锂电池电压测量共43页
- 格式:ppt
- 大小:2.19 MB
- 文档页数:43
干货丨锂电池充放电测试方法详解锂离子电池的循环寿命是其重要的性能指标,无论正极材料还是负极材料的研究,都需在实验室中对应用材料组装的电池循环性能测试,本文对实验仪器及方法都进行了详解。
扣式电池充放电模式包括恒流充电、恒压充电、恒流放电、恒阻放电、混合式充放电以及阶跃式等不同模式充放电。
实验室中常采用恒流充电(CC)、恒流-恒压充电(CC-CV)、恒压充电(CV)、恒流放电(DC)对电池充放电行为进行测试分析,而阶跃式充放电模式则多用于直流内阻、极化和扩散阻抗性能的测试。
考虑到活性材料的含量以及极片尺寸对测试电流的影响,恒流充电中常以电流密度形式出现,如mA/g(单位活性物质质量的电流)、mA/cm2(单位极片面积的电流)。
充放电电流的大小常采用充放电倍率来表示,即:充放电倍率(C)=充放电电流(mA)/额定容量(mA˙h),如额定容量为1000 mA˙h的电池以500 mA的电流充放电,则充放电倍率为0.5 C。
目前电动汽车用锂离子电池已发布使用的行业标准QCT/743—2006中指出锂离子通用的充放电电流为C/3,因此含C/3 的充放电行为测试也常出现在实验室锂离子电池充放电测试中。
倍率性能测试有3 种形式,包括采用相同倍率恒流恒压充电,并以不同倍率恒流放电测试,表征和评估锂离子电池在不同放电倍率时的性能;或者采用相同的倍率进行恒流放电,并以不同倍率恒流充电测试,表征电池在不同倍率下的充电性能;以及充放电采用相同倍率进行充放电测试。
常采用的充放电倍率有0.02 C,0.05 C,0.1 C,C/3,0.5 C,1 C,2 C,3 C,5 C 和10 C 等。
对电池的循环性能进行测试时,主要需确定电池的充放电模式,周期性循环至电池容量下降到某一规定值时(通常为额定容量的80%),电池所经历的充放电次数,或者对比循环相同周次后电池剩余容量,以此表征测试电池循环性能。
此外,电池的测试环境对其充放电性能有一定的影响。
锂电池检测方法
首先,我们需要了解锂电池的基本结构和工作原理。
锂电池由正极、负极、隔
膜和电解质组成,其中正极和负极之间通过电解质和隔膜相隔开来。
在充放电过程中,锂离子在正负极之间来回迁移,完成电能的存储和释放。
了解锂电池的基本结构和工作原理,有助于我们更好地理解其检测方法。
其次,常用的锂电池检测方法包括外观检查、电压测试、内阻测试、循环寿命
测试等。
外观检查主要是通过目测和显微镜观察锂电池外壳是否有变形、渗漏、破损等情况,以及端子是否存在腐蚀、氧化等现象。
电压测试是通过测量锂电池的开路电压和闭路电压来判断其电荷状态和健康状况。
内阻测试则是通过测量锂电池的内部电阻来评估其性能和安全性能。
循环寿命测试是通过模拟锂电池的充放电循环过程,来评估其使用寿命和稳定性能。
除了以上常用的检测方法外,还有一些先进的锂电池检测技术,如红外热成像、X射线探测、核磁共振等。
这些技术能够更准确地检测锂电池的内部结构和性能,帮助我们更全面地评估锂电池的安全性能。
需要注意的是,锂电池检测需要专业的设备和技术支持,因此建议在专业人员
的指导下进行。
另外,锂电池检测过程中需要注意安全防护措施,避免发生意外事故。
综上所述,锂电池的安全性能对于我们的生活和工作具有重要意义,因此我们
需要掌握一些常用的锂电池检测方法,以确保其安全可靠地使用。
希望本文能够帮助您更好地了解和掌握锂电池的检测技术,确保锂电池的安全使用。
实用标准文案锂电池性能测试方法消费者在使用时往往不清楚电池锂电池是一个要求高品质、高安全的产品、有时甚至盲目使用的性能,导致在使用时电池的工作效率往往达不到理想目标,因此了解电池的性能也还会引起电池爆炸事件的发生,人生安全也会受到损伤,是至关重要的。
锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等工具/原料测试仪硬质棒钉子步骤方法/方法一、自放电测试一般镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,放电至,将电池以0.2C24采用小时自放电来快速测试其荷电保持能力C1,测其放电容量放电至以分钟搁置分钟充电1.0V.1C80,15,1C10V,精彩文档.实用标准文案100%×C2,C2/C124小时后测1C容量80再将电池以1C充电分钟,搁置15%应小于小时自放电来快速测试其荷电保持24:锂电池的自放电测试为一般采用截止电4.2V,3.0V,恒流恒压1C充电至0.2C能力,将电池以放电至再将电池3.0V测其放电容量C1,1C:10mA,搁置15分钟后,以放电至流容量小时后测1C充电至4.2V,截止电流100mA,搁置241C恒流恒压99%.×C2,C2/C1100%应大于方法二、内阻测量一般分为电流流过电池内部所受到的阻力,电池的内阻是指电池在工作时,测直流内阻时由于电极容易,,交流内阻和直流内阻由于充电电池内阻很小而测其交流内阻可免除极化内;,产生极化内阻,故无法测出其真实值极化.得出真实的内值阻的影响,给电池一个利用电池等效于一个有源电阻的特点交流内阻测试方法为:,对其电压采样整流滤波等一系列处理从而精,1000HZ,50mA的恒定电流.确地测量其阻值方法三、IEC标准循环寿命测试IEC规定镍镉和镍氢电池标准循环寿命测试为: 支后放至电池以0.2C1.0V/精彩文档.