固体激光器是将激活剂(如掺铥、掺铬等)溶解在固体晶体或者玻璃介质中,通过光泵浦激发激活剂,在适当的光学腔中产生光放大和光放射过程,从而实现激光输出。
固体激光器具有高功率、高效率、长寿命等优点,在科研、医学、工业等领域得到广泛应用。
但固体激光器也存在一些问题,比如体积相对较大,散热和光学外腔调谐比较困难等。
光纤激光器利用光纤作为激光介质,光在光纤中传输时受到全反射的作用,通过在光纤内部引入增益介质并进行泵浦,形成激光。
光纤激光器相对于固体激光器有更小的体积、更好的光束质量、更高的光纤利用率等优点。
光纤激光器在通信、激光切割、激光打标等领域有着广泛的应用。
但是光纤激光器的波长范围受限,无法实现较宽的波长覆盖。
在光子晶体光纤棒耦合方面,固体激光器和光纤激光器有各自的优势和适用范围。
固体激光器的输出光束质量较好,能够较好地耦合到光子晶体光纤棒中,光斑和尾迹的均匀性较高。
固体激光器对光纤棒的耦合效果稳定,不易受到外界环境的干扰,适用于对光子晶体光纤棒稳定高质量激光输出的应用,如科研实验。
然而,固体激光器的体积较大,需要较大的空间安装,不便于小型化和移动应用。
光纤激光器的体积小,便于安装和移动,适用于需要小型化装置和移动性的场合。
光纤激光器可通过光纤的柔性和方便性,实现对光子晶体光纤棒的柔性耦合,方便光纤的布置和调整。
此外,光纤激光器的光纤输送特性使得激光经过光纤进入光子晶体光纤棒时,较好地匹配了两个介质之间的折射率,减小了光的发生反射和散射的可能性,有助于提高光的耦合效率。
然而,光纤激光器在高功率输出方面存在一定的挑战,光纤中可能发生光纤本身的损耗和非线性效应,限制了其在高功率应用中的使用。
综上所述,固体激光器和光纤激光器在光子晶体光纤棒耦合方面各有优势和适用范围。
固体激光器适用于对激光输出质量要求较高且空间布局相对固定的场合;光纤激光器适用于小型化装置和移动性要求较高的场合。
光纤激光器与CO2 激光器使用比较一、光纤激光器和CO2 激光器在使用过程中稳定性的比较在激光焊接设备日常使用过程中,由于光纤激光器靠整根光纤来传导激光,而CO2 激光器需要靠外光路系统来传导激光,因此,在每次设备开始使用前,CO2激光器都要进行光路调整,而光纤激光器不需要调整。
与光纤激光器的光纤相比,CO2激光器的外光路系统在使用过程中较容易受到外界振动和冲击的影响。
因此,与光纤激光器的光纤相比,CO2激光器的外光路系统在使用过程中的稳定性较差。
二、相同功率的光纤激光器和CO2激光器的能耗比较图 1 所示为4000W 的光纤激光器、CO2 激光器、DISC 激光器、YAG 激光器每小时运行成本的比较。
比较内容为激光切割(或焊接)时所用的气体和激光气体、厂房成本、维护和保养、电能消耗、零部件更换、激光器成本等在8年的使用成本平均到每小时的成本消耗。
由图1 易知,在输出4000W 的激光时,光纤激光器的一小时的总体消耗为12.5 美元,而CO2 激光器的一小时的总体消耗为25 美元,约为光纤激光器消耗的两倍。
图1 功率4000W 不同类型激光器耗能比较图2 不同材料对不同波长吸收率的比较三、材料对不同波长激光吸收率的比较图 2 所示为塑料、金属、陶瓷和玻璃对不同波长激光的吸收率的比较。
由于光纤激光器产生的激光波长为1.06µm,而CO2 激光器产生的激光波长为10.6µm。
由图2易知,金属对光纤激光器产生的激光的吸收率要远远优于对CO2 激光器产生的激光的吸收率。
除了材料对光纤激光器产生的激光的吸收率更高外,而且光纤激光器产生的激光的光束质量要优于CO2 激光器产生的激光。
2 000W 的光纤激光器产生的激光的光束质量为:2mm·mrad,2000W的CO2激光器产生的激光的光束质量为3.5mm·mrad,4000的CO2激光器产生的激光的光束质量为4.5mm·mrad。