实用标准文案一个循环).30分(0.2C1.以0.1C充电16小时,再以放电2小时(2-48个循环).分分2.0.25C充电3小时10,以0.25C放电2小时20循环)1.0V(33.0.25C充电小时10分,以0.25C放至第49对镍氢),放电至充电4.0.1C16小时,搁置1小时,0.2C1.0V(第50个循环对镍隔电放电时间应大于电池重复1-4共400个循环后,其0.2C3小时;共池重复1-4500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试20MA,电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流次后容量,再以500)反复循环0.2C 放电至3.0V(一个循环1搁置小时后.60%以上应在初容量的方法四、内压测试镍镉和镍氢电池内压测试为:根据电池钢壳的轻微形变1C充电3,小时以放至将电池以0.2C1.0V后,测试中电池不应彭底,.漏液或爆炸通过转换得到电池的内压情况,:(UL标准)锂电池内压测试为检验电池是下,11.6kPa)(15240m模拟电池在海拔高度为的高空低气压.否漏液或发鼓精彩文档.实用标准文案然后将其10mA,4.2V,截止电流:将电池1C充电恒流恒压充电到具体步骤电池不会爆,)的低压箱中储存6小时311.6Kpa,放在气压为温度为(20±℃.裂口,漏液,炸,起火方法五、跌落测试每个,高处跌落于硬质橡胶板上将电池组充满电后从三个不同方向于1m,外包装无破损.电池组电性能应正常方向做2次,方法六、振动实验测试:镍镉和镍氢电池振动实验方法为小时后按下述条24,搁置后,0.1C充电16小时1.0V电池以0.2C放电至:件振动振幅:4mm分分钟.XYZ 三个方向各振动30:1000频率次,以内,内阻变化在±5m0.02V振动后电池电压变化应在±之间:锂电池振动实验方法为10mA,4.2V,截止电流后电池以0.2C放电至3.0V1C充电恒流恒压充电到:24搁置小时后按下述条件振动0.8mm振幅精彩文档.实用标准文案使电池在10HZ-55HZ之间振动,每分钟以1HZ.的震动速率递增或递减振动后电池电压变化应在±0.02V之间,.5m以内内阻变化在方法七、撞击实验磅电池充满电后,将一个15.8mm直径的硬质棒横放于电池上,用一个20的重物从610mm的高度掉下来砸在硬质棒上,电池不应爆炸起火或漏液.方法八、穿刺实验并用一个直径为电池充满电后,2.0mm~25mm的钉子穿过电池的中心,电池不应该爆炸起火把钉子留在电池内,.方法九、高温高湿测试镍镉和镍氢电池高温高湿测试为:,85%℃,1C电池以0.2C放电至1.0V后充电75分钟后将其置与温度66电池不应变形小时192小时(8天),于常温常湿下搁置2,湿度条件下储存以上或漏液,容量恢复应在标称容量的80%.)锂电池高温高湿测试为:(国家标准相对±2℃),然后放入恒流恒压充电到将电池1C4.2V,截止电流10mA,(40的)±,将电池取出在(205℃后的恒温恒湿箱中搁置湿度为90%-95%48h2.75V,恒流放电到再以观测电池外观应该无异常现象条件下搁置2h,,1C精彩文档.实用标准文案放电循环直至放电容量不少于,1C1C)(20然后在±5℃的条件下,进行充电3初始容量的85%,但循环次数不多于次.注意事项测试时间搁置24小时测试安全措施要做好循环测试不多余三次精彩文档.。
锂电池电芯绝缘耐电压测试基础知识锂离子电池制造过程中,极片生产完成后,正负极极片和隔膜采用卷绕或者叠片方式组装在一起,隔膜将正负极极片隔离开。
在电池充放电过程中,隔膜隔离正负极极片之间的电子传导,而允许锂离子通过。
卷绕或叠片组装之后,裸电芯需要进行热压处理,对极片和隔膜整形,使它们更加紧密接触,降低锂离子传输阻力。
在热压地同时,往往会对裸电芯进行绝缘耐电压测试,主要判断电芯内部是否存在异物颗粒造成短路。
绝缘耐电压测试一般采用安规仪,测试时,仪器给电芯加一个电压,这个电压持续一段规定的时间,然后检测其漏电电流量是否保持在规定的范围内,判断电芯正负极有无短路。
一般,施加电压如图1所示:图1 绝缘耐电压测试示意图①在一定时间t1内,对电芯从0开始加电压至U。
②电压U保持一段时间至t2。
③测试完成后,切断测试电压,并对电芯杂散电容放电。
在测试中,正负极极片由于相互靠近,仅仅15-30μm,裸电芯内部会形成一定的电容(杂散电容),由于电容量存在,测试电压必须由“零”开始,缓慢上升,以避免充电电流过大,电容量越大所需的缓升时间t1越长,一次所能增加的电压也越低。
充电电流过大时,一定会引起测试器的误判,使测试的结果不正确。
一旦被测电芯的杂散电容被充满,只会剩下实际的漏电电流。
由于直流耐压测试会对被测电芯充电,所以在测试后,一定要对被测电芯放电。
隔膜都存在一定的耐电压强度,当加载电压过高时肯定能够击穿隔膜,形成漏电流。
因此,首先电芯绝缘测试电压要低于击穿电压。
如图2所示,当正负极之间不存在异物时,在测试电压下漏电流小于规定值,判定电芯合格。
而如果正负极之间存在一定尺寸的异物,隔膜被挤压,正负极之间的间距减小,正负极之间击穿电压会下降,如果还加载相同的电压,漏电流可能超过设定的警报值。
通过设定测试电压等参数,就可以统计分析判断电芯内部的异物尺寸,然后根据实际产品生产现状和品质要求,可以设定测试参数,制定品质判断标准。
干货分享锂电池电化学测量方法
锂离子电池电极过程动力学探究中常用的有循环伏安法(CV)、电化学阻抗谱(EIS)、恒电流间歇滴定技术(GITT)、恒电位间歇滴定技术(PITT)、电流脉冲弛豫(CPR)、电位阶跃计时电流(PSCA)和电位弛豫技术(PRT)等。
锂电池的电极反应主要包括哪些
电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空问电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。
这些过程有些同时进行,有些先后发生。
电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。
分清两电极和三电极
电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。
两电极
两电极由研究电极(W),亦称之为工作电极和辅助电极(C),亦称之为对电极组成。
锂电池的研究中多数为两电极电池,两电极电池测量的电压是正极电势与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。
三电极
三电极电池包括,W和C分别是工作电极和对电极,R是参比电极。
W和C之间通过极化电流,实现电极的极化。
W和R之间通过极小的电流,用于测量工作电极的电势。
通过三电极电池,可以专门研究工作电极的电极过程动力学。
参比电极的特征
1、参比电极应为可逆电极:
2、不易被极化,以保证电极电势比较标准和恒定:
3、具有较好的恢复特性,不发生严重的滞后现象;
4、具有较好的稳定性和重现性;。
锂电池测试报告
一、锂电池放电
锂电池放电曲线图
一般锂电池放电曲线图如上,可通过三条直线模拟拼接;
第一段:电量消耗<20%,电压范围(4.2~4.0V);
第二段:20%<电量消耗<90%,电压范围(4.0~3.7V);
第三段:电量消耗>90%,电压范围(3.7~2.95V);
以下是实际测量结果:
说明:
第一阶段通过时间为0(电压为4.18V)和时间为0.5(电压为4.0V),求出平均电流37mA;该阶段耗电量为:0.5h*37mA=18.5mAh
第二阶段通过时间为0.5(电压为4.0V)和时间为4.5(电压为3.71V),求出平均电流32.85mA;该阶段耗电量为:4h*32.85mA=131.4mAh
第一阶段通过时间为4.5(电压为3.71V)和时间为6.5(电压为2.76V),求出平均电流20.35mA;该阶段耗电量为:2h*20.35mA=40.7 mAh
综上,总的电池容量为:190.6mAh;
二、锂电池充电:
充电电流:100mA;(充电电路前端实测:101mA,充电电路输出:99mA)
电池标称容量:180mAh;
充电时长:2h;
饱和电压:4.18V;。
锂电池电量检测方法锂电池电量检测是评估锂电池剩余电量的过程,主要目的是确定电池的可用时间和充电状态。
这些信息对于用户选择合适的充电时间和了解电池寿命非常重要。
本文将介绍几种常用的锂电池电量检测方法。
1. 电压法电压法是最常用的一种电量检测方法。
根据锂电池的典型电压特性,可以通过测量电池的开路电压(OCV)或负载电压来估计电池的电量。
开路电压是指未连接到负载时的电池电压,可以通过测量锂电池两端的电压来得到。
通过将电池连接到负载并测量其电压,可以根据负载电压和电池内阻之间的关系来估计电池电量。
2. 电流积分法电流积分法是通过积分电流来估计电池的剩余容量。
通过测量电池的充放电电流,并对其进行积分,可以得到电池的容量信息。
但是这种方法需要准确控制电流的变化速率,并考虑电池的放电效率,因此需要一定的算法和校准过程来提高准确性。
3. 温度法温度法是一种间接估计电池电量的方法。
由于锂电池的内阻与电池的温度有关,可以通过测量锂电池的温度来推算电池的剩余电量。
这种方法的优点是简单易行,但不够准确,需要进行更复杂的算法处理来提高准确性。
4. 电池内阻法电池内阻法是通过测量电池的内阻来估计电池的电量。
电池的内阻与其剩余容量有一定的关系,通过测量电池的内阻变化可以推算电池的电量。
这种方法需要专用的测试设备和技术,适用于研究和开发领域。
除了上述方法,还有一些其他的电量检测方法,如库伦计数法、容量检测法等。
每种方法都有其优缺点,可以根据具体需求选择适合的方法。
需要注意的是,锂电池的电量检测不仅仅是通过单一的方法来判断,而是综合考虑多种因素。
例如,充放电过程中的电流变化、电池的使用环境、电池的温度等都会对电量检测结果产生影响。
因此,在实际应用中,需要结合多种方法来进行电量检测,以提高准确性和可靠性。
综上所述,锂电池电量检测是评估锂电池剩余电量的重要过程,可以通过电压法、电流积分法、温度法、电池内阻法等多种方法来进行。
每种方法都有其优缺点,需要根据具体需求选择适合的方法,并综合考虑多种因素来提高准确性和可靠性。
干货分享锂电池电化学测量方法锂离子电池电极过程动力学探究中常用的有循环伏安法(CV)、电化学阻抗谱(EIS)、恒电流间歇滴定技术(GITT)、恒电位间歇滴定技术(PITT)、电流脉冲弛豫(CPR)、电位阶跃计时电流(PSCA)和电位弛豫技术(PRT)等。
锂电池的电极反应主要包括哪些电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空问电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。