光纤激光器的优势1.高效能量传输:光纤激光器可将激光能量高效地传输到目标位置。
光纤作为传输媒介,具有低损耗、高承载能力的特点,能够将激光能量稳定可靠地传输到需要加工的地方。
传输效率高,避免了能量损失,提高了加工效率。
2.高质量激光束:光纤激光器发出的激光束质量高,光斑质量好,光束直径小,并且光斑能量分布均匀。
这使得光纤激光器适用于对高精度、高质量加工要求的应用,如激光雕刻、激光切割等。
3.小体积、轻便:光纤激光器采用光纤作为激光介质,与传统的准分子激光器相比,体积小、重量轻。
这使得光纤激光器易于携带和移动,可以满足一些特定场合下对设备便携性的要求。
4.高稳定性:光纤激光器具有较高的稳定性,能够在长时间运行过程中保持稳定的输出性能。
光纤激光器采用了光纤稳定器和温度控制技术,可以减少输出能量的波动,提升激光器的使用寿命。
5.高可靠性:光纤激光器的光学器件(光纤、二极管等)不易受到污染和机械冲击的影响,因此光纤激光器具有较高的可靠性。
由于光纤激光器没有使用任何易损坏的材料,因此能够在恶劣的环境下工作,并能够经受得住工程应用和工业环境的考验。
6.高灵活性:光纤激光器能够根据需要进行灵活控制,可以改变激光器的输出功率和脉冲频率,实现对加工效果的调节。
可以根据材料的不同特性和不同的加工要求,将激光器调整到最佳工作状态,以提高加工质量。
7.低维护成本:光纤激光器由于采用了先进的光学技术和稳定性较强的光纤传输,减少了维护的需要。
相比传统的准分子激光器,光纤激光器的器件寿命更长,无需频繁更换损坏的光学元件,减少了维护成本。
总之,光纤激光器由于其高效的能量传输、高质量的激光束、小体积轻便、高稳定性、高可靠性、高灵活性和低维护成本等优点,已经在多个领域得到广泛应用,如激光切割、激光打标、激光焊接、医疗美容等。
随着光纤激光器技术的不断发展,其优势将进一步得到提升,应用领域也将不断拓宽。
光纤激光器与不同激光器的比较
电光转换率方面:
光纤激光器达到30%,YAG固体激光器仅3%,CO2激光器有10%,碟片激光器达到15%;
最大输出功率方面:
光纤激光器达到50kw,YAG固体激光器为6kw,CO2激光器达到20kw,碟片激光器达到8kw;
BPP(4/5Kw)方面:Beam Parameter Product (光束参数乘积:远场发散角半角×近场光束半径) 光纤激光器小于2.5,YAG固体激光器为25左右,CO2激光器达到6,碟片激光器为8左右;
半导体泵浦寿命方面:
光纤激光器可连续工作10万小时以上,YAG固体激光器可工作1000小时左右,CO2激光器预计在5万小时左右,碟片激光器寿命大约为1万小时左右;
维护和操作费用/小时(4/5Kw)方面:
光纤激光器每小时¥2,YAG固体激光器每小时¥35,CO2激光器每小时¥20,碟片激光器每小时¥8;
占地面积(4/5Kw)方面:
光纤激光器小于1平方米,YAG固体激光器约6平方米,CO2约占地3平方米,碟片激光器大于4平方米;
维护方面:
光纤激光器无需维护,YAG固体激光器与碟片激光器需经常维护,CO2激光器需维护;
柔性加工方面:
光纤激光器非常适宜,YAG固体激光器与碟片激光器一般,CO2激光器不适宜柔性加工;
稳定性方面:
光纤激光器稳定性最佳,CO2激光器与碟片激光器稳定性还好,YAG固体激光器稳定性最差;吸收率%--钢:
光纤激光器、YAG固体激光器、碟片激光器均为35左右,CO2激光器为12左右;
吸收率%--铝:
光纤激光器、YAG固体激光器、碟片激光器均为7左右,CO2激光器为2左右;
需更换的部件:
光纤激光器有高亮度宽带单芯结半导体激光器,超过20万小时的泵浦时间。
其中一个半导体损坏后,更换仅须300-500美元,因为每个半导体泵浦源彼此独立;YAG固体激光器主要是灯泵浦;CO2激光器主要是工作气体的补充;碟片激光器主要是泵浦源需要经常更换,每次更换需要20万-23万美圆之间。