这些过程有些同时进行,有些先后发生。
电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。
分清两电极和三电极电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。
两电极两电极由研究电极(W),亦称之为工作电极和辅助电极(C),亦称之为对电极组成。
锂电池的研究中多数为两电极电池,两电极电池测量的电压是正极电势与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。
三电极三电极电池包括,W和C分别是工作电极和对电极,R是参比电极。
W和C之间通过极化电流,实现电极的极化。
W和R之间通过极小的电流,用于测量工作电极的电势。
通过三电极电池,可以专门研究工作电极的电极过程动力学。
参比电极的特征1、参比电极应为可逆电极:2、不易被极化,以保证电极电势比较标准和恒定:3、具有较好的恢复特性,不发生严重的滞后现象;4、具有较好的稳定性和重现性;5、快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性;6、不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。
常用的参比电极水溶液体系参比电极:可逆氢电极、甘汞电极、汞一氧化汞电极、汞一硫酸亚汞电极等;非水溶液体系参比电极:银一氯化银电极、Pt 电极以及金属锂、钠等电极。
锂电池性能测试方法锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。
锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等工具/原料测试仪硬质棒钉子方法/步骤方法一、自放电测试镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至1.0V.1C充电80分钟,搁置15分钟,以1C放电至10V,测其放电容量C1,再将电池以1C充电80分钟,搁置24小时后测1C容量C2,C2/C1×100%应小于15%锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至3.0V,恒流恒压1C充电至4.2V,截止电流:10mA,搁置15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至4.2V,截止电流100mA,搁置24小时后测1C容量C2,C2/C1×100%应大于99%.方法二、内阻测量电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值.交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值.方法三、IEC标准循环寿命测试IEC规定镍镉和镍氢电池标准循环寿命测试为:电池以0.2C放至1.0V/支后1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环).2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环).3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环)4.0.1C充电16小时,搁置1小时,0.2C放电至1.0V(第50个循环),对镍氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时.EC规定锂电池标准循环寿命测试电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁置1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上.方法四、内压测试镍镉和镍氢电池内压测试为:将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸.锂电池内压测试为:(UL标准)模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓.具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA,然后将其放在气压为11.6Kpa,温度为(20±3℃)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液.方法五、跌落测试将电池组充满电后从三个不同方向于1m高处跌落于硬质橡胶板上,每个方向做2次,电池组电性能应正常,外包装无破损.方法六、振动实验测试镍镉和镍氢电池振动实验方法为:电池以0.2C放电至1.0V后,0.1C充电16小时,搁置24小时后按下述条件振动:振幅:4mm频率:1000次,分XYZ三个方向各振动30分钟.振动后电池电压变化应在±0.02V之间,内阻变化在±5m以内锂电池振动实验方法为:电池以0.2C放电至3.0V后1C充电恒流恒压充电到4.2V,截止电流10mA,搁置24小时后按下述条件振动:振幅0.8mm使电池在10HZ-55HZ之间振动,每分钟以1HZ的震动速率递增或递减.振动后电池电压变化应在±0.02V之间,内阻变化在5m以内.方法七、撞击实验电池充满电后,将一个15.8mm直径的硬质棒横放于电池上,用一个20磅的重物从610mm的高度掉下来砸在硬质棒上,电池不应爆炸起火或漏液.方法八、穿刺实验电池充满电后,用一个直径为2.0mm~25mm的钉子穿过电池的中心,并把钉子留在电池内,电池不应该爆炸起火.方法九、高温高湿测试镍镉和镍氢电池高温高湿测试为:电池以0.2C放电至1.0V后,1C充电75分钟后将其置与温度66℃,85%湿度条件下储存192小时(8天),于常温常湿下搁置2小时,电池不应变形或漏液,容量恢复应在标称容量的80%以上.锂电池高温高湿测试为:(国家标准)将电池1C恒流恒压充电到4.2V,截止电流10mA,然后放入(40±2℃),相对湿度为90%-95%的恒温恒湿箱中搁置48h后,将电池取出在(20±5℃)的条件下搁置2h,观测电池外观应该无异常现象,再以1C恒流放电到2.75V,然后在(20±5℃)的条件下,进行1C充电,1C放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.注意事项测试时间搁置24小时测试安全措施要做好循环测试不多余三次。
动力电池电压测量步骤嘿,咱今儿个就来聊聊动力电池电压测量这档子事儿!你可别小瞧了这测量电压,就跟咱给身体量体温似的,能知道它健不健康呢!首先,你得把工具准备好呀,就像战士上战场得有称手的兵器一样。
那测量电压得有个靠谱的电压表吧,这可不能马虎。
然后呢,找到动力电池的正负极。
这就好比找宝藏得先知道入口在哪儿。
可别找错喽,不然测出来的数据那可就全乱套啦!接下来,小心谨慎地把电压表的表笔分别接到正负极上。
嘿,这时候你可得稳住手,别抖呀,一抖说不定就接错啦。
想象一下,要是医生给你量血压的时候手一抖,那数据能准吗?接好表笔后,眼睛可得瞪大咯,仔细瞅瞅电压表上显示的数值。
这数值就像是动力电池给咱的一个信号,告诉咱它现在状态咋样。
要是数值不对劲,那咱就得寻思寻思,是不是这电池有点啥毛病啦。
测量完一次可别急着下结论哦,多测几次才保险呢。
就跟咱去医院检查,医生也不会只看一次结果就下诊断吧。
多测几次,看看数值稳不稳定,这样才能心里有底呀。
你说这测量电压重要不?那当然重要啦!就好比咱人得知道自己血压正不正常一样。
要是电池电压有问题,那车子还能跑得顺畅吗?肯定不行呀!所以啊,咱可得重视这个步骤,别嫌麻烦。
而且啊,在测量的时候还得注意安全呢。
毕竟这电池里面也是有能量的,可别不小心触了电。
就跟走在路上得小心看路一样,安全第一嘛!总之呢,动力电池电压测量可不能马虎,每一步都得认真对待。
只有这样,咱才能准确地了解电池的情况,让车子跑得稳稳当当的。
这就是我给你讲的动力电池电压测量步骤,记住了没?哈哈!。
如何通过实验测试数据获得锂电池的开路电压在木课程中,您将了解为确定电池开路电压关系所必需收集的数据而进行 的实验室实验。
一般来说,电池从最大SOC 到最小SOC 的放电过程是非常缓慢 的,而且从最小状态充电回到最大的电荷状态也是非常缓慢的。
然而,由于我们 并没有传感器可以直接测量荷电状态,反而在制造商提供的专业的截止电压VMax 和Vmin 之间充电和放电。
mVo0 20000 40000 60000 80000 100000 120000 140000 160000 180000 充电时间/min图2充电曲线O o o o o O 8 0 0 0 5 0 5 2 1110000 20000 30000 40000 50000 60000 70000 80000 90000 放电时间/minm V 30002500o o O o o O 5 0 5 4 4 3ooooooooo ooooooooo 50505050544332211当我们对电池进行放电和充电时,测试设备会持续监控和记录电池端子电压。
它还监测,直到当前时间点放电累积的电量(安培小时),以及到当前时间点己经充电累积的电量(安培小时)。
写入这些数据的记录速率不需要非常快,因为我们正在进行的是一个非常缓慢的测试。
我们慢慢地对电池进行放电和充电。
因此,每秒记录一次是足够快的,可能比真正需要的更快。
因为开路电压也是温度的函数,所以我在本课中描述的测试是在许多不同的温度下进行的,分布在整个电池预期工作状态范围内。
通过这些测试,我们将收集所有必要的数据来描述整个温度范围内的电池开路电压关系。
由于多种原因,我们在此测试中使用非常低的电流。
一是因为我们希望我们测量的电压尽可能与电池真正开路电压相似。
另外一个原因,当我们使用小电流时,电池中产生的热量将非常小。
由于小的热量产生,因此可以合理地认为所有收集的数据都是在环境测试温度下采集的。
因此,测量电池表面温度并不是太关键但在任何情况下都需要谨慎,以便稍后进行检查,以确保您的热室能够以适当的准确度调节电池温度。
锂电池电量检测原理(总49页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录目录----------------------------------------------------------------------------------- 2第一章电池电量监测基础知识------------------------------------------------------------- 4什么是电池电量监测技术------------------------------------------------------------- 4概要介绍--------------------------------------------------------------------------- 4第一部分:电池化学成分基本知识----------------------------------------------------- 4电池化学容量Qmax ------------------------------------------------------------------ 6可用容量Quse ---------------------------------------------------------------------- 7电池电阻--------------------------------------------------------------------------- 8电荷状态(SOC)-------------------------------------------------------------------- 9抗阻与温度和DOD有关-------------------------------------------------------------- 10阻抗和容量随老化而改变------------------------------------------------------------ 11新电池的阻抗差异------------------------------------------------------------------ 12电池剩余容量(RM)---------------------------------------------------------------- 13电池化学成分概要------------------------------------------------------------------ 14第二章传统的电池电量监测方法---------------------------------------------------------- 15目标:充分利用可用的电池容量------------------------------------------------------ 15传统的电池包侧电量监测计---------------------------------------------------------- 16系统侧阻抗跟踪电量监测计---------------------------------------------------------- 17电量监测计有哪些功能?------------------------------------------------------------ 17如何实现电量监测计---------------------------------------------------------------- 18基于电压的电量监测计-------------------------------------------------------------- 19电池电阻-------------------------------------------------------------------------- 20阻抗与温度和DOD有关-------------------------------------------------------------- 21新电池的阻抗差异------------------------------------------------------------------ 22电池-瞬态响应--------------------------------------------------------------------- 23电压弛豫和电荷状态误差------------------------------------------------------------ 24基于电压之电量监测的SOC误差------------------------------------------------------ 25第三章基于电压的电量监测计------------------------------------------------------------ 27基于电压的电量监测计-------------------------------------------------------------- 27基于库伦计数的电量监测------------------------------------------------------------ 28在完全放电之前进行学习------------------------------------------------------------ 28经补偿的放电终止电压(CEDV)------------------------------------------------------ 30基于库伦计数的电量监测------------------------------------------------------------ 31对于典型电量监测计的优势---------------------------------------------------------- 33电池管理产品-电池电量监测-BQ3060 -------------------------------------------------- 34问题考查-------------------------------------------------------------------------- 34第四章阻抗跟踪技术的优势-------------------------------------------------------------- 36电量监测-------------------------------------------------------------------------- 36 OCV = f (SOC, T) 曲线的比较------------------------------------------------------ 37怎样测量 OCV---------------------------------------------------------------------------------- 38怎样测量阻抗? --------------------------------------------------------------------- 39对于传统电池容量学习的问题-------------------------------------------------------- 39在未完全放电的情况下学习 Qmax ----------------------------------------------------- 40第五章电量监测------------------------------------------------------------------------ 42电量监测的好处-------------------------------------------------------------------- 42未得到使用的电池容量的含义---------------------------------------------------------------------------------------- 46 由于监测不准确而造成的损失---------------------------------------------------------------------------------------- 47 总结 -------------------------------------------------------------------------------------------------------------------------- 48 附录: ------------------------------------------------------------------------------------------------------------------------------ 49第一章 电池电量监测基础知识 什么是电池电量监测技术含义:电池电量监测是一种用于在所有的系统运行及空闲情况下预测电池容量的技术。
锂电池电压、内阻测量操作规程
设备名称:可充电电池综合测试仪
设备型号:BTS-2002
生产厂家:深圳市泰斯电子有限公司
操作步骤:
1.接通测试仪器电源,在开机画面显示之后,进入主功能菜单显示界面。
2.用“▼”选择7.VOL and IMP 功能。
3.按ENTER键进入测试状态。
4.用红表笔接触电池正极,黑表笔接触电池负极。
显示结果如下:
如电压指示为+/-,表示电池接反。
如内阻或者识别电阻指示为OVER,则表示超出测量范围,或者
是开路状态。
5.使用完毕后,按取消键退出当前测试,按其他键无效。
6.认真填写测试记录。
编制:审核:批准:。
锂电池检测内阻电压作业指导书(包装)
操作步骤:
一•作业前的准备:
1 •清洁工作台面,戴好手套。
2•检查测试仪是否正常,如有问题,通知工程部计量校正后,方能使用。
3 •准备好需测试的已抛光完毕的电池。
4 •准备好物料盒、标签纸和笔。
二•作业过程:
1 •将内阻测试仪放在自己的正前方,打开电源,指示灯亮,按工艺要求调机。
2 •右手拿一把电池(电池盖帽朝左),放在测试台具上,右手用力将最下面的一只电池盖帽顶在夹具上
眼睛看着显示屏上显示的电压和内阻。
合格的电池右手拿起放入左手,不合格的电池放在前面内阻仪上并标识清楚。
3 •将内阻、电压符合质量要求的电池盖帽朝上整齐放在塑料物料盒中,不合格的电池分
清高内阻和低电压,分别放在红色塑料物料盒中。
标识清楚电池型号、容量、批号,下转贴面垫工序。
4•作业完毕,做好“ 5S”。
注意事项:
1 •测试台具脏会造成测量数据出现误差,所以要时刻保持其干净。
2 •合格电池与不合格电池分开放置,标识清楚。
3•内阻仪应经常用标准电阻校对。